Evaporation vs. Sputtering of metal layers on the - John Covey ...

Evaporation vs. Sputtering of metal layers on the - John Covey ... Evaporation vs. Sputtering of metal layers on the - John Covey ...

john.mer.utexas.edu
from john.mer.utexas.edu More from this publisher
12.02.2013 Views

ong>Evaporationong> ong>vsong>. ong>Sputteringong> ong>ofong> ong>metalong> ong>layersong> on the Backside ong>ofong> Silicon wafers Martina Ciacchi DEEI, University ong>ofong> Trieste, Trieste, Italy Infineon Technologies AT Villach, Austria martina.ciacchi@infineon.com Abstract We present the results ong>ofong> the differences observed between evaporated and sputtered backside ong>metalong>lization processes on silicon wafers: These two methods ong>ofong> fabricating ong>metalong> ong>layersong> and the activation ong>ofong> the backside semiconductor-ong>metalong> contact follow different physical mechanisms. Differing crystalline structures ong>ofong> the ong>metalong> ong>layersong> can be observed and the thermal budget ong>ofong> the overall process ong>ofong> the wafer is affected in different ways. In this paper we describe these differences, provide a description ong>ofong> the known physical and mechanical mechanisms and propose some models. Additionally we report a few production issues and experiences. Keywords Backside ong>metalong>lization, evaporation, sputtering. INTRODUCTION In the semiconductor technology the basic requirements for a backside ong>metalong>lization are: (a) good ohmic contact between the semiconductor and the first ong>metalong> layer; (b) good physical adhesion between the silicon and the first ong>metalong> layer and among the different ong>metalong> ong>layersong> to prevent detachment effects like peeling; (c) formation ong>ofong> an interong>metalong>lic phase ong>ofong> the backside ong>metalong>lization with the solder material during the assembly process in the package. The challenges for backside ong>metalong>lization in production are to ensure these basic requirements with high reliability and low yield loss on thin wafers. In the following we describe the different physical principles ong>ofong> evaporation and sputtering, present the physical differences ong>ofong> the produced films, and compare the two different deposition techniques in production. PHYSICAL PRINCIPLES The traditional approach to the backside ong>metalong>lization in semiconductor technology is the evaporation process, where the target materials are contained in a crucible mounted at the bottom ong>ofong> a large vacuum chamber (Figure 1). 1-4244-0255-07/06/$20.00©2006 IEEE Hannes Eder Infineon Technologies AT Villach, Austria hannes.eder@infineon.com Hans Hirscher UNAXIS Balzers AG Balzers, Fürstentum Liechtenstein hans.hirscher@unaxis.com Figure 1: Scheme ong>ofong> principle ong>ofong> an evaporation system. A beam ong>ofong> electrons is generated, accelerated and directed towards the crucible containing the material to be deposited [1]. Part ong>ofong> the surface melts and the material evaporates. The ong>metalong> deposits itself on wafers mounted on a rotating cap (this configuration is named “planetary system”). Some ong>ofong> the basic advantages ong>ofong> this method are the high deposition rate and the low damage caused by the deposited atoms because ong>ofong> their low energy. Furthermore , the evaporation process is an inexpensive process. Many materials can be evaporated in one run, high throughput can be achieved for wafers with diameter up to 150mm (The throughput is determined by the number ong>ofong> possible wafers within one run. W ith increasing ong>ofong> the wafer diameter, the number ong>ofong> possible wafers mounted on the wafer holder is decreasing). The physical principle ong>ofong> the sputtering is the dislocation ong>ofong> atoms from the surface ong>ofong> a ong>metalong> target. The dislocation ong>ofong> ong>metalong> atoms is caused by the collision ong>ofong> high energy ions generated in a magnetron assisted DC plasma. The ejected neutral atoms fly through the plasma and land on the wafer situated in the opposite side ong>ofong> the target [2], [3] (Figure 2). 99 2006 IEEE/SEMI Advanced Semiconductor Manufacturing Conference

<str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>vs</str<strong>on</strong>g>. <str<strong>on</strong>g>Sputtering</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

Backside <str<strong>on</strong>g>of</str<strong>on</strong>g> Silic<strong>on</strong> wafers<br />

Martina Ciacchi<br />

DEEI, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste,<br />

Trieste, Italy<br />

Infine<strong>on</strong> Technologies AT<br />

Villach, Austria<br />

martina.ciacchi@infine<strong>on</strong>.com<br />

Abstract<br />

We present <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> differences observed between<br />

evaporated and sputtered backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> processes<br />

