Download PDF - The Journal of Cell Biology - Rockefeller University ...

Download PDF - The Journal of Cell Biology - Rockefeller University ... Download PDF - The Journal of Cell Biology - Rockefeller University ...

jcb.rupress.org
from jcb.rupress.org More from this publisher

JCB<br />

THE JOURNAL OF CELL BIOLOGY<br />

2012<br />

HIGHLIGHTS<br />

www.jcb.org


JCB<br />

THE JOURNAL OF CELL BIOLOGY<br />

EDITOR-IN-CHIEF<br />

TOM MISTELI<br />

EDITORS<br />

PIER PAOLO DI FIORE<br />

ELAINE FUCHS<br />

ALAN HALL<br />

REBECCA HEALD<br />

IRA MELLMAN<br />

JODI NUNNARI<br />

LOUIS F. REICHARDT<br />

KENNETH M. YAMADA<br />

JUNYING YUAN<br />

NEWS EDITOR<br />

BENJAMIN SHORT<br />

REVIEWS EDITOR<br />

PRIYA PRAKASH BUDDE<br />

EDITORIAL BOARD<br />

JOHN AITCHISON<br />

NORMA ANDREWS<br />

BEN BARRES<br />

HUGO BELLEN<br />

VANN BENNETT<br />

JEFFREY BENOVIC<br />

CÉDRIC BLANPAIN<br />

TONY BRETSCHER<br />

MARIANNE BRONNER<br />

ERIC J. BROWN<br />

DON W. CLEVELAND<br />

PASCALE COSSART<br />

GAUDENZ DANUSER<br />

PIETRO DE CAMILLI<br />

TITIA DE LANGE<br />

ABBY DERNBURG<br />

ARSHAD DESAI<br />

RAY DESHAIES<br />

IVAN DIKIC<br />

STEVE DOXSEY<br />

WILLIAM EARNSHAW<br />

SCOTT EMR<br />

JEFFREY ESKO<br />

HIRONORI FUNABIKI<br />

LARRY GERACE<br />

FRANK GERTLER<br />

DAVID GILBERT<br />

MARK GINSBERG<br />

EXECUTIVE EDITOR<br />

LIZ WILLIAMS<br />

Phone: 212-327-8011<br />

Fax: 212-327-8576<br />

email: lwilliams@rockefeller.edu<br />

ASSOCIATE EDITOR<br />

PAMELA CARPENTIER<br />

Phone: 212-327-8571<br />

Fax: 212-327-8576<br />

email: pamela.carpentier@rockefeller.edu<br />

EDITORIAL ASSISTANTS<br />

JANINE FLERI<br />

LINDSEY HOLLANDER<br />

SATI MOTIERAM<br />

KARL RAMOS<br />

Phone: 212-327-8581<br />

Fax: 212-327-8576<br />

email: jcellbiol@rockefeller.edu<br />

GILLIAN GRIFFITHS<br />

ULRICH HARTL<br />

RAMANUJAN HEGDE<br />

NOBUTAKA HIROKAWA<br />

ERIKA HOLZBAUR<br />

ARTHUR HORWICH<br />

ALAN RICK HORWITZ<br />

M. ANDREW HOYT<br />

MARTIN HUMPHRIES<br />

ANNA HUTTENLOCHER<br />

LUISA IRUELA-ARISPE<br />

GERARD KARSENTY<br />

ALEXEY KHODJAKOV<br />

AKIHIRO KUSUMI<br />

THOMAS LANGER<br />

JEANNE LAWRENCE<br />

VERONIQUE LEFEBVRE<br />

HAIFAN LIN<br />

JIRI LUKAS<br />

IAN MACARA<br />

VIVEK MALHOTRA<br />

WALLACE MARSHALL<br />

JOAN MASSAGUE<br />

JACOPO MELDOLESI<br />

RANDALL T. MOON<br />

SEAN MUNRO<br />

ANDRÉ NUSSENZWEIG<br />

KAREN OEGEMA<br />

COPYRIGHT TO ARTICLES PUBLISHED IN THIS JOURNAL IS HELD BY THE AUTHORS. ARTICLES ARE PUBLISHED BY THE<br />

ROCKEFELLER UNIVERSITY PRESS UNDER LICENSE FROM THE AUTHORS. CONDITIONS FOR REUSE OF THE ARTICLES<br />

BY THIRD PARTIES ARE LISTED AT HTTP://WWW.RUPRESS.ORG/TERMS<br />

PRINT ISSN: 0021-9525 ONLINE ISSN: 1540-8140<br />

WWW.JCB.ORG<br />

ERIC OLSON<br />

LESLIE PARISE<br />

ROY PARKER<br />

ROBERT G. PARTON<br />

MARK PEIFER<br />

ANNE RIDLEY<br />

DANIEL B. RIFKIN<br />

DAVID RON<br />

MICHAEL ROUT<br />

MICHAEL RUDNICKI<br />

JOSHUA SANES<br />

JOSEPH SCHLESSINGER<br />

DANNY SCHNELL<br />

TRINA SCHROER<br />

MARTIN SCHWARTZ<br />

JEAN SCHWARZBAUER<br />

JOAN STEITZ<br />

HARALD STENMARK<br />

ANDREAS STRASSER<br />

RON VALE<br />

WIM VERMEULEN<br />

LOIS WEISMAN<br />

TIM YEN<br />

TAMOTSU YOSHIMORI<br />

RICHARD YOULE<br />

MARINO ZERIAL<br />

YIXIAN ZHENG<br />

COPYEDITING<br />

AND PRODUCTION<br />

email: jcb@rockefeller.edu<br />

PREFLIGHT COORDINATOR<br />

LAURA SMITH<br />

COPY EDITORS<br />

LEE DUNLAP<br />

MARGUERITE SPELLMAN<br />

ASSISTANT PRODUCTION EDITOR<br />

JASON ROTHAUSER<br />

PRODUCTION EDITOR<br />

GREGORY E. KOUTROUBY<br />

NEWS PRODUCTION EDITOR<br />

RITA E. SULLIVAN<br />

COPY EDITING COORDINATOR<br />

CAMILLE CLOWERY<br />

PRODUCTION COORDINATOR<br />

ERINN A. GRADY<br />

PRODUCTION DIRECTOR<br />

ROBERT J. O'DONNELL


SYNAPTIC SYSTEMS<br />

www.sysy.com<br />

THE WORLD OF<br />

SYNAPTIC SYSTEMS<br />

RESEARCH TOOLS<br />

FOR NEUROSCIENCE<br />

AND CELL BIOLOGY


Shining a Spotlight on the Best <strong>Cell</strong> <strong>Biology</strong><br />

