12.02.2013 Views

Uravnavanje izražanja genov, transkriptomika in drugi ... - cfgbc

Uravnavanje izražanja genov, transkriptomika in drugi ... - cfgbc

Uravnavanje izražanja genov, transkriptomika in drugi ... - cfgbc

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Podiplomski študij Biomedic<strong>in</strong>e<br />

Genetika: Genetski koncepti (2009-010)<br />

<strong>Uravnavanje</strong> <strong>izražanja</strong> <strong>genov</strong>, <strong>transkriptomika</strong> <strong>in</strong><br />

<strong>drugi</strong> pristopi po-genomskega obdobja<br />

1. Osnove uravnavanje <strong>izražanja</strong> <strong>genov</strong>.<br />

Prof. dr. Damjana Rozman<br />

Damjana.rozman@mf.uni-lj.si<br />

http://<strong>cfgbc</strong>.mf.uni-lj.si/<br />

2. Študije genoma <strong>in</strong> transkriptoma z DNA mikromrežami (čipi).<br />

3. Študije genoma <strong>in</strong> transkriptoma z novo generacijo sekveniranja.<br />

4. Pomen <strong>in</strong>formatike pri študijah “omov”.<br />

5. Primeri uporabe “omov”: kemogenomika, toksikogenomika, farmakogenomika.


2008


Različne ravni uravnavanja


Prenos<br />

signala<br />

razdružitev<br />

nukleosomov<br />

Prostorsko<br />

razporejanje<br />

DNA<br />

Molekularni dogodki pri izražanju <strong>genov</strong><br />

30 nm vlakno<br />

Premik nukleosomov s<br />

tkivno-specifičnimi<br />

faktorji<br />

Pre<strong>in</strong>iciacijski<br />

kompleks<br />

Aktivatorji<br />

prepisovanja<br />

polII<br />

10 nm vlakno


The chromosome territory–<strong>in</strong>terchromat<strong>in</strong> compartment (CT–IC) model<br />

Lanctôt et al. Nature Reviews Genetics 8, 104–115 (February 2007) | doi:10.1038/nrg2041<br />

Chromat<strong>in</strong> is organized <strong>in</strong> dist<strong>in</strong>ct CTs. Nuclear topography rema<strong>in</strong>s a subject<br />

of debate, expecially with regard to the extent of chromat<strong>in</strong> loops expand<strong>in</strong>g<br />

<strong>in</strong>to the IC and <strong>in</strong>term<strong>in</strong>gl<strong>in</strong>g between neighbour<strong>in</strong>g CTs and chromosomal<br />

subdoma<strong>in</strong>s.


Three hypothetical chromosome territories<br />

Chromat<strong>in</strong>) might become repositioned over time;<br />

Subchromosomal 1 Mb doma<strong>in</strong>s (correspond<strong>in</strong>g to<br />

DNA replication units that are labelled dur<strong>in</strong>g early S<br />

phase32) are depicted as filled circles.<br />

The lighter-green circles <strong>in</strong>dicate gene-poor<br />

chromat<strong>in</strong>;<br />

Dark-coloured circles <strong>in</strong>dicate gene-dense<br />

chromat<strong>in</strong>.<br />

Areas that conta<strong>in</strong> transcriptionally active genes<br />

are <strong>in</strong>dicated by dark background shad<strong>in</strong>g.<br />

Chromat<strong>in</strong> mobility is constra<strong>in</strong>ed <strong>in</strong> several different<br />

ways.<br />

The chromat<strong>in</strong> mobility is constra<strong>in</strong>ed by the tendency<br />

of transcriptionally active and transcriptionally <strong>in</strong>active<br />

chromat<strong>in</strong> regions to cluster <strong>in</strong> three-dimensional<br />

space.<br />

Lanctôt et al. Nature Reviews Genetics 8, 104–115 (February 2007) | doi:10.1038/nrg2041


Chromat<strong>in</strong> mobility allows dynamic <strong>in</strong>teractions between genomic loci and<br />

between loci and other nuclear structures.<br />

a) Movement of chromat<strong>in</strong> from one compartment to<br />

another leads to changes <strong>in</strong> expression of the<br />

correspond<strong>in</strong>g genomic regions.<br />

Activation is triggered by reposition<strong>in</strong>g of the gene loci to<br />

an activat<strong>in</strong>g compartment, away from silenc<strong>in</strong>g<br />

compartments.<br />

b) Compartments are transient self-organiz<strong>in</strong>g entities.<br />

Gene activation leads to dissolution of the silenc<strong>in</strong>g<br />

compartments, changes <strong>in</strong> gene position<strong>in</strong>g and de novo<br />

assembly of an activat<strong>in</strong>g compartment.<br />

Lanctôt et al. Nature Reviews Genetics 8, 104–115 (February 2007) | doi:10.1038/nrg2041


<strong>Uravnavanje</strong> <strong>izražanja</strong> <strong>genov</strong><br />

•RNA polimeraze, osnovni aparat <strong>in</strong> cikel transkripcije<br />

•Mehanizmi prepisovanja <strong>in</strong> aktivacije<br />

•Kontrola prepisovanja preko spremembe strukture kromat<strong>in</strong>a<br />

•Epigenetska kontrola<br />

• Komb<strong>in</strong>irani dogodki pri prenosu signala<br />

•Metode za študij <strong>in</strong>terakcij DNA-prote<strong>in</strong>i


•Osnovni aparat – RNA polimeraza<br />

Transkripcijski aparat<br />

•Regulatorji (aktivatorji, represorji; trans-delujoči faktorji)<br />

Cis-elementi<br />

•Cis-regulatorni moduli (CRM); vzpodbujevalci (enhacers), utiševalci (silencers)<br />

http://the_bra<strong>in</strong>.bwh.harvard.edu/Lever/Lever.png


Generat<strong>in</strong>g a high-resolution atlas of mesodermal CRMs.<br />

RP Z<strong>in</strong>zen et al. Nature 462, 65-70 (2009) doi:10.1038/nature08531


Bakterije<br />

– 1 RNA polimeraza<br />

Evkarionti<br />

– RNA pol I (45s pre-rRNA )<br />

-RNA pol II (mRNA kodirani geni, miRNA)<br />

-RNA pol III (tRNA, 5S rRNA)


“Tovarna” RNA polimeraze II<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


Komunikacija med CRM <strong>in</strong> promotorjem<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


Tipični pol II gen ima promotor, ki zavzema področje cca 200 bp navzgor<br />

od mesta pričetka prepisovanja. Lahko vsebuje tudi pospeševalec<br />

(enhancer), ki je oddaljen poljubno (???)<br />

B. Lew<strong>in</strong>, GenesVII, 2000


Struktura gena razreda pol II<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


Core promoter-selective RNA polymerase II transcription<br />

•Gross P, Oelgeschlager T, Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8<br />

OTL, UK.<br />

The core promoter:<br />

-m<strong>in</strong>imal DNA region that is sufficient to direct low levels of activator-<strong>in</strong>dependent (basal)<br />

transcription by RNAP II <strong>in</strong> vitro;<br />

-typically extends approx. 40 bp up- and downstream of the start site of transcription;<br />

-can conta<strong>in</strong> several dist<strong>in</strong>ct core promoter sequence elements;<br />

-conta<strong>in</strong>s TATA box or INR (<strong>in</strong>itiator) element.<br />

Computational analysis of metazoan genomes suggests that the prevalence of the<br />

TATA box has been overestimated <strong>in</strong> the past and that the majority of human genes<br />

are TATA-less.<br />

While TATA-mediated transcription <strong>in</strong>itiation has been studied <strong>in</strong> great detail and is very<br />

well understood, very little is known about the factors and mechanisms <strong>in</strong>volved <strong>in</strong> the<br />

function of the INR and other core promoter elements.<br />

Biochem Soc Symp. 2006;(73):225-36.


TATA-less promoter – example – CYP19 (aromatase)<br />

3, 821-831 (November 2003)


TATA-less promoter - example<br />

The human CYP19 (P450arom) gene is located <strong>in</strong> the chromosome 15q21.2 region and is<br />

comprised of a 30 kb cod<strong>in</strong>g region and a 93 kb regulatory region.<br />

The unusually large regulatory region conta<strong>in</strong>s 10 tissue-specific promoters that are<br />

alternatively used <strong>in</strong> various cell types. Each promoter is regulated by a dist<strong>in</strong>ct set of<br />

regulatory sequences <strong>in</strong> DNA and transcription factors that b<strong>in</strong>d to these specific<br />

sequences.<br />

The most recently characterized promoter Is TATA-less and accounts for the transcription<br />

of 29-54% of P450arom mRNAs <strong>in</strong> breast cancer tissues and conta<strong>in</strong>s endothelial-type<br />

cis-act<strong>in</strong>g elements that <strong>in</strong>teract with endothelial-type transcription factors, e.g. GATA-2.<br />

This promoter may upregulate aromatase expression <strong>in</strong> vascular endothelial cells. The <strong>in</strong><br />

vivo cellular distribution and physiologic roles of this promoter <strong>in</strong> healthy tissues is not<br />

known.<br />

J Steroid Biochem Mol Biol. 2003 Sep;86(3-5):219-24


TATA-less promoters<br />

Mol<strong>in</strong>a and Grotewold BMC Genomics 2005 6:25


Transkripcijski cikel<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


Transkripcijski mehurček<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


RNA polimeraza se lahko premika v obe smeri<br />

A.J. Courey, Mechanisms <strong>in</strong> transcriptional regulation, 2008)


Vezavno mesto za DNA-RNA hibrid<br />

Matrična veriga<br />

Kodirajoča veriga<br />

Cramer et al., Science 288, 640-645 (2000)


Model of the pol II transcription <strong>in</strong>itiation complex with the addition of electron microscope<br />

structures of TFIIE, TFIIF, and TFIIH.<br />

Bushnell et al., Science 303, 983-988 (2004)


Splošni transkripcijski faktorji RNA polimeraze II<br />

•TFIID: velik multiprote<strong>in</strong>ski kompleks, ki prične sestavljanje transkripcijskega aparata.<br />

Vsebuje TBP <strong>in</strong> TAFe<br />

•TFIIB: <strong>in</strong>teragira z TBP <strong>in</strong> z DNA (analog bakterijskih σ faktorjev)<br />

•TFIIF: udeležen pri <strong>in</strong>iciaciji kot pri podaljševanju verige.<br />

•TFIIE: veže TFIIH<br />

•TFIIH ima k<strong>in</strong>azno aktivnost, je helikaza, sodeluje tudi pri popravljanja DNA.<br />

Predstavlja povezavo med prepisovanjem <strong>in</strong> popravljanjem DNA <strong>in</strong> uravnavanjem<br />

celičnega cikla.<br />

•TFIIA - po nekaterih izsledkih ne spada med splošne transkripcijske faktorje temveč<br />

med specializirane TFIID koaktivatorje. V pogojih <strong>in</strong> vitro veže TBP-DNA kompleks <strong>in</strong><br />

povzroči širjenje DNA-prote<strong>in</strong> kontaktov, obstajajo pa tudi dokazi, da ima pomen le pri<br />

kontaktiranju z gensko-specifičnimi transkripcijskimi faktorji.