<strong>on</strong> silic<strong>on</strong> wafers: These two methods <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricating<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> and <strong>the</strong> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside semic<strong>on</strong>ductor-<str<strong>on</strong>g>metal</str<strong>on</strong>g><br />

c<strong>on</strong>tact follow different physical mechanisms.<br />

Differing crystalline structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g><br />

can be observed and <strong>the</strong> <strong>the</strong>rmal budget <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> overall<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer is affected in different ways. In this<br />

paper we describe <strong>the</strong>se differences, provide a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> known physical and mechanical mechanisms<br />

and propose some models. Additi<strong>on</strong>ally we report a few<br />

producti<strong>on</strong> issues and experiences.<br />

Keywords<br />

Backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>, evaporati<strong>on</strong>, sputtering.<br />

INTRODUCTION<br />

In <strong>the</strong> semic<strong>on</strong>ductor technology <strong>the</strong> basic requirements<br />

for a backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> are: (a) good ohmic c<strong>on</strong>tact<br />

between <strong>the</strong> semic<strong>on</strong>ductor and <strong>the</strong> first <str<strong>on</strong>g>metal</str<strong>on</strong>g> layer; (b)<br />

good physical adhesi<strong>on</strong> between <strong>the</strong> silic<strong>on</strong> and <strong>the</strong> first<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g> layer and am<strong>on</strong>g <strong>the</strong> different <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> to prevent<br />

detachment effects like peeling; (c) formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an inter<str<strong>on</strong>g>metal</str<strong>on</strong>g>lic<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> with <strong>the</strong> solder<br />

material during <strong>the</strong> assembly process in <strong>the</strong> package.<br />

The challenges for backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> in producti<strong>on</strong> are<br />

to ensure <strong>the</strong>se basic requirements with high reliability<br />

and low yield loss <strong>on</strong> thin wafers. In <strong>the</strong> following we describe<br />

<strong>the</strong> different physical principles <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and<br />

sputtering, present <strong>the</strong> physical differences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> produced<br />

films, and compare <strong>the</strong> two different depositi<strong>on</strong><br />

techniques in producti<strong>on</strong>.<br />

PHYSICAL PRINCIPLES<br />

The traditi<strong>on</strong>al approach to <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> in<br />

semic<strong>on</strong>ductor technology is <strong>the</strong> evaporati<strong>on</strong> process,<br />

where <strong>the</strong> target materials are c<strong>on</strong>tained in a crucible<br />

mounted at <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> a large vacuum chamber (Figure<br />

1).<br />

1-4244-0255-07/06/$20.00©2006 IEEE<br />

Hannes Eder<br />

Infine<strong>on</strong> Technologies AT<br />

Villach, Austria<br />

hannes.eder@infine<strong>on</strong>.com<br />

Hans Hirscher<br />

UNAXIS Balzers AG<br />

Balzers, Fürstentum Liechtenstein<br />

hans.hirscher@unaxis.com<br />

Figure 1: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporati<strong>on</strong> system.<br />

A beam <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s is generated, accelerated and directed<br />

towards <strong>the</strong> crucible c<strong>on</strong>taining <strong>the</strong> material to be deposited<br />

[1]. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface melts and <strong>the</strong> material evaporates.<br />

The <str<strong>on</strong>g>metal</str<strong>on</strong>g> deposits itself <strong>on</strong> wafers mounted <strong>on</strong> a<br />

rotating cap (this c<strong>on</strong>figurati<strong>on</strong> is named “planetary system”).<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this method are <strong>the</strong> high<br />

depositi<strong>on</strong> rate and <strong>the</strong> low damage caused by <strong>the</strong> deposited<br />

atoms because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir low energy. Fur<strong>the</strong>rmore , <strong>the</strong><br />

evaporati<strong>on</strong> process is an inexpensive process. Many<br />

materials can be evaporated in <strong>on</strong>e run, high throughput<br />

can be achieved for wafers with diameter up to 150mm<br />

(The throughput is determined by <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible<br />

wafers within <strong>on</strong>e run. W ith increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer diameter,<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible wafers mounted <strong>on</strong> <strong>the</strong> wafer<br />

holder is decreasing).<br />

The physical principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering is <strong>the</strong> dislocati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atoms from <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>metal</str<strong>on</strong>g> target. The dislocati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>metal</str<strong>on</strong>g> atoms is caused by <strong>the</strong> collisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy<br />

i<strong>on</strong>s generated in a magnetr<strong>on</strong> assisted DC plasma. The<br />

ejected neutral atoms fly through <strong>the</strong> plasma and land <strong>on</strong><br />