Liz Williams 1 and Tom Misteli 2<br />

1 Executive Editor and 2 Editor-in-Chief, <strong>The</strong> <strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Biology</strong><br />

<strong>The</strong> past year has been an exciting one at JCB<br />

as we have continued to publish some <strong>of</strong> the<br />

most important and infl uential papers across<br />

cell biology. With the onslaught <strong>of</strong> information in all<br />

<strong>of</strong> our lives today, however, the days <strong>of</strong> casually fl ipping<br />

through a journal to see what is new outside <strong>of</strong> the<br />

particular fi elds we work in is a rare event. We know<br />

full well how hard it can be to keep up. But there is<br />

so much good science out there! Where should today’s<br />

busy scientist fi nd inspiration for the next phase <strong>of</strong> his<br />

or her research? Science so <strong>of</strong>ten is driven by serendipity<br />

and happenstance—with inspir ation <strong>of</strong>ten coming from<br />

that quick conversation over lunch at a conference,<br />

that tiny nugget <strong>of</strong> information buried in the paper<br />

chosen for journal club, or a question asked at the<br />

seminar you almost didn’t fi nd time to attend.<br />

Welcome<br />

<strong>The</strong> JCB Special Issue, which we distribute each year at the American Society for <strong>Cell</strong> <strong>Biology</strong> Annual Meeting, continues<br />

to be a favored resource for a quick “catch up” on some <strong>of</strong> what has been happening in the world <strong>of</strong> cell biology over the previous<br />

six months. With this JCB Highlights Issue we are continuing a tradition <strong>of</strong> providing a mid-year “catch up”. This Issue shines a<br />

spotlight on some <strong>of</strong> the best original research and review content from the past six months in JCB. We encourage you to take a look,<br />

pass this issue around, and then visit www.jcb.org to explore these stories and more in greater depth. While there, also check out our<br />

highly popular multimedia teaching tools: biobytes audiocasts, biosights videocasts, biowrites blog, and our <strong>Journal</strong> Club packs. We<br />

hope the work you see here provides a useful portal to a wealth <strong>of</strong> new ideas for your own work.<br />

See JCB Highlights 2012 online at www.jcb.org/site/highlights2012 and<br />

access the FREE full text <strong>of</strong> all highlighted articles at www.jcb.org.<br />

JCB Highlights 2012<br />

© BARBARA SMALLER/THE NEW YORKER COLLECTION/WWW.CARTOONBANK.COM


By Michael R. Green, Howard Hughes Medical Institute, <strong>University</strong><br />

<strong>of</strong> Massachusetts Medical School and Joseph Sambrook,<br />

Peter MacCallum Cancer Institute, Melbourne, Australia<br />

Molecular Cloning: A Laboratory Manual has always been the<br />

one indispensable molecular biology laboratory manual<br />

for protocols and techniques. <strong>The</strong> fourth edition <strong>of</strong> this classic<br />

manual preserves the detail and clarity <strong>of</strong> previous editions<br />

as well as the theoretical and historical underpinnings <strong>of</strong><br />