Kromat<strong>in</strong> <strong>in</strong> prepisovanje<br />

http://www.wadsworth.org/images/bio_icons/tn_transchromat<strong>in</strong>.jpg


N-term<strong>in</strong>alni repki histonov so gibljivi <strong>in</strong> obrnjeni navzven.<br />

Modifikacija histonskih repkov vodi do strukturnih<br />

sprememb, potrebnih pri pričetku prepisovanja<br />

GenesVII


www.med.ufl.edu/biochem/ keithr/fig1pt2.html


Three hypothetical chromosome territories<br />

Chromat<strong>in</strong>) might become repositioned over time;<br />

Subchromosomal 1 Mb doma<strong>in</strong>s (correspond<strong>in</strong>g to<br />

DNA replication units that are labelled dur<strong>in</strong>g early S<br />

phase32) are depicted as filled circles.<br />

The lighter-green circles <strong>in</strong>dicate gene-poor<br />

chromat<strong>in</strong>;<br />

Dark-coloured circles <strong>in</strong>dicate gene-dense<br />

chromat<strong>in</strong>.<br />

Areas that conta<strong>in</strong> transcriptionally active genes<br />

are <strong>in</strong>dicated by dark background shad<strong>in</strong>g.<br />

Chromat<strong>in</strong> mobility is constra<strong>in</strong>ed <strong>in</strong> several different<br />

ways.<br />

The chromat<strong>in</strong> mobility is constra<strong>in</strong>ed by the tendency<br />

of transcriptionally active and transcriptionally <strong>in</strong>active<br />

chromat<strong>in</strong> regions to cluster <strong>in</strong> three-dimensional<br />

space.<br />

Lanctôt et al. Nature Reviews Genetics 8, 104–115 (February 2007) | doi:10.1038/nrg2041


Nukleolarna<br />

tovarna Nukleoplazemska<br />

tovarna<br />

Transkripcijske (nukleolarne)<br />

Tovarne v celicah HeLa<br />

Nascentni transkripti označeni z Br-UTP,<br />

Br-RNA imunobarvana s fluoresc<strong>in</strong><br />

izotiocianatom (zelena), nukle<strong>in</strong>ske kisl<strong>in</strong>e<br />

označene s TO-TO-3 (rdeča)<br />

Millerjeva razporeditev –<br />

rRNA transkripcijska enota<br />

(pol I) s ~125 prepisi<br />

Pol II transkripcijska<br />

enota z enim prepisom<br />

Cook P.R., Science 284, 1790-1795 (1999)


Transkripcijski cikel<br />

RNA II polimeraza ima večjo<br />

potezno moč kot k<strong>in</strong>ez<strong>in</strong> <strong>in</strong> mioz<strong>in</strong>.<br />

Energijo hidrolize ATP pretvori v<br />

mehansko <strong>in</strong> k<strong>in</strong>etično energijo<br />

Cook P.R., Science 284, 1790-1795 (1999)


RNA polimeraze, osnovni aparat <strong>in</strong> cikel transkripcije– povzetek<br />

•Cikel transkripcije vsebuje začetek (<strong>in</strong>iciacijo), podaljševanje (elongacijo) <strong>in</strong><br />

zaključek (term<strong>in</strong>acijo)<br />

•Transkripcijo katalizirajo evolucijsko ohranjene RNA polimeraze. Evkarionti<br />

imajo RNA poI I, II <strong>in</strong> III. Potrebni pa so še <strong>drugi</strong> prote<strong>in</strong>i (RNA polimeazni<br />

kompleks)<br />

•Jedro RNA polimeraze vsebuje par “klešč” (clamp), ki tvorijo režo aktivnega<br />

centra encima za s<strong>in</strong>tezo RNA. V stopnji podaljševanja DNA doseže aktivno<br />

mesto skozi kanal med kleščama, se denaturira (mehurček), rastoča RNA<br />

veriga pa tvori heterodupleks z matrično verigo DNA. NTP-ji dosežejo<br />

aktivno mesto skozi sekundarni kanal.<br />

•Če polimeraza naleti na oviro, se lahko premakne nazaj (back-track<strong>in</strong>g).<br />

•TBP je univerzalni transkripcijski faktot, ki prepozna TATA, potreben pa je<br />

tudi za prepisovanje s promotorjev brez TATA.


CRM <strong>in</strong> kromat<strong>in</strong> - povzetek<br />

•Cis-regulatorni modul (CRM) je področje DNA, kamor se vežejo<br />

številni transkripcijski faktorji <strong>in</strong> uravnavajo izražanje bližnjih <strong>genov</strong> .<br />

Posamezni gen ima pri živalih lahko do 20 CRM.<br />

•CRM se običajno nahajajo v 5’ neprevedenih regijah gena ali v <strong>in</strong>tronih.<br />

•Prepisovanje <strong>genov</strong> se dogaja v nukleolarnih tovarnah, ki predstavljajo<br />

transkripcijsko aktivna področja jedra.<br />

•Acetilacija (deacetilacija) uravnava kondenzacijo kromat<strong>in</strong>a. Za<br />

prepisovanje primeren je acetiliran kromat<strong>in</strong>.


2. Študije transkriptoma z DNA mikromrežami (čipi),<br />

povezave z <strong>drugi</strong>mi “omi”<br />

The suffix “-ome-” orig<strong>in</strong>ated as a back-formation from “genome”, a word formed<br />

<strong>in</strong> analogy with “chromosome”.<br />

Because “genome” refers to the complete genetic makeup of an organism, some<br />

people have made the <strong>in</strong>ference that there exists some root, *“-ome-”, of Greek<br />

orig<strong>in</strong> referr<strong>in</strong>g to wholeness or to completion.<br />

Because of the success of large-scale quantitative biology projects such as<br />

genome sequenc<strong>in</strong>g, the suffix "-ome-" has migrated to a host of other contexts.<br />

Bio<strong>in</strong>formaticians and molecular biologists figured amongst the first scientists to<br />

start to apply the "-ome" suffix widely.<br />

http://en.wikipedia.org/


employees.csbsju.edu/.../ olb<strong>in</strong>dtransciption.html


The “ome” world<br />

http://en.wikipedia.org/<br />

The transcriptome, the mRNA complement of an entire organism, tissue type, or cell;<br />

with its associated field transcriptomics<br />

The metabolome, the totality of metabolites <strong>in</strong> an organism; with its associated field<br />

metabolomics<br />

The metallome, the totality of metal and metalloid species; with its associated field<br />

metallomics<br />

The lipidome, the totality of lipids; with its associated field Lipidomics<br />

The glycome, the totality of glycans, carbohydrate structures of an organism, a cell or tissue type. Glycomics:<br />

The associated field of study.<br />

The <strong>in</strong>teractome, the totality of the molecular <strong>in</strong>teractions <strong>in</strong> an organism a once proposed field of<br />

<strong>in</strong>teractomics has generally become known as systems biology<br />

The spliceome (see spliceosome), the totality of the alternative splic<strong>in</strong>g prote<strong>in</strong> isoforms; with its associated<br />

field spliceomics.<br />

The ORFeome refers to the totality of DNA sequences that beg<strong>in</strong> with the <strong>in</strong>itiation codon ATG, end with a<br />

nonsense codon, and conta<strong>in</strong> no stop codon. Such sequences may therefore encode part or all of a prote<strong>in</strong>.<br />

The Phenome - the organism itself. The Phenome is to the genome what the phenotype is to the genotype.<br />

Also, the complete list of phenotypic mutants available for a species.<br />

The Exposome - the collection of an <strong>in</strong>dividual's environmental exposures.


Genomics<br />

http://en.wikipedia.org/<br />

Genomics is the study of an organism's entire genome.<br />

The field <strong>in</strong>cludes <strong>in</strong>tensive efforts to determ<strong>in</strong>e the entire DNA sequence of<br />

organisms and f<strong>in</strong>e-scale genetic mapp<strong>in</strong>g efforts.<br />

http://www.wiley.com/legacy/college/boyer/0470003790/cutt<strong>in</strong>g_edge/shotgun_seq/computer.gif


Študije transkriptoma z DNA čipi<br />

• Analiza genoma (genotpizacija enojnih nukleotidnih polimorfizmov SNP,<br />

analiza variance števila kopij CNV oz. CGH, resekvenciranje).<br />

• Analiza transkriptoma (ekspresijsko profiliranje: 3' ekspresijski, eksonski ali<br />

genski čipi, čipi za sledenje <strong>izražanja</strong> miRNA).<br />

• Študije uravnavanja <strong>izražanja</strong> <strong>genov</strong> (kromat<strong>in</strong>ska imunoprecipitacija na čipu<br />

ChIP-on-Chip, mapiranje prepisov).