<strong>the</strong> wafer situated in <strong>the</strong> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> target [2], [3]<br />

(Figure 2).<br />

99 2006 IEEE/SEMI Advanced Semic<strong>on</strong>ductor Manufacturing C<strong>on</strong>ference


Figure 2: Principal scattering mechanisms affecting<br />

<strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> atoms during sputtering process.<br />

Multilayer <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>s can be produced in single wafer<br />

tools by visits to chambers with different targets, or in<br />

batch tools with different targets in <strong>on</strong>e chamber. Fig. 3<br />

shows <strong>the</strong> scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> a single wafer equipment with different<br />

sputtering modules and a central robot to handle <strong>the</strong><br />

wafers in high vacuum from chamber to chamber.<br />

Etch<br />

NiV<br />

Al Ti<br />

Central Handler<br />

NiV<br />

Figure 3: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> a single wafer sputtertool.<br />

The reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering process is higher<br />

because <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputter-deposited layer is<br />

better c<strong>on</strong>trolled than in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong>. This<br />

leads to a higher uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mechanical and electrical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

Before depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> it is necessary<br />

to remove any native oxides from <strong>the</strong> silic<strong>on</strong> backsurface.<br />

O<strong>the</strong>rwise <strong>the</strong>se oxides prevent <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

good electrical c<strong>on</strong>tact. In a sputtering clustertool (see fig.<br />

3) it is possible to perform an in situ etching step (Arg<strong>on</strong><br />

pre-clean chamber) under high vacuum c<strong>on</strong>diti<strong>on</strong>s,<br />

whereas in case <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> an additi<strong>on</strong>al prior cleaning<br />

step is needed.<br />

The optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> process was<br />

performed by <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different characteristics<br />

observed in <strong>the</strong> crystalline structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>s composing<br />

<strong>the</strong> backside, <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two processes <strong>on</strong><br />

key electrical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> devices and in <strong>the</strong> mechanical<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g>. We ob-<br />

Ag<br />

100<br />

served a difference in all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se features when changing<br />

from evaporati<strong>on</strong> to sputtering. It has been observed that<br />

it is possible with <strong>the</strong> sputtered process to obtain a more<br />

reproducible process. The level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>taminati<strong>on</strong>s that<br />

normally are present in <strong>the</strong> traditi<strong>on</strong>al evaporati<strong>on</strong> process<br />

can be decreased and finally <strong>the</strong> cycle time and throughput<br />

increased for backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

PROCESS CHARACTERIZATION<br />

The evaporated backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> (Al/Ti/Ni/Ag) is<br />

performed in vacuum depositi<strong>on</strong> equipment. The c<strong>on</strong>tact<br />

to <strong>the</strong> semic<strong>on</strong>ductor is achieved via <strong>the</strong> aluminum layer.<br />

The first functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Al is <strong>the</strong> electrical interc<strong>on</strong>necti<strong>on</strong><br />

with low ohmic resistivity. Since this process is quite<br />

“cold” (<strong>the</strong> temperature during <strong>the</strong> evaporati<strong>on</strong> is in <strong>the</strong><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 150-180°C), after <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> a fur<strong>the</strong>r step <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>rmal annealing is needed in order to activate <strong>the</strong> ohmic<br />

c<strong>on</strong>tact. This is performed inside a furnace with a temperature<br />

higher than 300°C in a c<strong>on</strong>trolled inert atmosphere.<br />

According to <strong>the</strong> phase-diagrams (see fig. 4, [4]) interdiffusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> and aluminum takes place, which leads to<br />

a phenomen<strong>on</strong> known as “spiking”.<br />

Temperature °C<br />

900<br />

700<br />

500<br />

300<br />

660.452 °C<br />

(Al)<br />

L<br />

12.6<br />

577 °C<br />

0 10 20 30<br />

Al Weight Percent Silic<strong>on</strong> Si<br />

Figure 4: Al-Si phase diagram<br />

The Al layer also prevents <strong>the</strong> interdiffusi<strong>on</strong> between Ti<br />

and Si which would lead to Ti-silicates. These compounds<br />

can have very high melting temperatures and thus can be<br />

very brittle.<br />

The Ti-layer is a barrier against <strong>the</strong> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ni<br />

through <strong>the</strong> Al toward <strong>the</strong> Si. The Ni layer is <strong>the</strong> main<br />

comp<strong>on</strong>ent for <strong>the</strong> soldering process since it easily reacts<br />

with most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comm<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t solders. The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

silver layer is to protect <strong>the</strong> underlying <str<strong>on</strong>g>layers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ni and Ti<br />

from oxidati<strong>on</strong> which can cause problems at <strong>the</strong> solder and<br />

glue die-attach steps.