the techniques presented. Ten original core chapters reflect<br />

developments and innovation in standard techniques and introduce<br />

new cutting-edge protocols. Twelve entirely new chapters<br />

are devoted to the most exciting current research strategies,<br />

including epigenetic analysis, RNA interference, genome<br />

sequencing, and bioinformatics. This manual is essential for both<br />

the inexperienced and the advanced user.<br />

2012, 1,890 pp., illus., appendices, index<br />

Cloth (three-volume set)<br />

$475 ISBN 978-1-936113-41-5<br />

Paperback (three-volume set)<br />

$365 ISBN 978-1-936113-42-2<br />

Contents<br />

VOLUME 1<br />

Part 1 Essentials<br />

1. Isolation and Quantification<br />

<strong>of</strong> DNA<br />

2. Analysis <strong>of</strong> DNA<br />

3. Cloning and Transformation<br />

with Plasmid Vectors<br />

4. Gateway Recombinational<br />

Cloning<br />

5. Working with Bacterial Artificial<br />

Chromosomes and Other<br />

High-Capacity Vectors<br />

6. Extraction, Purification,<br />

and Analysis <strong>of</strong> RNA from<br />

Eukaryotic <strong>Cell</strong>s<br />

7. Polymerase Chain Reaction<br />

8. Bioinformatics<br />

VOLUME 2<br />

Part 2 Analysis and Manipulation <strong>of</strong><br />

DNA and RNA<br />

9. Quantification <strong>of</strong> DNA and<br />

RNA by Real-Time Polymerase<br />

Chain Reaction<br />

10. Nucleic Acid Platform<br />

Technologies<br />

11. DNA Sequencing<br />

12. Analysis <strong>of</strong> DNA Methylation<br />

in Mammalian <strong>Cell</strong>s<br />

13. Preparation <strong>of</strong> Labeled DNA, RNA,<br />

and Oligonucleotide Probes<br />

14. Methods for In Vitro Mutagenesis<br />

Part 3 Introducing Genes into <strong>Cell</strong>s<br />

15. Introducing Genes into Cultured<br />

Mammalian <strong>Cell</strong>s<br />

16. Introducing Genes into<br />

Mammalian <strong>Cell</strong>s: Viral Vectors<br />

VOLUME 3<br />

Part 4 Gene Expression<br />

17. Analysis <strong>of</strong> Gene Regulation Using<br />

Reporter Systems<br />

18. RNA Interference and Small<br />

RNA Analysis<br />

19. Expressing Cloned Genes for<br />

Protein Production, Purification,<br />

and Analysis<br />

Part 5 Interaction Analysis<br />

20. Cross-Linking Technologies for<br />

Analysis <strong>of</strong> Chromatin Structure<br />

and Function<br />

21. Mapping <strong>of</strong> In Vivo RNA-Binding<br />

Sites by UV-Cross-Linking<br />

Immunoprecipitation (CLIP)<br />

22. Gateway-Compatible Yeast One-<br />

Hybrid and Two-Hybrid Assays<br />

Appendices<br />

1. Reagents and Buffers<br />

2. Commonly Used Techniques<br />

3. Detection Systems<br />

4. General Safety and Hazardous<br />

Material<br />

Index


SELECTED HIGHLIGHTS<br />

10 • Licensing factors lose their credentials<br />

Mitch Leslie<br />

• <strong>Cell</strong> death helps give closure<br />

Ben Short<br />

• Meet the neighbors<br />

Ben Short<br />

11 • VPS35 leaves endosomes lost in transition<br />

Mitch Leslie<br />

• Lipid droplets fatten up with Fsp27<br />

Ben Short<br />

• <strong>The</strong> actomyosin ring bulks up<br />

Mitch Leslie<br />

12 • Stress fi bers guide focal adhesions to maturity<br />

Ben Short<br />

13 • Aurora B is no Ska fan<br />

Mitch Leslie<br />

• Wait, save that integrin!<br />

Mitch Leslie<br />

• Slow but steady for NF- � B<br />

Mitch Leslie<br />

14 • BRCA1 touches up microRNAs<br />

Mitch Leslie<br />

• No crystal structure? No problem<br />

Mitch Leslie<br />

• CUPS provide a handle on Acb1 secretion<br />

Ben Short<br />

15 • Big enough for two<br />

Ben Short<br />

16 • References for selected highlights<br />

REVIEWS<br />

17 <strong>The</strong> extracellular matrix: A dynamic niche in cancer progression<br />

Pengfei Lu, Valerie M. Weaver, and Zena Werb<br />

J. <strong>Cell</strong> Biol. 2012. 196:395–406.<br />

29 Tracing epithelial stem cells during development, homeostasis,<br />

and repair<br />

Alexandra Van Keymeulen and Cédric Blanpain<br />

J. <strong>Cell</strong> Biol. 2012. 197:575–584.<br />

JCB<br />

THE JOURNAL OF CELL BIOLOGY<br />

HIGHLIGHTS 2012<br />

Cover design by Liz Williams.<br />

Images (clockwise from top right):<br />

courtesy <strong>of</strong> Yvonne Beckham and Patrick<br />

Oakes; courtesy <strong>of</strong> Parveen Suraneni;<br />

courtesy <strong>of</strong> Anjali Sarkar; courtesy <strong>of</strong><br />

Stephan Huveneers; courtesy <strong>of</strong> Jacob<br />

Rullo and Henry Hong.


A GE Healthcare Company<br />

Real speed<br />

Real time 3D imaging<br />

Real live cell super-resolution<br />

Really<br />

DeltaVision OMX ®<br />

with the Blaze SIM Module<br />

Experience a new dimension<br />

in super-resolution imaging<br />

Learn more at www.super-resolution.com<br />

Macrophage (RAW) cell membranes stained with WGA Alexa488 and 100 nm<br />

glass beads (red) that have been endocytosed by the cell - movie courtesy <strong>of</strong><br />

Lynne Turnbull, Eileen McGowan and Cynthia Whitchurch, Microbial Imaging<br />

Facility, <strong>University</strong> <strong>of</strong> Technology, Sydney.


EXECUTIVE DIRECTOR<br />

MIKE ROSSNER<br />

FINANCE DIRECTOR<br />

RAYMOND T. FASTIGGI<br />

ASSISTANTS TO THE FINANCE DIRECTOR<br />

SARAH S. KRAFT<br />

ANN TRAVERS<br />

BUSINESS DEVELOPMENT DIRECTOR<br />

GREGORY FLYNN MALAR<br />

CIRCULATION ASSISTANTS<br />

JASON HOLTHAM<br />

EMILY TAYLOR<br />

ADVERTISING SALES DIRECTOR<br />

LORNA PETERSEN<br />

Phone: 212-327-8880<br />

Fax: 212-327-7944<br />

email: petersl@rockefeller.edu<br />

MARKETING ASSOCIATE<br />

LARAINE KARL<br />

PERMISSIONS DIRECTOR<br />

SUZANNE RUNYAN<br />

OFFICE ADMINISTRATOR<br />

JOANN GREENE<br />

THE JOURNAL OF CELL BIOLOGY (ISSN 0021-9525) IS PUBLISHED BIWEEKLY<br />

BY THE ROCKEFELLER UNIVERSITY PRESS, 1114 FIRST AVENUE, NEW YORK,<br />

NY 10065-8325. PERIODICAL POSTAGE PAID AT NEW YORK, NY AND<br />

ADDITIONAL MAILING OFFICES.<br />

2012 SUBSCRIPTION RATES:<br />

INSTITUTIONAL RATES:<br />

TIER 1 TIER 2 TIER 3 TIER 4<br />

ONLINE $1,995 $2,470 $2,965 $3,630<br />

PRINT+ONLINE $4,505 $4,960 $5,320 $6,515<br />

PERSONAL RATES:<br />

PRINT ONLY:$500 ONLINE: $150 PRINT+ONLINE: $650<br />

FOR MORE INFORMATION, PLEASE CONTACT THE CIRCULATION DEPARTMENT:<br />

Phone: 212-327-8572<br />

Fax: 212-327-7944<br />

email: rupcd@rockefeller.edu<br />

PERMISSION REQUESTS:<br />

email: permissions@rockefeller.edu<br />

POSTMASTER:<br />

SEND ADDRESS CHANGES TO THE JOURNAL OF CELL BIOLOGY, CIRCULATION<br />

DEPARTMENT, THE ROCKEFELLER UNIVERSITY PRESS, 1114 FIRST AVENUE,<br />

NEW YORK, NY 10065-8325.


���������� ����������<br />

�����������<br />

�����������<br />

��������<br />

�������������<br />

����������������<br />

���������������<br />

����������<br />

����������������<br />

������������������������������<br />

�������������<br />

������������������<br />

� ���������������������������<br />

��������������������<br />

�������������������������������������<br />

��������<br />

�������������������


Announcing Keystone Symposia<br />

2012–2013 Conferences<br />

Pulmonary Vascular Disease and Right Ventricular Dysfunction:<br />

Current Concepts and Future <strong>The</strong>rapies<br />

�������������������������������������������������������������<br />

Aging and Diseases <strong>of</strong> Aging<br />

��������������������������������������������������������<br />

Immunological Mechanisms <strong>of</strong> Vaccination<br />

���������������������������������������������������������������<br />

Type 2 Immunity: Initiation, Maintenance, Homeostasis and Pathology<br />

joint with: Pathogenic Processes in Asthma and COPD<br />

������������������������������������������������������������������������������<br />