A DNA microarray<br />

http://en.wikipedia.org/<br />

A DNA microarray (also commonly known as gene chip, DNA chip, or biochip) is a<br />

collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or<br />

silicon chip form<strong>in</strong>g an array for the purpose of monitor<strong>in</strong>g of expression levels for<br />

thousands of genes simultaneously.<br />

The affixed DNA segments are known as probes (although some sources will use different<br />

nomenclature), thousands of which can be used <strong>in</strong> a s<strong>in</strong>gle DNA microarray.<br />

Microarray technology evolved from Southern blott<strong>in</strong>g, where fragmented DNA is attached<br />

to a substrate and then probed with a known gene or fragment.<br />

Measur<strong>in</strong>g gene expression us<strong>in</strong>g microarrays is relevant to many areas of biology and<br />

medic<strong>in</strong>e, such as study<strong>in</strong>g treatments, disease, and developmental stages. For example,<br />

microarrays can be used to identify disease genes by compar<strong>in</strong>g gene expression <strong>in</strong><br />

disease and normal cells.


Robust, simple representation<br />

focus<strong>in</strong>g on the 3' ends.<br />

Different parts of the gene as probes on the array<br />

Genome-wide, exon-level analysis<br />

on a s<strong>in</strong>gle array —<br />

a survey of alternative splic<strong>in</strong>g and<br />

gene expression.<br />

High-density tiled microarrays for<br />

transcript mapp<strong>in</strong>g.<br />

http://www.affymetrix.com/products/arrays/<strong>in</strong>dex.affx


Parts of a gene represented <strong>in</strong> different types of microarrays


Hybridization on the microarray<br />

http://www.ieee.org/portal/cms_docs_sscs/sscs/07Fall/HamFig1s.jpg


Analisys of genome - Genotyp<strong>in</strong>g microarrays<br />

DNA microarrays can be used to read the sequence of a genome <strong>in</strong> particular<br />

positions.<br />

SNP microarrays are a particular type of DNA microarrays that are used to<br />

identify genetic variation <strong>in</strong> <strong>in</strong>dividuals and across populations.<br />

Short oligonucleotide arrays can be used to identify the s<strong>in</strong>gle nucleotide<br />

polymorphisms (SNPs) that are thought to be responsible for genetic variation<br />

and the source of susceptibility to genetically caused diseases.<br />

Amplifications and deletions can also be detected us<strong>in</strong>g comparative genomic<br />

hybridization <strong>in</strong> conjuction with microarrays.<br />

Resequenc<strong>in</strong>g arrays have also been developed to sequence portions of the<br />

genome <strong>in</strong> <strong>in</strong>dividuals. These arrays may be used to evaluate germl<strong>in</strong>e<br />

mutations <strong>in</strong> <strong>in</strong>dividuals, or somatic mutations <strong>in</strong> cancer.<br />

Genome til<strong>in</strong>g arrays <strong>in</strong>clude overlapp<strong>in</strong>g oligonucleotides designed to blanket<br />

an entire genomic region of <strong>in</strong>terest. Many companies have successfully<br />

designed til<strong>in</strong>g arrays that cover whole human chromosomes.


If every human genome is different, what does it mean to sequence<br />

"the" human genome?<br />

The complete human genome sequence announced <strong>in</strong> June 2000 is a<br />

"representative" genome sequence based on the DNA of just a few<br />

<strong>in</strong>dividuals.<br />

Over the longer term, scientists will study DNA from many different people to<br />

identify where and what variations between <strong>in</strong>dividual genomes exist.<br />

Sequenc<strong>in</strong>g a genome is such a Herculean task that captur<strong>in</strong>g its person-toperson<br />

variability on the first pass would be next to impossible.<br />

S<strong>in</strong>ce every person's genome is unique, no one person is any more or less<br />

"representative" than any other and it hardly matters whose genome is<br />

sequenced first.<br />

The vast majority of the genome's sequence is the same from one person to<br />

the next, with the same genes <strong>in</strong> the same places.<br />

www.genomenewsnetwork.org/.../ Chp4_1.shtml


DNA polymorphisms<br />

• S<strong>in</strong>gle Base Pair Differences,<br />

– S<strong>in</strong>gle Nucleotide Polymorphisms (SNPs),<br />

• Microsatellites (short sequence repeats),<br />

• M<strong>in</strong>isatellites (long sequence repeats),<br />

• Deletions,<br />

• Duplications.


High density Afymetrix microarrays<br />

Affymetrix uses a unique comb<strong>in</strong>ation of photolithography and comb<strong>in</strong>atorial<br />

chemistry to manufacture GeneChip® Arrays.


SNP chips<br />

To determ<strong>in</strong>e which alleles are present, genomic DNA from an <strong>in</strong>dividual is isolated, fragmented,<br />

tagged with a fluorescent dye, and applied to the chip.<br />

The genomic DNA fragments anneal only to these oligos to which they are perfectly<br />

complementary.<br />

A computer reads the position of the two fluorescent tags and identifies the <strong>in</strong>dividual as a C / T<br />

heterozygote.<br />

The s<strong>in</strong>gle spots <strong>in</strong> the other three columns <strong>in</strong>dicate that the <strong>in</strong>dividual is homozygous at the three<br />

correspond<strong>in</strong>g SNP positions.<br />

http://www.mun.ca/biology/scarr/DNA_VDA_chip_schematic.jpg


1,500 SNPs arrayed<br />

Genotyp<strong>in</strong>g


Comparative genomic hybridization<br />

Array comparative genomic hybridization (CGH) is a tool for the assessment of DNA<br />

copy number variation (CNV) with<strong>in</strong> any given DNA sample.<br />

The technique is derived from the concept of conventional CGH where patient and<br />

reference DNA (the latter derived from a normal male/female) is differentially labelled<br />

and co-hybridized to a normal metaphase spread.


Some diseases are associated with sections of chromosomes that are<br />

erroneously replicated or deleted.<br />

The technique of array-based genomic hybridisation (array-comparative<br />

genomic hybridization CGH or copy number variation CNV) allows highthroughput,<br />

rapid identification and mapp<strong>in</strong>g of these genomic DNA copy<br />

number changes, with higher resolution than is possible us<strong>in</strong>g traditional,<br />

non-array methods.<br />

http://www.nature.com/lab<strong>in</strong>vest/journal/v85/n9/images/3700312f2.jpg


Expression profil<strong>in</strong>g and CGH<br />

http://www.genomictree.com/images/bioimg09.jpg


Array-based Comparative genome hybridization (CGH)<br />

In array-based CGH, large <strong>in</strong>sert clones like BACs , conta<strong>in</strong><strong>in</strong>g human DNA, replace the metaphase<br />

spread as target.<br />

The clones are spotted <strong>in</strong> three- four- or fivefold on a microscope slide. Depend<strong>in</strong>g on the contents of<br />

the array, the collection of clones that is pr<strong>in</strong>ted on the slide, specific chromosome parts or even the<br />

entire genome can be analyzed <strong>in</strong> one experiment.<br />

http://www.sanger.ac.uk/HGP/Cytogenetics/gfx/cgh_300.jpg


Resequenc<strong>in</strong>g Arrays<br />

Til<strong>in</strong>g arrays - tools for resequenc<strong>in</strong>g, based on the concept of <strong>in</strong>terrogat<strong>in</strong>g the<br />

genome <strong>in</strong> a systematic, unbiased fashion.<br />

Before til<strong>in</strong>g arrays came along, other methods were used to predict genes that<br />

were unknown, <strong>in</strong>clud<strong>in</strong>g expressed-sequence tag (EST) sequenc<strong>in</strong>g,<br />

comparison with known prote<strong>in</strong>-cod<strong>in</strong>g sequences, and ab <strong>in</strong>itio prediction.<br />

Til<strong>in</strong>g arrays are designed to address this problem by tak<strong>in</strong>g an empirical<br />

measurement across the entire genomic DNA. This allows a researcher to probe<br />

for to probe for transcribed sequences without a predeterm<strong>in</strong>ed concept of thier<br />

location<br />

Us<strong>in</strong>g the til<strong>in</strong>g chips it is possible to perform the most comprehensive analysis of<br />

the whole genome comb<strong>in</strong>ed with transcript mapp<strong>in</strong>g. The probes are designed<br />

(tiled) at an average resolution of 35-bp throughout the whole genome, thus<br />

enabl<strong>in</strong>g a more accurate view of the transcription and discovery of novel RNA<br />

transcripts.


Analiza transkriptoma


Ekspresijsko profiliranje z DNA mikromrežami – dvojno označevanje<br />

Pr<strong>in</strong>ciple of expression profil<strong>in</strong>g<br />

Geni zastopani s<br />

cDNA ali z oligonukleotidi<br />

Robot-nanašalec<br />

(spotter)<br />

mikromreže s cDNA <strong>in</strong> dolgimi oligonukleotidi s 3’-konca<br />

Test<br />

Obratno prepisovanje<br />

označevanje<br />

ko-hibridizacija<br />

Referenca<br />

Laser 1<br />

Računalniška analiza<br />

čitalec<br />

Emisija<br />

Laser 2<br />

Prekrivanje


Exon arrays<br />

GeneChip Exon Arrays provide the most comprehensive coverage of the genome and<br />

enable two complementary levels of analysis: gene expression and alternative splic<strong>in</strong>g.<br />

Multiple probes per exon enable "exon-level" analysis and allow you to dist<strong>in</strong>guish between<br />

different isoforms of a gene. T<br />

his exon-level analysis on a whole-genome scale opens the door to detect<strong>in</strong>g specific<br />

alternative splic<strong>in</strong>g events that may play a central role <strong>in</strong> disease mechanism and etiology.<br />

You can also perform "gene-level" analysis, <strong>in</strong> which multiple probes on different exons are<br />

summarized <strong>in</strong>to a s<strong>in</strong>gle expression value of all transcripts from the same gene, enabl<strong>in</strong>g<br />

similar analysis workflows to 3'-gene expression.