Figure 5 shows <strong>the</strong> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporated backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. It can be observed that <strong>the</strong> evaporated<br />

Ni has a “clustered” crystalline structure.<br />

Figure 5: Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evaporated Ni layer.<br />

The main difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered b ackside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong><br />

developed by Infine<strong>on</strong> Technologies compared to <strong>the</strong><br />

evaporated <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> is <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ni-7V (wt %) target.<br />

By adding Vanadium <strong>the</strong> target NiV changes to a<br />

n<strong>on</strong>magnetic material. This firstly allows <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a standard ma gnet system (Planar Magnetr<strong>on</strong>) and sec<strong>on</strong>dly<br />

an increased target thickness (no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic<br />

flux). The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each layer is <strong>the</strong> same as for <strong>the</strong><br />

evaporated backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. An in situ sputtered<br />

pre-clean is performed in <strong>the</strong> etch module prior <strong>the</strong> first Al<br />

depositi<strong>on</strong>.<br />

The main parameters taken into account to define <strong>the</strong> target<br />

process were <strong>the</strong> sputtering energy, <strong>the</strong> thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <str<strong>on</strong>g>layers</str<strong>on</strong>g> and <strong>the</strong> time needed for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering<br />

processes. These parameters affect <strong>the</strong> temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wafer during depositi<strong>on</strong>. A reliable temperature performance<br />

is needed, since we wanted to develop an in situ<br />

annealing process without an additi<strong>on</strong>al annealing step<br />

after <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. Figure 6 shows a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile during sputtering. The temperature<br />

was m<strong>on</strong>itored by a pyrometer fixed at <strong>the</strong> chuck <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sputtering chamber. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basic targets <str<strong>on</strong>g>of</str<strong>on</strong>g> all fabricati<strong>on</strong><br />

processes is to define a process-window where stability<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity and reproducibility is assured.<br />

To understand how <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> process has been<br />

accomplished, c<strong>on</strong>sider <strong>the</strong> temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in figure 6<br />

in more detail. Each point <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> curve corresp<strong>on</strong>ds to a<br />

certain thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered layer and as <strong>the</strong> time<br />

goes <strong>on</strong> <strong>the</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> course becomes thicker.<br />

It is important to check in which range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure<br />

6 <strong>the</strong> process lies. If <strong>the</strong> process lies in <strong>the</strong> range “A”<br />

this means that a slight shift <str<strong>on</strong>g>of</str<strong>on</strong>g> some process parameters<br />

could lead to a lower temperature budget with <strong>the</strong> possible<br />

c<strong>on</strong>sequence that <strong>the</strong> backside ohmic c<strong>on</strong>tact is not activated.<br />

So it is important that <strong>the</strong> target-process lies far<br />

from <strong>the</strong> “knee” <str<strong>on</strong>g>of</str<strong>on</strong>g> that curve as for instance in <strong>the</strong> area<br />

101<br />

“B”. In this range, a slight deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some process parameters<br />

will not a ffect <strong>the</strong> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic c<strong>on</strong>tact.<br />

temperature [°C]<br />

A B<br />

t1 t2 t1´ t2´<br />

Figure 6: Temperature/time characteristics for <strong>the</strong><br />

sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> NiV layer.<br />

Reliable temperature behavior is important because at<br />

sputtering temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> around 300°C inter-diffusi<strong>on</strong><br />

between silic<strong>on</strong> and aluminum according to <strong>the</strong> phase diagram<br />

shown in Figure 4 takes place. As <strong>the</strong> silic<strong>on</strong> atoms<br />

move inside <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g> <strong>the</strong> aluminum fills <strong>the</strong> voids left by<br />

<strong>the</strong> semic<strong>on</strong>ductor. This phenomen<strong>on</strong>, as already menti<strong>on</strong>ed,<br />

is known as “spiking”. With this starting point, a<br />

qualitative approach in <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside has<br />

been <strong>the</strong> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking density at <strong>the</strong> interface<br />

between silic<strong>on</strong> and backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. We removed<br />

<strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> and took SEM pictures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> remaining silic<strong>on</strong> surface.<br />