Multiple Sclerosis<br />

����������������������������������������������������<br />

New Frontiers in Cardiovascular Genetics beyond GWAS<br />

���������������������������������������������������������������<br />

Frontiers <strong>of</strong> NMR in <strong>Biology</strong><br />

���������������������������������������������������<br />

Hematopoiesis<br />

��������������������������������������������������������������������������<br />

Emerging Topics in Immune System Plasticity:<br />

<strong>Cell</strong>ular Networks, Metabolic Control and Regeneration<br />

������������������������������������������������������������������������������<br />

Plant Abiotic Stress and Sustainable Agriculture:<br />

Translating Basic Understanding to Food Production<br />

�������������������������������������������������������������������������<br />

Noncoding RNAs in Development and Cancer<br />

����������������������������������������������������������������������������<br />

Malaria<br />

�������������������������������������������������������������������<br />

Metabolic Control <strong>of</strong> In�lammation and Immunity<br />

�������������������������������������������������������������<br />

Antibodies as Drugs joint with:<br />

Cancer Immunology and Immunotherapy<br />

�������������������������������������������������������������������������������<br />

Adipose Tissue <strong>Biology</strong> joint with:<br />

Diabetes – New Insights into Mechanism <strong>of</strong> Disease and Its Treatment<br />

����������������������������������������������������������<br />

Mitochondria, Metabolism and Myocardial Function –<br />

Basic Advances to Translational Studies<br />

�����������������������������������������������������<br />

Neurogenesis joint with:<br />

New Frontiers in Neurodegenerative Disease Research<br />

����������������������������������������������������������������������������<br />

Lung Development, Cancer and Disease<br />

������������������������������������������������������������������������<br />

<strong>The</strong> Gut Microbiome: <strong>The</strong> Effector/Regulatory Immune Network<br />

�������������������������������������������������������������������������<br />

B <strong>Cell</strong> Development and Function joint with: HIV Vaccines<br />

���������������������������������������������������������<br />

Autophagy, In�lammation and Immunity<br />

�����������������������������������������������������������������������<br />

Scholarships are available to students and postdoctoral fellows. Abstract and<br />

scholarship deadlines are four months before conferences begin, and early registration<br />

deadlines, saving US$150 on later fees, precede conferences by two months.<br />

Visit www.keystonesymposia.org/2013meetings for more information.<br />

Nutrition, Epigenetics and Human Disease<br />

��������������������������������������������������������������������������<br />

Myeloid <strong>Cell</strong>s: Regulation and In�lammation<br />

�������������������������������������������������������<br />

Stem <strong>Cell</strong> Regulation in Homeostasis and Disease<br />

����������������������������������������������������������������<br />

PI 3-Kinase and Interplay with Other Signaling Pathways<br />

joint with: Tumor Metabolism<br />

����������������������������������������������������������<br />

Structural Analysis <strong>of</strong> Supramolecular Assemblies by Hybrid Methods<br />

�������������������������������������������������������������<br />

Understanding Dendritic <strong>Cell</strong> <strong>Biology</strong> to Advance Disease <strong>The</strong>rapies<br />

�����������������������������������������������������<br />

DNA Replication and Recombination<br />

joint with: Genomic Instability and DNA Repair<br />

�����������������������������������������������������������<br />

Growing to Extremes: <strong>Cell</strong> <strong>Biology</strong> and Pathology <strong>of</strong> Axons<br />

���������������������������������������������������������������<br />

Host Response in Tuberculosis joint with:<br />

Tuberculosis: Understanding the Enemy<br />

�����������������������������������������������������������������������������<br />

Precision Genome Engineering and Synthetic <strong>Biology</strong>:<br />

Designing Genomes and Pathways<br />

�������������������������������������������������������������<br />

Neuronal Control <strong>of</strong> Appetite, Metabolism and Weight<br />

�������������������������������������������������������������<br />

RNA Silencing<br />

�����������������������������������������������������������������������������<br />

Epigenetic Marks and Cancer Drugs<br />

��������������������������������������������������������������<br />

Molecular Clockworks and the Regulation<br />

<strong>of</strong> Cardio-Metabolic Function<br />

�������������������������������������������������<br />

Immune Activation in HIV Infection:<br />

Basic Mechanisms and Clinical Implications<br />

�����������������������������������������������������������<br />

Nuclear Receptors and Friends:<br />

Roles in Energy Homeostasis and Metabolic Dysfunction<br />

�������������������������������������������������������<br />

Immunopathology <strong>of</strong> Type 1 Diabetes joint with:<br />

Advances in the Knowledge and Treatment <strong>of</strong> Autoimmunity<br />

��������������������������������������������������������������������������<br />

Cardiac Remodeling, Signaling, Matrix and Heart Function<br />

��������������������������������������������������<br />

Plant Immunity: Pathways and Translation<br />

���������������������������������������������������<br />

Positive Strand RNA Viruses<br />

������������������������������������������������������������������������<br />

<strong>The</strong> Innate Immune Response in the Pathogenesis<br />

<strong>of</strong> Infectious Disease<br />

�������������������������������<br />

<strong>The</strong> Hippo Tumor Suppressor Network:<br />

From Organ Size Control to Stem <strong>Cell</strong>s and Cancer<br />

����������������������������������������������������������������<br />

Human Genomics and Personalized Medicine<br />

��������������������������������������������������


Selected Highlights<br />

10.1083/jcb.1962iti1jcb.1962iti1Mitch Lesliemitchleslie@comcast.netjcb.1962iti1fig1.epsIn<br />

This IssueNewsLicensing factors<br />

lose their credentials<br />

Sonneville et al.<br />

reveal how C.<br />

elegans embryos<br />

control replication li censing<br />

factors to pro mote<br />

As anaphase progresses (left to right), effi cient DNA duplication<br />

more and more Mcm3 protein (glowing while pre venting the<br />

dots) attaches to the DNA.<br />

genome from being copied<br />

more than once.<br />

A cell starts preparing to duplicate its DNA before it has<br />

fi nished dividing. Beginning in anaphase, the cell fl ags replication<br />

origins where DNA replication will commence. Licensing factors<br />

cooperate to mark replication origins by clamping the Mcm2–7<br />

complex around the DNA. Once a cell has tagged a large number<br />

<strong>of</strong> replication origins, it shuts down licensing before S phase so<br />

that each section <strong>of</strong> DNA will be duplicated only once.<br />

10.1083/jcb.1956iti3jcb.1956iti3Ben Shortbshort@rockefeller.edujcb.1956iti3fi g1.epsIn This IssueNews<strong>Cell</strong> death<br />