Exon arrays – example I<br />

Complex organisation and structure of the ghrel<strong>in</strong> antisense strand gene GHRLOS, a candidate noncod<strong>in</strong>g<br />

RNA gene<br />

Seim I et al., BMC Molecular Biology 2008, 9:95


Gene arrays<br />

Human Gene Arrays (April 2007), <strong>in</strong>terrogate approximately 29,000 well annotated<br />

genes by us<strong>in</strong>g an average of 26 probes per gene.<br />

Probes are designed to cover the entire transcript length, unlike the 3’ focused arrays<br />

which conta<strong>in</strong> probes target<strong>in</strong>g the transcript’s 3’ end.<br />

Probes on the array are perfect match (PM) only; mismatch probes found on the 3’<br />

focused arrays have been replaced on the Gene Arrays with a set of approximately<br />

20,000 generic background probes.


miRNA Profil<strong>in</strong>g<br />

MicroRNAs (miRNAs) are 21-23 nucleotide long non-cod<strong>in</strong>g RNA molecules that have been shown to<br />

regulate the stability or translational efficiency of target messenger RNAs.<br />

They have been shown to regulate diverse processes such as Fragile X , cancer proliferation and fat<br />

metabolism.<br />

At present over 530 different miRNA sequences have been validated <strong>in</strong> the human (Sanger Institute<br />

mirBase database) although recent research suggests that the number of unique miRNAs could exceed<br />

800.<br />

It is also thought that miRNA genes regulate prote<strong>in</strong> production for 10% or more of all human genes<br />

mak<strong>in</strong>g them an <strong>in</strong>creas<strong>in</strong>gly important area of research


miRNA isolation<br />

The start<strong>in</strong>g material for Agilent miRNA Arrays is total RNA (not small RNA) by isolated with i.e.<br />

TRIZOL still conta<strong>in</strong><strong>in</strong>g small RNA molecules.<br />

As such, they should not have been cleaned up us<strong>in</strong>g columns as this will <strong>in</strong>variably remove the<br />

small RNAs which the arrays are try<strong>in</strong>g to measure.<br />

Just 100ng of total RNA is required for labell<strong>in</strong>g. Once isolated, samples can be quantified us<strong>in</strong>g the<br />

Nanodrop Spectrophotometer.<br />

Because miRNAs are so short, they are less prone to degradation then mRNAs.<br />

Screen capture of Agilent 2100 Bioanalyzer electropherograms of a TRIZOL Reagent isolated total RNA. Note the<br />

pronounced peak of RNA at


Interactome by Chromat<strong>in</strong>e immunoprecipitation on a chip (CHIP-Chip)


The "ChIP to Chip" Assay


Chip-chip – example I<br />

Detection of Nkx2-5 b<strong>in</strong>d<strong>in</strong>g to the Actc1 promoter and <strong>in</strong>tron 1 (A) and the Nppa promoter (B)<br />

us<strong>in</strong>g the Integrated Genome Browser<br />

www.nimr.mrc.ac.uk/devbiol/mohun/cardiacdiff/


DNA čipi so zbirka mikroskopskih “DNA točk”, cDNA ali oligonukleotidov, pritrjenih<br />

na trdo podlago.<br />

Uporabljajo se za:<br />

Povzetek<br />

• Analizo genomske DNA (genotipizacija, SNP analiza, CHG, sekvenciranje).<br />

• Analizo <strong>izražanja</strong> <strong>genov</strong> (ekspresijsko profiliranje) , kjer probe lahko<br />

predstavljajo 3'–konce <strong>genov</strong>, eksone ali različne dele <strong>genov</strong>. Posebni čipi pa<br />

so za sledenje <strong>izražanja</strong> miRNA.<br />

• Študije uravnavanja <strong>izražanja</strong> <strong>genov</strong> (določanje vezavnih mest<br />

transkripcijskih faktorjev (Chip-chip), metilacija kromat<strong>in</strong>a), kjer probe<br />

predstavljajo 5’-neprevedene dele <strong>in</strong> nerepetitivne dele <strong>genov</strong>.


Nova generacija sekvenciranja<br />

www.gatc.co.uk/cgi-b<strong>in</strong>/wPr<strong>in</strong>tpreview.cgi?sour...


Thu Nov 5, 2009 7:24pm EST<br />

Want to know your entire DNA sequence? A California company has done it for as little as $1,700.<br />

Privately held Complete Genomics says it can do a better quality, usable genome map for about $4,400 -- compared with the<br />

$100 million the Human Genome Project spent to complete the first sequenc<strong>in</strong>g of the human genome <strong>in</strong> 2000.<br />

"Whole-genome sequenc<strong>in</strong>g costs have dropped from the more than $100 million cost of the first human genomes to the po<strong>in</strong>t<br />

where <strong>in</strong>dividual labs have generated genome sequences <strong>in</strong> a matter of months for material costs of as low as $48,000," the<br />

company's Radoje Drmanac and colleagues reported <strong>in</strong> the journal Science.<br />

"This high-quality, cost-effective approach to genome sequenc<strong>in</strong>g will allow researchers to study complete genomes from<br />

hundreds of patients with a disease to advance the understand<strong>in</strong>g of the genetic causes of that disease, with an end to<br />

prevent<strong>in</strong>g and treat<strong>in</strong>g common human ailments," said Cliff Reid, chief executive officer of Complete Genomics.<br />

Two of the people whose DNA was mapped had taken part <strong>in</strong> an <strong>in</strong>ternational sequenc<strong>in</strong>g project called the International<br />

HapMap project -- a man of European descent and a Yoruban female. The third came from a white man tak<strong>in</strong>g part <strong>in</strong> the<br />

Personal Genome Project, an onl<strong>in</strong>e registry <strong>in</strong> which people are asked to donate both their DNA and a little money.<br />

Genome sequenc<strong>in</strong>g is still early stage science. While researchers can get the code, figur<strong>in</strong>g out what it means is a different<br />

matter.Genomics pioneer Craig Venter had his own genome sequenced -- at a cost of "several million" dollars -- and found the<br />

analysis could only show he was likely to have blue eyes, for <strong>in</strong>stance. Venter does have blue eyes.<br />

Last month Paul<strong>in</strong>e Ng of the J. Craig Venter Institute <strong>in</strong> San Diego and Sarah Murray of Scripps Translational Science Institute<br />

<strong>in</strong> La Jolla, California, tested kits provided by California-based firms Navigenics Inc, a private company, and 23andMe, backed<br />

by Google Inc. They found they varied <strong>in</strong> predict<strong>in</strong>g disease risk.<br />

Complete Genomics and The Institute for Systems Biology said earlier this week they plan to sequence the genomes of 100<br />

people to try and f<strong>in</strong>d <strong>in</strong>sights <strong>in</strong>to Hunt<strong>in</strong>gton's disease. Scientists also use a technique called genome-wide association to try<br />

to f<strong>in</strong>d genes that no one suspected were <strong>in</strong>volved <strong>in</strong> various diseases.<br />

(Report<strong>in</strong>g by Maggie Fox; Edit<strong>in</strong>g by Eric Wals)


Nova (naslednja) generacija sekvenciranja<br />

- Sekvenciranje človeškega genoma je trajalo več let, z uporabo cca 20 kb BAC klonov, ki so<br />

vsebovali cca 100 kb dolge tarčne fragmente, <strong>in</strong> 8-kratnega pokrivanja vsakega dela tarče. Analiza s<br />

kapilarno elektroforezo.<br />

-Nadaljnji razvoj sekvenciranja je temeljil na sočasnem sekvenciranju celotnega genoma (WHS, angl.<br />

whole genome sequenc<strong>in</strong>g), ki je bil vstavljen v vektorje. Metoda je hitrejša, pušča pa velike prazn<strong>in</strong>e<br />

v zelo polimorfnih ali repetitivnih genomih. Analiza je potekala s kapilarno elektroforezo.<br />

-Naslednja generacija sekvenciranja (2004) – visokozmogljivostno paralelno čitanje odsekov DNA na<br />

ravni celega genoma preko PCR pomnoževanja enoverižnih fragmentov genomske knjižnice.