An objective approach to judge <strong>the</strong> electrical c<strong>on</strong>tact is<br />

measuring <strong>the</strong> ohmic resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> silic<strong>on</strong>-<str<strong>on</strong>g>metal</str<strong>on</strong>g> interface<br />

via TLM measurements (basically a 4-point test) [5],<br />

[6]. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se measurements show that <strong>the</strong> optical<br />

inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking is a good qualitative predicti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. It has been<br />

verified that an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spiking density (due to an<br />

increased <strong>the</strong>rmal budget) can be related to a lower value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ohmic resistance. Moreover, in <strong>the</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> no spiking<br />

<strong>the</strong> TLM measurement will reveal a Schottky c<strong>on</strong>tact.<br />

Figure 7: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> high spiking density.<br />

time [s]


In Figure 7 a quite high and homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spikes can be observed. The probe had a low ohmic c<strong>on</strong>tact,<br />

whereas figure 8 shows <strong>the</strong> example <str<strong>on</strong>g>of</str<strong>on</strong>g> a probe with<br />

no spikes and bad c<strong>on</strong>tact. In <strong>the</strong> two cases a different<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> grain precipitates can be observed. Also<br />

this phenomen<strong>on</strong> is related to <strong>the</strong> <strong>the</strong>rmal budget achieved<br />

during <strong>the</strong> pro cess.<br />

Figure 8: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> no spiking.<br />

Figure 9 shows <strong>the</strong> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sputtered NiV layer.<br />

The sputtered NiV layer shows a quite regular “vertical”<br />

structure, a pore-free texture and small grain size. These<br />

two features c<strong>on</strong>tribute to a better adhesi<strong>on</strong> between <strong>the</strong><br />

<str<strong>on</strong>g>layers</str<strong>on</strong>g> and an improved behavior during <strong>the</strong> soldering<br />

process.<br />

Figure 9: Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sputtered NiV layer.<br />

The sputtering process generates a rougher aluminum<br />

layer compared to <strong>the</strong> evaporati<strong>on</strong> process. The root<br />

cause is <strong>the</strong> different depositi<strong>on</strong> temperature: <str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g><br />

takes place at about 150°C - 180°C, during <strong>the</strong> sputtering<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> Al we reach about 300°C.<br />

PROCESS EXPERIENCES<br />

The main advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtering process versus <strong>the</strong><br />

evaporati<strong>on</strong> in producti<strong>on</strong> are: (a) in situ activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

electrical c<strong>on</strong>tact (b) less manual handling <str<strong>on</strong>g>of</str<strong>on</strong>g> thin wafers<br />

(c) easier c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>layers</str<strong>on</strong>g> through <strong>the</strong><br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a set <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters (d) higher<br />

throughput.<br />

102<br />

WET PRE-CLEAN<br />

WAFERS LOADING<br />

EVAPORATION<br />

WAF. UNLOADING<br />

ANNEALING<br />

Figure 10: Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> processes: (a)<br />

evaporati<strong>on</strong>; (b) sputtering.<br />

This simplifies <strong>the</strong> whole fabricati<strong>on</strong> flow; a schematic<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> <str<strong>on</strong>g>vs</str<strong>on</strong>g>. sputtering is drawn in figure<br />

10. For <strong>the</strong> sputtered flow <strong>the</strong> wet pre -clean is substituted<br />

by an in situ Arg<strong>on</strong> sputter pre-clean and <strong>the</strong> annealing<br />

is carried out during <strong>the</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>.<br />

Table 1 summarizes <strong>the</strong> comparis<strong>on</strong> between evaporati<strong>on</strong><br />

and sputtering with reference to a set <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant process<br />

parameters related to <strong>the</strong> backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong>. The data<br />

collected was from more than 300.000 processed wafers for<br />

both variants.<br />

Table 1: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some significant process parameter<br />

between evaporati<strong>on</strong> and sputtering.<br />

Process<br />

parameter<br />

Operator time<br />

(minutes for 100<br />

wafers)<br />

Global process<br />

time (minutes<br />

for 50 wafers)<br />

Defect density<br />

(particle/cm 2 )<br />

WAFERS LOADING<br />

SPUTTERING &<br />

INSITU PRE-CLEAN<br />

WAF. UNLOADING<br />

(a) (b)<br />

<str<strong>on</strong>g>Evaporati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Sputtering</str<strong>on</strong>g> Ratio<br />