helps give closure<br />

By visualizing the dynamics <strong>of</strong> apoptosis in living mouse<br />

embryos, Yamaguchi et al. reveal that cell death helps<br />

drive the morphogenetic movements required for neural<br />

tube closure (NTC).<br />

NTC is a vital early step in the development <strong>of</strong> the central<br />

nervous system. A fl at group <strong>of</strong> cells called the neural plate bends<br />

in the middle so that the sides <strong>of</strong> the plate curve around to meet<br />

and fuse with each other, forming the neural tube. Many mouse<br />

embryos lacking key apoptosis proteins, such as Apaf-1 or<br />

Caspase-3, show defects in NTC in their cranial region, but how<br />

cell death contributes to this process is unclear.<br />

Yamaguchi et al. generated transgenic mice expressing<br />

a FRET-based apoptotic reporter whose signal is decreased when<br />

activated caspases cleave the link between two fluorescent<br />

proteins. Using this reporter, the researchers identifi ed two types<br />

<strong>of</strong> apoptotic cells in embryonic brains undergoing NTC. Some cells<br />

died and fragmented rapidly, whereas others—particularly near<br />

the tips <strong>of</strong> the folding neural plate—persisted for longer without<br />

breaking apart.<br />

Both types <strong>of</strong> apoptotic cells were absent from mouse embryos<br />

lacking Apaf-1 and Caspase-3. In these animals, neural plate bending<br />

was reduced, thereby delaying NTC. Senior authors Yoshifumi<br />

Yamaguchi and Masayuki Miura think that the death, and subsequent<br />

extrusion, <strong>of</strong> cells from the tips <strong>of</strong> the neural plate may generate forces<br />

that help to shape the developing tissue and facilitate cranial NTC.<br />

Alternatively, the two types<br />

<strong>of</strong> apoptotic cells may direct<br />

this developmental process<br />

by sending different signals<br />

to their surviving neighbors.<br />

Ben Short<br />

Several apoptotic cells (blue) persist<br />

at the edge <strong>of</strong> the neural plate as it<br />

folds to form the neural tube.<br />

Yamaguchi, Y., et al. 2011. J. <strong>Cell</strong> Biol.<br />

http://dx.doi.org/10.1083/jcb.201104057.<br />

Using live-cell imaging, Sonneville et al. followed the<br />

dynamics <strong>of</strong> licensing factors in C. elegans. <strong>The</strong> researchers<br />

propose that the specific behavior <strong>of</strong> the proteins makes<br />

licensing more effi cient. Two <strong>of</strong> the main licensing factors, the<br />

origin recognition complex (ORC) and CDC-6, attach to DNA<br />

independently, potentially speeding up replication licensing.<br />

And the binding <strong>of</strong> the Mcm2–7 proteins to DNA encouraged<br />

the release <strong>of</strong> CDC-6 and the ORC, allowing them to move on<br />

and mark other origins.<br />

Sonneville et al. also determined how a cell curtails replication<br />

licensing to stop double duplication <strong>of</strong> its DNA: the cell<br />

expels CDC-6 and ORC from the nucleus during interphase, a<br />

process that required the nuclear export factor XPO-1. Depleting<br />

this molecule slowed removal <strong>of</strong> CDC-6 and ORC components<br />

from the nucleus and allowed DNA rereplication. Mitch Leslie<br />

Sonneville, R., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201110080.<br />

10.1083/jcb.1966iti3jcb.1966iti3Ben Shortbshort@rockefeller.edujcb.1966iti3fi g1.epsIn This IssueNewsMeet the<br />

neighbors<br />

Roux et al. report a<br />

new way to screen for<br />

protein–protein interactions<br />

in mammalian cells.<br />

Existing methods for<br />

probing protein inter actions<br />

have their limitations. A yeast<br />

two-hybrid screen, for example,<br />

involves ex pressing<br />

proteins in a non-native cell<br />

type that may not fold or<br />

A BirA–lamin-A fusion protein (red)<br />

attaches biotin (green) to nearby<br />

components <strong>of</strong> the nuclear envelope.<br />

modify them correctly. Biochemical “pull-down” approaches, on<br />

the other hand, are limited by protein solubility and can miss<br />

weak or transient interactions. Roux et al. developed a new<br />

method called proximity-dependent biotin identifi cation, or BioID,<br />

which relies on a promiscuous mutant <strong>of</strong> the bacterial biotin<br />

ligase BirA that biotinylates nearby primary amines, such as lysine<br />

residues in neighboring proteins.<br />

<strong>The</strong> researchers fused the mutant ligase to human lamin-A, an<br />

insoluble component <strong>of</strong> the protein meshwork that underlies the inner<br />

nuclear membrane. When the fusion protein was expressed in cells,<br />

it localized to the nuclear envelope and biotinylated nearby proteins,<br />

which could be purifi ed on biotin-binding beads and identifi ed by<br />

mass spectrometry. This approach detected many nuclear membrane<br />

proteins and nuclear pore complex components known to associate<br />

with lamin-A. It also identifi ed a previously uncharacterized protein<br />

that the authors localized to the nuclear envelope and named soluble<br />

lamina-associated protein <strong>of</strong> 75 kD, or SLAP75.<br />

BioID identifi es both a protein’s binding partners and its near<br />

neighbors, says senior author Kyle Roux. In addition to using the<br />

technique with different target proteins, Roux wants to examine<br />

how disease-linked mutations in lamin-A alter the protein’s<br />

association pr<strong>of</strong>i le. Ben Short<br />

Roux, K.J., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201112098.