Next-generation of DNA and RNA sequenc<strong>in</strong>g methods<br />

- The bead-amplification sequenc<strong>in</strong>g (Roche/454FLX)<br />

-Sequenc<strong>in</strong>g by synthesis (Illum<strong>in</strong>a/Solexa Genome analyzer)<br />

-Sequenc<strong>in</strong>g by ligation (Applied Biosystems SOLID System)<br />

-Helicos Helioscope (2008)<br />

-Pacific Biosciences SMRT (2010)<br />

Common features:<br />

-A compex <strong>in</strong>terplay of enzymology, chemistry, software, hardware, optics eng<strong>in</strong>eer<strong>in</strong>g…)<br />

-A streaml<strong>in</strong>e of sample preparation prior to sequenc<strong>in</strong>g (time sav<strong>in</strong>g)<br />

-Preparation of fragment libraries of the DNA of <strong>in</strong>terest by anneal<strong>in</strong>g for platform-specific l<strong>in</strong>kers<br />

and amplification<br />

-Amplification of s<strong>in</strong>gle stranded fragment library and perform<strong>in</strong>g sequenc<strong>in</strong>g on amplified<br />

fragments<br />

-S<strong>in</strong>gle molecule sequenc<strong>in</strong>g just arrived or is under development


Comparison between capillary sequencers and novel generation sequencers<br />

-A huge difference <strong>in</strong> the throughput of a s<strong>in</strong>gle run: 96 capillaries of about 750 bp compared<br />

to several thousand (Roche) to tens of millions (Illum<strong>in</strong>a, ABi) shorter reads.<br />

-Time runs are longer that by next generation sequencers (8h – 10days)<br />

- Longer run times are required to image the massive parallel sequenc<strong>in</strong>g reactions<br />

-Due to the streaml<strong>in</strong>e preparation and long read<strong>in</strong>g times a s<strong>in</strong>gle human operator can<br />

operate several mach<strong>in</strong>es of next generation at the full capacity.<br />

ABI Solexa


Classical Sanger dideoxy sequenc<strong>in</strong>g method<br />

Dideoxynucleotide sequenc<strong>in</strong>g represents only one method of<br />

sequenc<strong>in</strong>g DNA. It is commonly called Sanger sequenc<strong>in</strong>g s<strong>in</strong>ce<br />

Sanger devised the method. This technique utilizes 2',3'dideoxynucleotide<br />

triphospates (ddNTPs), molecules that differ<br />

from deoxynucleotides by the hav<strong>in</strong>g a hydrogen atom attached<br />

to the 3' carbon rather than an OH group. These molecules<br />

term<strong>in</strong>ate DNA cha<strong>in</strong> elongation because they cannot form a<br />

phosphodiester bond with the next deoxynucleotide.<br />

campus.queens.edu/faculty/jannr/molecular/


General concepts for clonal-array generation and sequenc<strong>in</strong>g<br />

a | Bead-chips. Genomic DNA is fragmented and adaptors are ligated to create an <strong>in</strong>sert library that is<br />

flanked by two universal prim<strong>in</strong>g sites. Because of the random fragmentation, the complexity of this<br />

signature sequence library is equivalent to the genome. This library is cloned on beads us<strong>in</strong>g emulsion<br />

PCR technology. A water-<strong>in</strong>-oil emulsion is created from a PCR mix that conta<strong>in</strong>s a limit<strong>in</strong>g dilution of<br />

DNA and beads. The emulsion creates micro-compartments with, on average, a s<strong>in</strong>gle bead and s<strong>in</strong>gle<br />

DNA template each. After PCR, beads with clones are aff<strong>in</strong>ity selected and assembled onto a planar<br />

substrate. A subsequent cycle-sequenc<strong>in</strong>g reaction is used to read out the sequence on the clones.<br />

b | Sequenc<strong>in</strong>g by synthesis (SBS). A common anchor primer is annealed to a constant sequence<br />

(universal prim<strong>in</strong>g site) that is conta<strong>in</strong>ed with<strong>in</strong> the library clones that are located on the polony (clonal<br />

bead) array (the orientation of the immobilized target might vary depend<strong>in</strong>g on the platform that is used).<br />

The sequence is read out by polymerase extension <strong>in</strong> a base-by-base fashion us<strong>in</strong>g either reversible<br />

term<strong>in</strong>ators or sequential nucleotide addition (pyrosequenc<strong>in</strong>g). After <strong>in</strong>corporation of a s<strong>in</strong>gle base or<br />

base type, the <strong>in</strong>corporated base is identified by fluorescence (laser) or chemilum<strong>in</strong>escence (no laser<br />

required).<br />

c | Sequenc<strong>in</strong>g by ligation. The polony array set-up is similar to SBS <strong>in</strong> which a common primer is<br />

annealed to an arrayed polony library and used to read out the sequence through a stepwise ligation of<br />

random oligomers. The labelled oligomers are designed to have random bases <strong>in</strong>serted at every site<br />

except the query site. The query site has one of four base substitutions, each matched to a particular<br />

fluorescent label on the oligonucleotide. After read-out of each ligation event, the primer and the ligated<br />

oligomer are stripped, a new primer reannealed and the process repeated with an oligomer that conta<strong>in</strong>s<br />

a query base at a different position.<br />

Fan et al. Nature Reviews Genetics 7, 632–644 (August 2006) | doi:10.1038/nrg1901


Sequenc<strong>in</strong>g by<br />

synthesis<br />

Solexa / illum<strong>in</strong>a<br />

General concepts for clonal-array generation and sequenc<strong>in</strong>g<br />

Bead chips<br />

Roche<br />

pyrosequenc<strong>in</strong>g<br />

Sequenc<strong>in</strong>g by<br />

Ligation<br />

Applied biosystems<br />

Fan et al. Nature Reviews Genetics 7, 632–644 (August 2006) | doi:10.1038/nrg1901


Roche/454 FLX Pyrosequencer<br />

Library fragments are mixed with agarose<br />

beads with oligos complementary to<br />

adapter sequences on the library.<br />

Each bead is associated with a s<strong>in</strong>gle<br />

fragment.<br />

Each fragment-bead complex is isolated<br />

<strong>in</strong>to <strong>in</strong>dividual oil:water micelles with PCR<br />

mixture.<br />

Thermal cycl<strong>in</strong>g of this emulsion PCR of<br />

the micelles produces amplified unique<br />

sequences on the bead surface.<br />

“En mass” sequenc<strong>in</strong>g of PCR products<br />

on picotiter plates (PTP) with s<strong>in</strong>gle beads<br />

<strong>in</strong> each picowell.<br />

Enzyme/substrate conta<strong>in</strong><strong>in</strong>g beads for<br />

the pyrosequenc<strong>in</strong>g reaction are added to<br />

wells that act as floww cells for addition of<br />

<strong>in</strong>dividual pure nucleotide solutions. The<br />

CCD camera records the light emitted at<br />

each bead.


Pr<strong>in</strong>ciples of Pyrosequenc<strong>in</strong>g<br />

pyrogram<br />

A sequenc<strong>in</strong>g primer is hybridized to a s<strong>in</strong>gle-stranded PCR<br />

amplicon that serves as a template.<br />

Mixtures <strong>in</strong>cubated with the enzymes, DNA polymerase,<br />

ATP sulfurylase, luciferase, and apyrase as well as the<br />

substrates, adenos<strong>in</strong>e 5' phosphosulfate (APS), and<br />

lucifer<strong>in</strong>.<br />

ATP sulfurylase converts PPi to ATP <strong>in</strong> the presence of<br />

adenos<strong>in</strong>e 5' phosphosulfate (APS).<br />

ATP drives the luciferase-mediated conversion of<br />

lucifer<strong>in</strong> to oxylucifer<strong>in</strong> that generates visible light <strong>in</strong><br />

amounts that are proportional to the amount of ATP.<br />

Apyrase, a nucleotide-degrad<strong>in</strong>g enzyme, cont<strong>in</strong>uously<br />

degrades un<strong>in</strong>corporated nucleotides and ATP. When<br />

degradation is complete, another nucleotide is added


Watson and Cricks pyrosequenc<strong>in</strong>g readout<br />

2008


Timel<strong>in</strong>e of the pyrosequenc<strong>in</strong>g development<br />

October 2005 Release of the Genome Sequencer 20, the first next-generation sequenc<strong>in</strong>g<br />

system on the market<br />

October 2005 Collaboration agreement signed with Roche Diagnostics .<br />

January 2007 Release of the Genome Sequencer FLX System<br />

March 2007 Roche Diagnostics completes <strong>in</strong>tegration with 454 Life Sciences<br />

May 2007 Complete sequence of Jim Watson published <strong>in</strong> Nature. First genome to be<br />

sequenced for less than $1 million.<br />

November 2007 Announcement of the 100th peer-reviewed publication enabled by 454<br />

Sequenc<strong>in</strong>g<br />

June 2008 454 Jo<strong>in</strong>s the 1000 Genome Project, an <strong>in</strong>ternational effort to build the most detailed<br />

map to date of human genetic variation as a tool for medical research<br />

September 2008 Announcement of the 250th peer-reviewed publication enabled by 454<br />

Sequenc<strong>in</strong>g<br />

October 2008 Release of Genome Sequencer FLX Titanium Series reagents, featur<strong>in</strong>g 1<br />

million reads at 400 base pairs <strong>in</strong> length


sequenc<strong>in</strong>g technology<br />

•Is based on arrays of randomly assembled glass (silica) beads;<br />

The beads have oligonucleotides covalently attached to the surface;<br />

Each bead has about one million oligos on its surface;<br />

All oligos on each bead have the same sequence.<br />

•Attached DNA fragments are extended and bridge amplified to create an ultra-high density<br />

sequenc<strong>in</strong>g flow cell with 80-100 million clusters, each conta<strong>in</strong><strong>in</strong>g ~1,000 copies of the same template.<br />

These templates are sequenced us<strong>in</strong>g a robust four-color DNA sequenc<strong>in</strong>g-by-synthesis technology<br />

that employs reversible term<strong>in</strong>ators with removable fluorescent dyes. This novel approach ensures<br />

high accuracy and true base-by-base sequenc<strong>in</strong>g, elim<strong>in</strong>at<strong>in</strong>g sequence-context specific errors and<br />

enabl<strong>in</strong>g sequenc<strong>in</strong>g through homopolymers and repetitive sequences.<br />

The beads are randomly assembled on the arrays, and the location of a particular probe is <strong>in</strong>itially<br />

unknown;a process called decod<strong>in</strong>g is used to f<strong>in</strong>d the location of each bead;


Illum<strong>in</strong>a sequenc<strong>in</strong>g by synthesis


Illum<strong>in</strong>a sequence - decod<strong>in</strong>g


Approaches to create highly parallel genotyp<strong>in</strong>g assays by novel generation sequenc<strong>in</strong>g<br />

Fan et al. Nature Reviews Genetics 7, 632–644 (August 2006) | doi:10.1038/nrg1901


Fan et al. Nature Reviews Genetics 7, 632–644 (August 2006) | doi:10.1038/nrg1901