243 36 6,7<br />

567 117 4,8<br />


ameter. The “scrap rate” arising from process, operator or<br />

machine failures for <strong>the</strong> sputtered flow is more than a factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 better than for <strong>the</strong> evaporati<strong>on</strong> flow.<br />

The sputtered backside <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> and <strong>the</strong> simplified<br />

fabricati<strong>on</strong> flow minimize manual handling. Due to this fact<br />

and <strong>the</strong> advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> in situ Arg<strong>on</strong> pre -clean without<br />

vacuum break <strong>the</strong> rate for backside adhesi<strong>on</strong> problems<br />

reported from backend is a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 better than for <strong>the</strong><br />

evaporated backside.<br />

CONCLUSIONS<br />

The sputtering process developed by Infine<strong>on</strong> Technologies<br />

has been shown to improve <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>liza ti<strong>on</strong> <strong>on</strong> silic<strong>on</strong> wafers and reduce process<br />

time. It has also been shown that this method leads to a<br />

“cleaner” process due to <strong>the</strong> fact that no more wet etch <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> silic<strong>on</strong> surface is needed before starting <strong>the</strong> sputtering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first <str<strong>on</strong>g>metal</str<strong>on</strong>g> layer and <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> handling<br />

steps are reduced. These two facts help to avoid c<strong>on</strong>taminati<strong>on</strong>s,<br />

which leads to a lower peeling rate and a lower<br />

yield loss from process, operator or machine-failures.<br />

ACKNOWLEDGMENTS<br />

We thank Dr. Vallant, chief <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Infine<strong>on</strong> Technologies<br />

Metal Depositi<strong>on</strong> Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Villach Fab, for his support<br />

and all <str<strong>on</strong>g>of</str<strong>on</strong>g> his team for <strong>the</strong> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our experiments. A<br />

major c<strong>on</strong>trib uti<strong>on</strong> to this research during <strong>the</strong> development<br />

and tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> process was from <strong>the</strong> collaborati<strong>on</strong><br />

with UNAXIS. Thanks also goes to Mr. Franz Stückler, Dr.<br />

Daniel Kraft and to all <strong>the</strong> people in <strong>the</strong> Failure Analysis<br />

Lab that supported us to fur<strong>the</strong>r understand and improve<br />

our sputtering process.<br />

103<br />

REFERENCES<br />

[1] L. Eckertova: “Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> thin films”, Plenum Press,<br />

1977, chap. 2.<br />

[2] S. Wolf, R.N. Tauber: “Silic<strong>on</strong> Processing for <strong>the</strong> VLSI<br />

Era”, Lattice Press, 1986. Vol.1, chap. 10.<br />

[3] C.Y. Chang, S. Sze: “ULSI Technology”, McGrawHill,<br />

1996. Chap. 8.<br />

[4] B.M.Thaddeus: “Binary Alloy Phase Diagramms“,<br />

ASM Internati<strong>on</strong>al, 1990, Vol. 1<br />

[5] S. Kramp: "Quantitative Bestimmung des Rückseitenk<strong>on</strong>taktwiderstandes",<br />

Infine<strong>on</strong> Technologies internal<br />

report, 2004.<br />

[6] D.K. Schroder: „Semic<strong>on</strong>ductor material & device<br />

characterizati<strong>on</strong>“, 2nd Editi<strong>on</strong>, Wiley Interscience,<br />

1998, chap. 1.<br />

BIOGRAPHY<br />

Martina Ciacchi received her PhD in Electr<strong>on</strong>ics at <strong>the</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trieste (Italy) with a <strong>the</strong>sis regarding semic<strong>on</strong>ductor<br />

device physics. She is currently working for<br />

Infine<strong>on</strong> Technologies as process engineer and she participated<br />

in <strong>the</strong> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sputtered 4 layer backside<br />

<str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> for IC products.<br />

Hannes Eder received his PhD in Physics at <strong>the</strong> University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna (Austria) with a <strong>the</strong>sis regarding studies <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid surfaces under i<strong>on</strong> impact. He is<br />

currently working as a <str<strong>on</strong>g>metal</str<strong>on</strong>g>lizati<strong>on</strong> process engineer for<br />

Infine<strong>on</strong> Technologies.<br />

Hans Hirscher received his PhD in Physics at <strong>the</strong> University<br />

Tübingen (Germany) with a <strong>the</strong>sis regarding <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a high resoluti<strong>on</strong> STEM at 100 kV. He is currently<br />

working as senior process development engineer for<br />

thin wafer processing for Unaxis .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!