10.1083/jcb.1955iti1jcb.1955iti1Mitch Lesliemitchleslie@comcast.netjcb.1955iti1fig1.epsIn<br />

This IssueNewsVPS35 leaves<br />

10.1083/jcb.1956iti1jcb.1956iti1Ben Shortbshort@rockefeller.edujcb.1956iti1fi g1.epsIn This IssueNewsLipid droplets<br />

endosomes lost in transition<br />

Relative to control cells (left), cells short<br />

on VPS35 (right) accumulate more<br />

BACE1 (red) in endosomes (green).<br />

Sluggish recycling<br />

<strong>of</strong> a protein-slicing<br />

enzyme could promote<br />

Alzheimer’s disease<br />

(AD), Wen et<br />

al. show.<br />

A�, the protein that<br />

accumulates in the brains<br />

<strong>of</strong> AD patients, is formed<br />

when enzymes cut up its<br />

parental protein, known as amyloid precursor protein. One <strong>of</strong><br />

those enzymes is �-secretase or BACE1. BACE1 cycles between<br />

the Golgi apparatus and the plasma membrane, traveling through<br />

endosomes on the way. A protein complex called the retromer<br />

helps transport proteins from endosomes to the Golgi. Previous<br />

studies have found reduced levels <strong>of</strong> two retromer components,<br />

including the protein VPS35, in the brains <strong>of</strong> AD patients.<br />

fatten up with Fsp27<br />

An adipocyte protein promotes the growth <strong>of</strong> lipid droplets<br />

(LDs) by facilitating lipid transfer from smaller to<br />

larger droplets, Gong et al. report.<br />

Consisting <strong>of</strong> a neutral lipid core surrounded by a monolayer<br />

<strong>of</strong> phospholipids and associated proteins, LDs serve as the cell’s fat<br />

storage depots, particularly in adipocytes where they grow to extra<br />

large sizes. How LDs grow is unknown, but adipocytes lacking the<br />

LD-associated protein Fsp27 have many small droplets instead <strong>of</strong> a<br />

single large one.<br />

Gong et al. found that Fsp27 concentrated at the contacts<br />

between LDs and that this localization depended on the protein’s<br />

C-terminal domain. Photobleaching experiments revealed that<br />

LDs in contact with each other traded neutral lipids but that this<br />

exchange was abolished in adipocytes lacking Fsp27. Moreover,<br />

the researchers identifi ed three lysine residues—which may form<br />

part <strong>of</strong> an amphipathic helix in Fsp27’s C terminus—that were<br />

required for lipid exchange and LD growth.<br />

10.1083/jcb.1955iti2jcb.1955iti2Mitch Lesliemitchleslie@comcast.netjcb.1955iti2fig1.epsIn<br />

This IssueNews<strong>The</strong> actomyosin<br />

ring bulks up<br />

Calvert et al. reveal<br />

that large fungal<br />

cells have more<br />

myosin II associated with<br />

their contractile rings<br />

Purple in this heat map indicates that than do smaller cells,<br />

there is more myosin II in a larger which allows them to<br />

contractile ring (left) than in a smaller constrict the ring faster<br />

one (right).<br />

during cytokinesis.<br />

A recent study <strong>of</strong> C. elegans embryos showed that the time<br />

required for the contractile ring to close during cytokinesis was<br />

about the same no matter the size <strong>of</strong> the cell, which means the<br />

ring must tighten faster in larger cells. Scientists have been keen<br />

to test whether girth affects constriction rate in other species. <strong>The</strong><br />

obstacle has been fi nding organisms whose dividing cells differ<br />

enough in size.<br />

To fi nd out whether VPS35 affects AD, the team crossed<br />

two mouse lines to create animals that are prone to many AD<br />

symptoms and generate half the normal amount <strong>of</strong> VPS35. <strong>The</strong><br />

mice displayed AD-like abnormalities earlier than their parental<br />

strains, and their brains accumulated more A�.<br />

<strong>Cell</strong>s lacking VPS35 carried extra BACE1 in their endosomes.<br />

BACE1 is more active in the acidic interior <strong>of</strong> endosomes<br />

than in the more basic surroundings <strong>of</strong> the Golgi apparatus.<br />

Thus, by leaving more BACE1 trapped in endosomes, the decline<br />

in VPS35 levels could spur the formation <strong>of</strong> more A�.<br />

Although no VPS35 mutations have so far turned up in AD<br />

patients, the protein’s level in the brain dwindles with age<br />

in mice. <strong>The</strong> researchers suspect that certain AD risk factors,<br />

such as oxidative stress, also diminish VPS35 levels in the brain.<br />

Mitch Leslie<br />

Wen, L., et al. 2011. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201105109.<br />

Although LDs exchanged lipids<br />

bidirectionally, net lipid transfer<br />

occurred from the smaller to the<br />

larger droplet <strong>of</strong> an LD pair, leading<br />

to shrinkage <strong>of</strong> the smaller droplet<br />

and growth <strong>of</strong> the larger one. This directional<br />

transfer is probably driven<br />

by the higher internal pressure within<br />

smaller droplets, which would force<br />

lipids into the larger LD.<br />

How Fsp27 facilitates this transfer<br />

remains unclear, but senior author<br />

Peng Li thinks that the protein may<br />

Fsp27 (red) localizes to the<br />

site <strong>of</strong> contact (arrowhead)<br />

between lipid droplets (green)<br />

in adipocytes.<br />

help to connect LDs and form a pore to allow lipid movement. <strong>The</strong><br />

next question, she says, is to identify additional proteins that work<br />

with Fsp27 to boost LD growth. Ben Short<br />

Gong, J., et al. 2011. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201104142.<br />

JCB Highlights 2012 11<br />

Calvert et al. recognized a candidate for such a study—<br />

the fungus Neurospora crassa. Its filaments, or hyphae, can<br />

vary up to fourfold in diameter and undergo a process called<br />

septation that’s somewhat akin to mitosis.<br />

As in nematodes, the ring closed faster in larger hyphae.<br />

But N. crassa differed from nematodes in a couple <strong>of</strong> ways.<br />

In N. crassa, the contractile rings <strong>of</strong> larger cells started out with<br />

more myosin II than the rings <strong>of</strong> smaller cells, which could<br />

drive faster constriction. Indeed, reducing the amount <strong>of</strong> ringassociated<br />

myosin II slowed the rate <strong>of</strong> constriction. In addition,<br />

the amount <strong>of</strong> myosin II in the ring remained constant as the<br />

ring tightened, instead <strong>of</strong> declining as in nematodes. <strong>The</strong>refore,<br />

in N. crassa, the design and mechanics <strong>of</strong> the contractile ring<br />

vary with size. Future studies will investigate whether the same<br />

relationship holds in other species. Mitch Leslie<br />

Calvert, M.E.K., et al. 2011. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201101055.