Nova generacija sekvenciranja - povzetek<br />

• Nova generacija visokozmogljivostnega sekvenciranje omogoča razpoznavanje zaporedij<br />

DNA na ravni celega genoma, z resolucijo posameznega baznega para.<br />

• Iz vsakega vzorca se pripravi z adaptorji ligirana knjižnica, ki vsebuje vse v vzorcu<br />

prisotne fragmente DNA ali RNA (cDNA).<br />

• Vse platforme bazirajo na ligaciji adaptorjev <strong>in</strong> pomnoževanju, imajo pa različne pristope<br />

sekvenciranja:<br />

-Pirosekvenciranje (Roche-Nimblegen)<br />

-Sekvenciranje s s<strong>in</strong>tezo (Illum<strong>in</strong>a-Solexa)<br />

-Sekvenciranje z ligacijo (ABI)<br />

•Razvijajo se tudi metode, ki pred sekvenciranjem ne potrebujejo pomnoževanja.<br />

• Aplikacije so enake kot pri klasičnih mikromrežah (ekspresijsko profiliranje oz. SAGE,<br />

genotipizacija SNP <strong>in</strong> CNV, kroamt<strong>in</strong>ska imunoprecipitacija, metilacija kromat<strong>in</strong>a, itd.).<br />

•Prednost pred klasičnimi mikromrežami je v preprosti pripravi vzorca <strong>in</strong> zmožnosti<br />

procesiranja velikega števila vzorcev v kratkem času.<br />

•Procesiranje velikega števila vzorcev na eni ali več aparaturah lahko upravlja en človek.


Bio<strong>in</strong>formatika v raziskavah “omov”<br />

http://bio<strong>in</strong>formatics.ubc.ca/about/what_is_bio<strong>in</strong>formatics/images/computer.gif<br />

www.gwumc.edu


Technical Issues Involved <strong>in</strong> Obta<strong>in</strong><strong>in</strong>g Reliable Data from Microarray Experiments<br />

– Standardization and beyond


Bio<strong>in</strong>formatics<br />

Wikipedia<br />

Mak<strong>in</strong>g sense of the huge amounts of DNA data produced by gene sequenc<strong>in</strong>g<br />

projects.<br />

Bio<strong>in</strong>formatics and computational biology <strong>in</strong>volve the use of techniques from<br />

applied mathematics, <strong>in</strong>formatics, statistics, and computer science to solve biological<br />

problems.<br />

Research <strong>in</strong> computational biology often overlaps with systems biology.<br />

Major research efforts <strong>in</strong> the field <strong>in</strong>clude sequence alignment, gene f<strong>in</strong>d<strong>in</strong>g, genome<br />

assembly, prote<strong>in</strong> structure alignment, prote<strong>in</strong> structure prediction, prediction of gene<br />

expression and prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions, and the model<strong>in</strong>g.<br />

The terms bio<strong>in</strong>formatics and computational biology are often used <strong>in</strong>terchangeably,<br />

although the former typically focuses on algorithm development and specific<br />

computational methods, while the latter focuses more on hypothesis test<strong>in</strong>g and<br />

discovery <strong>in</strong> the biological doma<strong>in</strong>.


Microarrays and bio<strong>in</strong>formatics<br />

Standardization<br />

The lack of standardization <strong>in</strong> arrays presents an <strong>in</strong>teroperability problem <strong>in</strong><br />

bio<strong>in</strong>formatics, which h<strong>in</strong>ders the exchange of array data.<br />

Various projects are attempt<strong>in</strong>g to facilitate the exchange and analysis of data<br />

produced with non-proprietary chips.<br />

The "M<strong>in</strong>imum Information About a Microarray Experiment" (MIAME) XML<br />

based standard for describ<strong>in</strong>g a microarray experiment is be<strong>in</strong>g adopted by<br />

many journals as a requirement for the submission of papers <strong>in</strong>corporat<strong>in</strong>g<br />

microarray results.<br />

http://www.mged.org/Workgroups/MIAME/miame.html


Statistical analysis<br />

The analysis of DNA microarrays poses a large number of statistical problems,<br />

<strong>in</strong>clud<strong>in</strong>g the normalisation of the data.<br />

From a hypothesis-test<strong>in</strong>g perspective, the large number of genes present on a<br />

s<strong>in</strong>gle array means that the experimenter must take <strong>in</strong>to account a multiple<br />

test<strong>in</strong>g problem: even if each gene is extremely unlikely to randomly yield a<br />

result of <strong>in</strong>terest, the comb<strong>in</strong>ation of all the genes is likely to show at least one<br />

or a few occurrences of this result which are false positives.


Steps <strong>in</strong> microarray experiments<br />

irfgc.irri.org/cropbioportal/<strong>in</strong>dex.php?option...


Data m<strong>in</strong><strong>in</strong>g <strong>in</strong>cludes gene ontology<br />

Gene ontology is a controlled vocabulary used to describe the biology of a<br />

gene product <strong>in</strong> any organism. There are 3 <strong>in</strong>dependent sets of vocabularies,<br />

or ontologies, that describe the:<br />

-molecular function of a gene product,<br />

- the biological process <strong>in</strong> which the gene product participates,<br />

-and the cellular component where the gene product can be found.


Experimental design is crucial for a succesfull “omic” experiment<br />

A proper experimental design is crucial for obta<strong>in</strong><strong>in</strong>g useful conclusions from a project. The choice of<br />

design ideally <strong>in</strong>cludes an assessment of the biological variation, the technical variation, the cost and<br />

duration of the experiment, and the availability of biological material. The experimental design can<br />

also depend on the methods that will be used to analyse the data afterwards. In certa<strong>in</strong> cases, the<br />

parameters needed to f<strong>in</strong>d the optimal design must be obta<strong>in</strong>ed by a pilot experiment.<br />

A related problem is the comparison of different compet<strong>in</strong>g experimental methods or devices. Here, a<br />

proper test design is crucial as well to be able to make a firm conclusion <strong>in</strong> favor of one or the other<br />

method.<br />

Dere E. et al., BMC Genomics 2006, 7:80doi<br />

lunabiosciences.com/experimentaldesign.html


Experimenal design – an example<br />

Changes <strong>in</strong> cholesterol homeostasis and drug metabolism caused by different factors <strong>in</strong> mouse liver<br />

T. Rezen et al., BMC Genomics 2008, 9:76


Primary data analysis – experimental example<br />

Images of the Sterolgene v0 microarrays were analyzed by Array-Pro Analyzer 4.5 (Media Cybernetics, Bethesda, MD, USA).<br />

The median feature and local background <strong>in</strong>tensities were extracted together with the estimates of their standard deviation.<br />

Only features with foreground to background ratio higher than 1.5 and coefficient of variation (CV, ratio between standard<br />

deviation of the background and the median feature <strong>in</strong>tensity) lower than 0.5 <strong>in</strong> both channels were used for further analysis.<br />

Log2 ratios were normalized us<strong>in</strong>g LOWESS fit to spike <strong>in</strong> control RNAs accord<strong>in</strong>g to their average <strong>in</strong>tensity. Two types of<br />

spike <strong>in</strong> controls were used: custom-made (Firefly luciferase) and commercial ArrayControl Spikes (Ambion, Aust<strong>in</strong>, TX, USA).<br />

In phenobarbital and cholesterol-feed<strong>in</strong>g experiments data were additionally standardized (median-centered and scaled by<br />

median absolute deviation) <strong>in</strong> order to reduce <strong>in</strong>ter-array variability. All data analysis were done <strong>in</strong> Orange software [37]<br />

Images of Agilent microarrays were analyzed us<strong>in</strong>g Array-Pro Analyzer 4.5 (Media Cybernetics, Bethesda, MD, USA).<br />

Features, with CV>0.39, were filtered out and data were normalized us<strong>in</strong>g LOWESS fit to all genes accord<strong>in</strong>g to their average<br />

<strong>in</strong>tensity. Filtration and normalization was done <strong>in</strong> BASE softwar].<br />

Affymetrix data were normalized by the Robust Multichip Average (RMA) algorithm. After transformation to non-logarithmic<br />

data, the expression estimates were scaled to the average expression levels <strong>in</strong> the control group analyzed us<strong>in</strong>g GeneSpr<strong>in</strong>g<br />

software (Silicon Genetics, Redwood, USA). Classification of the differentially expressed genes was done <strong>in</strong> Orange us<strong>in</strong>g<br />

s<strong>in</strong>gle-factor ANOVA or two tailed Student’s t-test. For Sterolgene microarrays probability of type I error αS=0.05 or αS=0.1<br />

was used. For Agilent microarrays complementary probability of type I error was calculated accord<strong>in</strong>g to Bonferroni correction for<br />

multiple test<strong>in</strong>g (αA=αS*nS/nA), but f<strong>in</strong>al comparisons were made us<strong>in</strong>g more relaxed criteria αA=0.001 and αA=0.01. For<br />

Affymetrix microarrays complementary probability αAf=0.00043 was calculated, but also a more relaxed criterion αAf=0.001 was<br />

used.<br />

Additional data analyses were done only us<strong>in</strong>g common genes between platforms, which were matched us<strong>in</strong>g unigene, refseq<br />

or gene symbol. On this gene list another classification of differentially expressed genes was done <strong>in</strong> Orange us<strong>in</strong>g ANOVA for<br />

Affymetrix and Agilent platforms. A probability for type I error was selected as <strong>in</strong> a complementary Sterolgene experiment (α=0.1<br />

<strong>in</strong> Affymetrix analyses and α=0.05 <strong>in</strong> Agilent analyses). Pearson’s product moment correlation coefficient and a scatterplot<br />

between log2 ratios from common genes were calculated <strong>in</strong> SPSS 14.0. All data have been submitted to GEO (Gene expression<br />

omnibus) under accession codes: GSE6271 (Affymetrix data), GSE6317 (Agilent data), GSE6447 (Sterolgene phenobarbital and<br />

high cholesterol diet data), and GSE6423 (Sterolgene fast<strong>in</strong>g and <strong>in</strong>flammation data).<br />

T. Rezen et al., BMC Genomics 2008, 9:76


Pomen bio<strong>in</strong>formatike v raziskavh “omov” - povzetek<br />

- Matematično-<strong>in</strong>formatični pristopi v bioloških poskusih pogenomske dobe (bio<strong>in</strong>formatika)<br />

omogočajo razbiranje biološkega smisla v enormni količ<strong>in</strong>i podatkov.<br />

-Bio<strong>in</strong>formatika (računska biologija, matematična biologija) za reševanje bioloških problemov<br />

uporablja metode uporabne matematike. Informatike, statistike <strong>in</strong> računalniških znanosti.<br />

-Načrtovanje bioloških poskusov zahteva sodelovanje eksperimentatorjev <strong>in</strong> <strong>in</strong>formatikov že<br />

od vsega začetka.<br />

-Zasnova poskusa zahteva def<strong>in</strong>icijo biolškega vprašanja, izbiro platforme za analizo,<br />

določitev števila bioloških <strong>in</strong> tehničnih replik <strong>in</strong> načrt serije poskusov (hibridizacij ali<br />

sekvenciranj).<br />

-Po tehnični izvedbi poskusa sledita statistična <strong>in</strong> <strong>in</strong>formatična obdelava ter rudarjenje<br />

podatkov.<br />

- Statistično-<strong>in</strong>formatična obdelava obsega ekstrakcijo <strong>in</strong>tenzitet signala, normalizacijo<br />

podatkov, ter različne statistične teste, da pridobimo listo diferencialno izraženih <strong>genov</strong> ali<br />

zaporedij DNA.<br />

- Sekundarna <strong>in</strong>formatična analiza <strong>in</strong> rudarjenje podatkov obsegata gručanje <strong>in</strong><br />

razpoznavanje vzorcev, študije seznama <strong>genov</strong> z genskimi ontologijami, iskanje regulatornih<br />

vzorcev, kot tudi načrtovanje validacijskih eksperimentov.<br />

-Matematično-<strong>in</strong>formatične metode za povezovanje podatkov različnih “omov” (npr.<br />

transkriptom, proteom, metabolom) so še v razvoju.


Kemogenomika, toksikogenomika <strong>in</strong> farmakogenomika<br />

– primeri uporabe “omskih” tehnologij v praksi


What’s the difference?<br />

• Chemogenomics – screen<strong>in</strong>g a compound library to detect drug candidates<br />

• Toxicogenomics – <strong>in</strong>vestigates the effect of a chemical substance (drug) on<br />

the genome<br />

• Pharmacogenomics – <strong>in</strong>vestigates <strong>in</strong>herited basis for difference <strong>in</strong> drug<br />

response among <strong>in</strong>dividuals


A blockbuster drug is a drug generat<strong>in</strong>g more than $1 billion of revenue for its<br />

owner each year. The search for blockbusters has been the foundation of the R&D<br />

strategy adopted by big pharmaceutical companies, but this looks set to change.<br />

New advances <strong>in</strong> genomics, and the promise of personalized medic<strong>in</strong>e, are likely to<br />

fragment the pharmaceutical market.


Chemogenomics: structur<strong>in</strong>g the drug discovery process to gene<br />

families<br />

C.J. Harris and A. P. Stevens,Drug Discov Today., 11, 880-888, 2006.<br />

In the post-genomic era, if all prote<strong>in</strong>s <strong>in</strong> a gene family can putatively be<br />

identified, how can drug discovery effectively tackle so many novel<br />

targets that might lack structural and small-molecule <strong>in</strong>hibitory data?<br />

In response, chemogenomics, a new approach that guides drug<br />

discovery based on gene families, has been developed.<br />

By <strong>in</strong>tegrat<strong>in</strong>g all <strong>in</strong>formation available with<strong>in</strong> a prote<strong>in</strong> family (sequence,<br />

SAR data, prote<strong>in</strong> structure), chemogenomics can efficiently enable<br />

cross-SAR exploitation, directed compound selection and early<br />

identification of optimum selectivity panel members.


Aims of chemogenomics - the “druggable” genome<br />

Chemogenomics aims to identify systematically all ligands and modulators for all<br />

the gene products expressed and allows the accelerated exploration of their<br />

biological function.<br />

The subject br<strong>in</strong>gs together diverse discipl<strong>in</strong>es <strong>in</strong>clud<strong>in</strong>g chemistry, genetics,<br />

chemo- and bio<strong>in</strong>formatics, structural biology, and biological screen<strong>in</strong>g <strong>in</strong><br />

phenotypic and target-based assays.<br />

http://www.nature.com/nbt/journal/v21/n1/images/nbt0103-31-F1.gif


Expert Review of Proteomics<br />

June 2007, Vol. 4, No. 3, Pages 411-419<br />

Chemogenomics approaches to novel target discovery<br />

L Alex Gaither<br />

Chemogenomics <strong>in</strong>volves the comb<strong>in</strong>ation of a compound’s effect on biological targets together with<br />

modern genomics technologies. The merger of these two methodologies is creat<strong>in</strong>g a new way to<br />

screen for compound–target <strong>in</strong>teractions, as well as map chemical and biological space <strong>in</strong> a parallel<br />

fashion. The challenge associated with m<strong>in</strong><strong>in</strong>g complex databases has <strong>in</strong>itiated the development of<br />

many novel <strong>in</strong> silico tools to profile and analyze data <strong>in</strong> a systematic way. The ability to analyze the<br />

comb<strong>in</strong>atorial effects of chemical libraries on biological systems will aid the discovery of new<br />

therapeutic entities.<br />

Chemogenomics provides a tool for the rapid validation of novel targeted therapeutics, where a<br />

specific molecular target is modulated by a small molecule. Along with targeted therapies comes the<br />

ability to discovery pathway nodes where a s<strong>in</strong>gle molecular target might be an essential component<br />

of more than one disease.<br />

Several disease areas will benefit directly from the chemogenomics approach, the most advanced<br />

be<strong>in</strong>g cancer. A genetic loss-of-function screen can be modulated <strong>in</strong> the presence of a compound to<br />

search for genes or pathways <strong>in</strong>volved <strong>in</strong> the compound’s activity. Several recent papers highlight how<br />

chemogenomics is chang<strong>in</strong>g with RNA <strong>in</strong>terference-based screen<strong>in</strong>g and shap<strong>in</strong>g the discovery of<br />

new targeted therapies. Together, chemical and RNA <strong>in</strong>terference-based screens open the door for a<br />

new way to discovery disease-associated genes and novel targeted therapies.


Steps of chemogenomics<br />

1. Formation/existance of a compound library<br />

2. Chosen representative biological system<br />

3. A reliable readout (i.e. gene expression, prote<strong>in</strong> expression, HTP b<strong>in</strong>d<strong>in</strong>g or<br />

functional assays, etc.)<br />

Rognan D. Chemogenomic approaches to rational drug design.Br J Pharmacol. 2007, 152:38-52. Epub 2007 May 29. Review.


Analys<strong>in</strong>g chemogenomic data is a never end<strong>in</strong>g learn<strong>in</strong>g process aimed at<br />

complet<strong>in</strong>g a 2D-matrix, where columns represent targets/genes and rows<br />

chemical compounds. Reported values are b<strong>in</strong>d<strong>in</strong>g constants or functional<br />

effects.<br />

Assumptions of chemogenomic-based approach:<br />

1. compounds shar<strong>in</strong>g some chemical similarity should also share targets,<br />

2. targets shar<strong>in</strong>g similar ligands should share similar patterns (b<strong>in</strong>d<strong>in</strong>g sites).<br />

Def<strong>in</strong><strong>in</strong>g the ligand space by descriptors (molecular weight, atom and bound counts,<br />

topological f<strong>in</strong>gerpr<strong>in</strong>ts, shape, field, spectra, etc.)<br />

Def<strong>in</strong><strong>in</strong>g the target space by descriptors (databases for sequence, patterns<br />

secondary structure fold, atomic coord<strong>in</strong>ates, b<strong>in</strong>d<strong>in</strong>g site, etc.)


Ligand space: molecular descriptors<br />

Rognan D. J Pharmacol. 2007, 152:38-52. Epub 2007 May 29. Review.


Representation of ligand and target space correlations - example


Correlation matrices - networks


In silico target fish<strong>in</strong>g approaches<br />

Mach<strong>in</strong>e learn<strong>in</strong>g algorithm us<strong>in</strong>g Bayesian statistics to predict target profiles from connectivity<br />

f<strong>in</strong>gerpr<strong>in</strong>ts of compounds from the biologically annotated database.


The key to improv<strong>in</strong>g drug discovery is to manage the whole value cha<strong>in</strong> of research.<br />

Information needs to flow from fundamental analysis of genomes, prote<strong>in</strong>s and<br />

chemistry through to manag<strong>in</strong>g cl<strong>in</strong>ical trials and drug submissions.<br />

Integrat<strong>in</strong>g so many fields of life sciences presents a massive task of <strong>in</strong>tegrat<strong>in</strong>g<br />

knowledge and <strong>in</strong>formation.<br />

Needed are bridges which help researchers <strong>in</strong> one area to communicate with others.


http://www.nature.com/embor/journal/v5/n9/images/7400236-f2.jpg


The TIP Database - an example<br />

The Target Informatics Platform's content <strong>in</strong>cludes more than 80,000 high resolution prote<strong>in</strong><br />

structures with reliably annotated small molecule b<strong>in</strong>d<strong>in</strong>g sites, <strong>in</strong>clud<strong>in</strong>g >44,000 comparative<br />

models of human prote<strong>in</strong>s, cover<strong>in</strong>g every major drug target family <strong>in</strong>clud<strong>in</strong>g proteases, k<strong>in</strong>ases,<br />

phosphatases, phosphodiesterases, nuclear receptors, and GPCRs.<br />

In addition to TIP's high quality structural annotation, it is the only database of its k<strong>in</strong>d that stores all<br />

similarity relationships between every sequence, structure, and b<strong>in</strong>d<strong>in</strong>g site, mak<strong>in</strong>g it an<br />

<strong>in</strong>credibly powerful system for structural and comparative proteomics.