Selected Highlights<br />

10.1083/jcb.1963ifBen Shortbshort@rockefeller.eduIn FocusNewsStress fibers<br />

guide focal adhesions to maturity<br />

Study suggests that actin bundles serve as templates for adhesion growth.<br />

Integrin-based focal adhesions initially<br />

form at the leading edge <strong>of</strong> a<br />

migrating cell and then mature into<br />

larger structures that stably attach and<br />

transmit force to the extracellular matrix<br />

(ECM). Oakes et al. describe how this<br />

maturation process is guided by the actin<br />

stress fi bers that assemble at nascent<br />

adhesions (1).<br />

jcb.1963iffi g1.epsMaturing focal adhesions grow in size<br />

and change their protein composition, and,<br />

in fi broblasts, they eventually develop into<br />

specialized fi brillar adhesions that can remodel<br />

the ECM (2). Maturation depends<br />

on the motor protein myosin II, which puts<br />

the adhesions under tension and promotes<br />

the assembly <strong>of</strong> adhesion-associated actin<br />

bundles called radial stress fi bers. “It’s<br />

been presumed that maturation is entirely<br />

tension dependent and that the stress fi bers<br />

are important for transmitting the myosingenerated<br />

forces to the adhesions,” explains<br />

Margaret Gardel, from the <strong>University</strong><br />

<strong>of</strong> Chicago. But myosin generates tension<br />

and radial stress fi bers simultaneously,<br />

making it diffi cult to dissect the roles <strong>of</strong><br />

these two processes in adhesion maturation.<br />

“We wanted to investigate whether<br />

the radial stress fi bers that form at focal<br />

adhesions are important for force transmission<br />

and the maturation<br />

process,” Gardel recalls.<br />

Gardel and colleagues,<br />

led by Patrick Oakes and<br />

Yvonne Beckham, blocked<br />

the formation <strong>of</strong> adhesionassociated<br />

stress fi bers by<br />

inhibiting either the actinnucleating<br />

formin Dia1 (3)<br />

or the fi lament-bundling<br />

protein �-actinin (4). <strong>Cell</strong>s<br />

treated with inhibitors or<br />

shRNAs targeting these proteins failed to assemble<br />

radial stress fi bers, despite having<br />

normal levels <strong>of</strong> active myosin II. Other actin<br />

structures in the cell were unaffected.<br />

<strong>Cell</strong>s lacking radial stress fi bers<br />

formed small focal adhesions, which,<br />

says Gardel, “were still under a lot <strong>of</strong><br />

tension, so the stress fi bers aren’t that<br />

“Radial stress<br />

fibers… serve<br />

as structural<br />

templates to<br />

recruit other<br />

focal adhesion<br />

proteins.”<br />

important for force transmission.” <strong>The</strong><br />

adhesions’ small size, however, suggested<br />

that, in the absence <strong>of</strong> radial<br />

stress fi bers, tension isn’t suffi cient to<br />

drive adhesion maturation. Indeed, key<br />

components <strong>of</strong> mature focal adhesions<br />

weren’t recruited when stress fi ber formation<br />

was inhibited, and fi broblasts<br />

lacking Dia1 or �-actinin failed to assemble<br />

fibrillar adhesions capable <strong>of</strong><br />

remodeling the ECM.<br />

“So the recruitment <strong>of</strong> proteins [to<br />

form mature adhesions] is strongly correlated<br />

to the assembly <strong>of</strong> actin bundles at<br />

the focal adhesion plaque,”<br />

Gardel says. Adhesions fail<br />

to mature in the absence <strong>of</strong><br />

radial stress fi bers, even<br />

though myosin II continues<br />

to exert signifi cant amounts<br />

<strong>of</strong> force on nascent cell–<br />

matrix attachments.<br />

Oakes et al. then examined<br />

the effect <strong>of</strong> myosin<br />

II–dependent tension<br />

on focal adhesion maturation.<br />

<strong>The</strong> researchers limited myosin II<br />

activity by treating cells with increasing<br />

concentrations <strong>of</strong> a Rho kinase inhibitor.<br />

Though some myosin II activity is required<br />

to form mature adhesions, motor<br />

function and intracellular tension could<br />

be reduced by as much as 80% without<br />

inhibiting adhesion growth and maturation.<br />

FOCAL POINT<br />

(Left to right) Jonathan Stricker, Yvonne Beckham, Margaret Gardel, and Patrick Oakes reveal<br />

that focal adhesion–associated stress fi bers aren’t required to transmit force from the actin<br />

cytoskeleton to the extracellular matrix but they are essential for the growth and maturation<br />

<strong>of</strong> adhesions into stable cell–matrix attachments. <strong>The</strong> authors suggest that the stress fi bers<br />

form a structural template that helps recruit focal adhesion components. Heat maps show that<br />

autophosphorylated focal adhesion kinase is more enriched at focal adhesions in a control cell<br />

(center) than in a cell lacking radial stress fi bers (right).<br />

“So you only need a really minimal<br />

threshold <strong>of</strong> tension,” Gardel says.<br />

Gardel and colleagues think that this<br />

minimal level <strong>of</strong> myosin II activity is required<br />

to drive a “retrograde fl ow” <strong>of</strong> actin<br />

fi laments away from the cell’s leading<br />

edge. <strong>The</strong>se fi laments are captured at nascent<br />

cell adhesions and converted by<br />

Dia1 and �-actinin into dense actin bundles.<br />

“We think that these radial stress<br />

fi bers then serve as structural templates<br />

to recruit other focal adhesion proteins,”<br />

Gardel explains. “You need a suffi<br />

cient amount <strong>of</strong> tension to form the<br />

template, but maturation isn’t a tensiondependent<br />

process above that threshold.”<br />

Focal adhesions can be regulated by<br />

tension, however. <strong>Cell</strong>s form smaller adhesions<br />

on s<strong>of</strong>t matrices than they do on<br />

more rigid substrates, suggesting that<br />

ECM stiffness can regulate the assembly<br />

<strong>of</strong> radial stress fi bers. “That’s something<br />

we’re investigating now,” Gardel says.<br />

“How is stress fi ber assembly regulated at<br />

focal adhesions, and why does that depend<br />

on ECM cues?” Ben Short<br />

1. Oakes, P.W. et al. 2012. J. <strong>Cell</strong> Biol. http://<br />

dx.doi.org/10.1083/jcb.201107042.<br />

2. Gardel, M.L., et al. 2010. Annu. Rev. <strong>Cell</strong> Dev.<br />

Biol. 26:315–333.<br />

3. Hotulainen, P., and P. Lappalainen. 2006.<br />

J. <strong>Cell</strong> Biol. 173:383–394.<br />

4. Choi, C.K., et al. 2008. Nat. <strong>Cell</strong> Biol.<br />

10:1039–1050.<br />

PHOTO COURTESY OF VENKAT MARUTHAMUTHU


10.1083/jcb.1964iti2jcb.1964iti2Mitch Lesliemitchleslie@comcast.netjcb.1964iti2fig1.epsIn<br />