Challenges <strong>in</strong> Chemogenomics<br />

• “Conceptual” challenges<br />

– Multidiscipl<strong>in</strong>ary project teams<br />

– Data from chemistry, biology, genomics, …<br />

• Data challenges<br />

– Disparate data sources, formats and identifiers<br />

– Multiple data types – gene expression, chemical structures, cl<strong>in</strong>ical<br />

chemistry, histopathology, receptor b<strong>in</strong>d<strong>in</strong>g assays, …<br />

– Incomplete and miss<strong>in</strong>g data<br />

• Analysis challenges<br />

– Should the data be normalized?<br />

– Does it make sense to cluster the data?<br />

– How to relate chemical structures and gene expression data?<br />

Identify correlations between chemical properties and biological function<br />

Brian Prather, Ph.D., Application Specialist, Spotfire, Third Virtual Conference on Genomics and Bio<strong>in</strong>formatics


“Conceptual” challenges<br />

Multidiscipl<strong>in</strong>ary Drug Compound Candidate Project Team<br />

Chemistry Genomics<br />

CAS<br />

ISIS<br />

ABase<br />

Shared Analysis<br />

Information Technology<br />

Affymetrix<br />

Biology<br />

Toxicology<br />

CodeL<strong>in</strong>k


Toxicogenomics<br />

http://en.wikipedia.org/<br />

is a form of analysis by which the activity of a particular tox<strong>in</strong> or chemical<br />

substance on liv<strong>in</strong>g tissue can be identified based upon a profil<strong>in</strong>g of its known<br />

effects on genetic material.<br />

Toxicogenomics may also be of use as a preventative measure to predict adverse<br />

"side", i.e. toxic, effects, of pharmaceutical drugs on susceptible <strong>in</strong>dividuals. This<br />

<strong>in</strong>volves us<strong>in</strong>g genomic techniques such as gene expression level profil<strong>in</strong>g and<br />

s<strong>in</strong>gle-nucleotide polymorphism analysis of the genetic variation of <strong>in</strong>dividuals.<br />

Studies of those types are then correlated to adverse toxicological effects <strong>in</strong> cl<strong>in</strong>ical<br />

trials so that suitable diagnostic markers (measurable signs) for these adverse<br />

effects can be developed.<br />

There are many well-publicized cases <strong>in</strong> which popular drugs were pulled from the<br />

market because of toxic effects experienced by a small percentage of patients, with<br />

a cost of many billions of dollars to the companies responsible.


Some drugs recently withdrawn form the market<br />

Rofecoxib developed by Merck & Co. to treat osteoarthritis, acute pa<strong>in</strong> conditions, and<br />

dysmenorrhoea. Rofecoxib was approved as safe and effective by the FDA <strong>in</strong> 1999 and was marketed<br />

under the brand name Vioxx, Ceoxx and Ceeoxx. Worldwide, over 80 million people were prescribed<br />

rofecoxib at some time. In 2004, Merck voluntarily withdrew rofecoxib from the market because of<br />

concerns about <strong>in</strong>creased risk of heart attack and stroke associated with long-term, high-dosage use.<br />

Rofecoxib was one of the most widely used drugs ever to be withdrawn from the market.<br />

Fen-phen was an anti-obesity medication which consisted of two drugs fenfluram<strong>in</strong>e and<br />

phenterm<strong>in</strong>e. After reports of valvular heart disease and pulmonary hypertension, primarily <strong>in</strong> women who<br />

had been undergo<strong>in</strong>g treatment with Fen-phen, the FDA requested its withdrawal from the market <strong>in</strong><br />

September 1997. As of 2004 Fen-phen is no longer widely available. In More than 50,000 product liability<br />

lawsuits had been filed by alleged Fen-phen victims. Estimates of total liability run as high as $14 billion.<br />

Cerivastat<strong>in</strong> (Baycol®, Lipobay®) is a synthetic member of the class of stat<strong>in</strong>s, used to lower<br />

cholesterol and prevent cardiovascular disease. It was withdrawn from the market <strong>in</strong> 2001 because of the<br />

high rate of serious side-effects.Cerivastat<strong>in</strong> was marketed by the Bayer A.G. Dur<strong>in</strong>g post-market<strong>in</strong>g<br />

surveillance, 52 deaths were reported <strong>in</strong> patients us<strong>in</strong>g cerivastat<strong>in</strong>, ma<strong>in</strong>ly from rhabdomyolysis and its<br />

resultant renal failure. Risks were higher <strong>in</strong> patients us<strong>in</strong>g fibrates and <strong>in</strong> patients us<strong>in</strong>g the high (0.8<br />

mg/day) dose of cerivastat<strong>in</strong>. Another 385 nonfatal cases of rhabdomyolysis were reported. This put the<br />

risk of this (rare) complication at 5-10 times that of the other stat<strong>in</strong>s.


Toxicogenomic approaches<br />

http://fig.cox.miami.edu/~cmallery/150/gene/toxicogenomics.gif


http://www.kitox.re.kr/eng/images/study/img014.gif


Pharmacogenomics<br />

http://en.wikipedia.org/<br />

is the branch of pharmacology which deals with the <strong>in</strong>fluence of genetic variation on<br />

drug response <strong>in</strong> patients by correlat<strong>in</strong>g gene expression or s<strong>in</strong>gle-nucleotide<br />

polymorphisms with a drug's efficacy or toxicity.<br />

Pharmacogenomics aims to develop rational means to optimise drug therapy, with<br />

respect to the patients' genotype, to ensure maximum efficacy with m<strong>in</strong>imal adverse<br />

effects.<br />

Such approaches promise the advent of "personalized medic<strong>in</strong>e", <strong>in</strong> which drugs<br />

and drug comb<strong>in</strong>ations are optimised for each <strong>in</strong>dividual's unique genetic makeup.<br />

Pharmacogenomics is the whole genome application of pharmacogenetics, which<br />

exam<strong>in</strong>es the s<strong>in</strong>gle gene <strong>in</strong>teractions with drugs.


Adverse drug reactions<br />

An adverse drug reaction (abbreviated ADR) is an expression that describes the<br />

unwanted, negative consequences associated with the use of given medications.<br />

An ADR is a particular type of adverse effect. The mean<strong>in</strong>g of this expression<br />

differs from the mean<strong>in</strong>g of "side effect", as this last expression might also imply<br />

that the effects can be beneficial. The study of ADRs is the concern of the field<br />

known as pharmacovigilance.<br />

In 1994, an estimated 2,216,000 hospital patients <strong>in</strong> the US, suffered a serious<br />

ADR, lead<strong>in</strong>g to approximately 106,000 patient deaths, mak<strong>in</strong>g ADR fatalities the<br />

fourth to sixth lead<strong>in</strong>g cause of death <strong>in</strong> the US <strong>in</strong> 1994.<br />

The current regime of “one dose fits all” is not ideal for patients and is not costeffective<br />

for the health service.


Why is every human genome different?<br />

Where are genome variations found?<br />

What k<strong>in</strong>ds of genome variations are there?


Polymorphisms<br />

• S<strong>in</strong>gle Base Pair Differences,<br />

– S<strong>in</strong>gle Nucleotide Polymorphisms (SNPs),<br />

• Microsatellites (short sequence repeats),<br />

• M<strong>in</strong>isatellites (long sequence repeats),<br />

• Deletions,<br />

• Duplications.


Pharmacogenomic pr<strong>in</strong>ciple<br />

Pharmacogenomics pr<strong>in</strong>ciple: To identify patients at risk for toxicity or reduced response<br />

to therapy for optimal medication and/or dose selection


Pharmacogenomic approaches


SNP chips<br />

To determ<strong>in</strong>e which alleles are present, genomic DNA from an <strong>in</strong>dividual is isolated, fragmented,<br />

tagged with a fluorescent dye, and applied to the chip.<br />

The genomic DNA fragments anneal only to those oligos to which they are perfectly<br />

complementary.<br />

A computer reads the position of the two fluorescent tags and identifies the <strong>in</strong>dividual as a C / T<br />

heterozygote.<br />

The s<strong>in</strong>gle spots <strong>in</strong> the other three columns <strong>in</strong>dicate that the <strong>in</strong>dividual is homozygous at the three<br />

correspond<strong>in</strong>g SNP positions.<br />

http://www.mun.ca/biology/scarr/DNA_VDA_chip_schematic.jpg


Kemogenomika, toksikogenomika, farmakogenomika - povzetek<br />

Kemogenomika– išče kandidatna zdravila z rešetanjem knjižnic kemičnih<br />

spoj<strong>in</strong><br />

Toksikogenomika– preiskuje potencialni toksični vpliv kemičnih spoj<strong>in</strong><br />

(potencialnih zdravil) na genom<br />

Farmakogenomika – preiskuje vpliv genetskega ozadja na različen odziv<br />

posameznika na zdravila.<br />

Določitev korelacije med kemičnimi lastnostmi spoj<strong>in</strong>e <strong>in</strong> biološko<br />

funkcijo predtavlja še vedno velik izziv. Zahteva multidiscipl<strong>in</strong>arne<br />

raziskovalne skup<strong>in</strong>e, ki lahko pridobivajo, analizirajo <strong>in</strong> povežejo<br />

podatke s področja kemije, biologije <strong>in</strong> “omik”.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!