This IssueNewsAurora B is no Ska fan<br />

By dislodging a microtubule-binding protein, the Aurora B<br />

kinase helps prevent sloppy connections between<br />

chromosomes and the mitotic spindle, Chan et al. suggest.<br />

<strong>The</strong> KMN complex connects spindle microtubules to kinetochores,<br />

which is essential for chromosomes to separate during<br />

mitosis. To forge solid links between microtubules and the kinetochore,<br />

however, the KMN complex might need help from the Ska<br />

complex, but researchers aren’t sure what recruits this latter group<br />

<strong>of</strong> proteins to the kinetochore.<br />

Chan et al. found that two members <strong>of</strong> the KMN complex,<br />

Ndc80 and Mis13, bring the Ska complex to kinetochores. <strong>The</strong> mitotic<br />

kinase Aurora B inhibited this association by phos phoryl ating the Ska<br />

complex, thereby bumping it from kineto chores. <strong>Cell</strong>s expressing<br />

a non phosphory latable Ska complex formed incorrect kinetochore–<br />

microtubule attach ments and took longer to complete mitosis.<br />

<strong>The</strong> researchers propose a division <strong>of</strong> labor during microtubule<br />

attachment. Early on in mitosis, microtubules promiscuously<br />

10.1083/jcb.1972iti3jcb.1972iti3Mitch Lesliemitchleslie@comcast.netjcb.1972iti3fig1.epsIn<br />

This IssueNewsWait, save<br />

that integrin!<br />

SNX17 (green) latches onto<br />

integrin �1 (blue), sparing<br />

it from destruction in the<br />

lysosome.<br />

If you’ve ever rummaged through<br />

the trash to fi nd something you<br />

didn’t mean to toss out, you can<br />

understand one <strong>of</strong> the problems cells<br />

face. Steinberg et al. reveal that a<br />

sorting protein prevents cells from<br />

throwing away integrins.<br />

<strong>Cell</strong>s continually pluck proteins<br />

from the plasma membrane so they<br />

can be dispatched to the lysosome<br />

for destruction. But some <strong>of</strong> these<br />

proteins are still useful, so the cell<br />

diverts them back to the plasma membrane. <strong>The</strong> nexin SNX17 helps<br />

separate the keepers from the trash.<br />

Steinberg et al. devised a new proteomic approach to<br />

determine which proteins SNX17 rescues. <strong>The</strong>y reasoned that<br />

knocking down SNX17 with RNAi should reduce the abundance<br />

<strong>of</strong> certain proteins because the cell will no longer save these<br />

molecules from destruction. Among the 15 proteins whose levels<br />

declined after RNAi treatment were the �5 and �1 integrins.<br />

Blocking lysosome activity restored the levels <strong>of</strong> these integrins,<br />

confi rming that without SNX17’s intervention the proteins end<br />

up in the cellular trash.<br />

Because integrins enable cells to get a grip on the extracellular<br />

matrix, the researchers tested whether suppressing SNX17<br />

altered cell movement. In tests <strong>of</strong> crawling speed, cells depleted<br />

<strong>of</strong> SNX17 were swifter than normal. It remains to be seen if<br />

the movement <strong>of</strong> cancer cells—which <strong>of</strong>ten swap integrins as<br />

they metastasize—is affected by their ability to spare integrins<br />

from lysosomal destruction. Mitch Leslie<br />

Steinberg, F., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201111121.<br />

connect to and disconnect<br />

from kinetochores. If the Ska<br />

complex fastens to the KMN<br />

complex at this stage, it will<br />

land close to Aurora B and<br />

be phosphorylated, causing it<br />

to drop <strong>of</strong>f. Once the KMN<br />

complex establishes a correctly<br />

oriented connection between a<br />

microtubule and a kinetochore,<br />

the Ska complex can land<br />

without being phosphorylated because tension from the spindle<br />

pulls KMN and the Ska complex away from Aurora B. Ska can<br />

then seal the kinetochore–microtubule link. Delaying the Ska<br />

complex’s arrival until microtubules are correctly attached might<br />

prevent it from clamping weak attachments in place. Mitch Leslie<br />

Chan, Y.W., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201109001.<br />

10.1083/jcb.1965iti1jcb.1965iti1Mitch Lesliemitchleslie@comcast.netjcb.1965iti1fi g1.epsIn This IssueNewsSlow but<br />

steady for NF-�B<br />

Marathon runners<br />

should give NF-�B a<br />

hand. Bakkar et<br />

al. <br />

show that the transcription factor<br />

pushes muscles to make more<br />

mitochondria and to produce the<br />

type <strong>of</strong> fi ber that tires slowly.<br />

NF-�B has a split<br />

personality during muscle<br />

development and regeneration.<br />

On the one hand, it can be<br />

JCB Highlights 2012 13<br />

Unlike control cells (left), cells that<br />

carry a Ska version that can’t be<br />

phosphorylated by Aurora B (right)<br />

can’t fix incorrect attachments<br />

between microtubules (green) and<br />

kinetochores (red).<br />

Muscle tissue in which the alternative<br />

NF-�B pathway is switched<br />

on (left) harbors more, longer<br />

mitochondria than does control<br />

muscle (right).<br />

activated by the so-called classical pathway that prevents young<br />

muscle cells from differentiating. But NF-�B can also be regulated<br />

by an alternative pathway, which involves a distinct set <strong>of</strong> proteins,<br />

including IKK� and RelB. Researchers are just starting to investigate<br />

the alternative pathway’s role in muscle. In a previous study, Bakkar et<br />

al. found that it spurs cultured muscle cells to generate mitochondria.<br />

Now, the researchers gauged the alternative pathway’s powers<br />

in vivo by analyzing mice that lacked IKK� or RelB. Muscles from<br />

the animals had fewer mitochondria than normal and showed signs <strong>of</strong><br />

an energy shortage. What mitochondria they did contain were<br />

less effi cient. Overexpressing IKK� had the opposite effect, boosting<br />

mitochondrial numbers and power output and inducing muscles to<br />

fashion more slow twitch fi bers. Although weaker than fast twitch<br />

fibers, slow twitch fibers have more stamina and are critical for<br />

long-distance runners.<br />

Bakkar et al. found that the alternative NF-�B pathway exerts<br />

its effects by activating PGC-1�, a master regulator <strong>of</strong> mitochondrial<br />

biogenesis and function. <strong>The</strong> researchers also discovered that mTOR,<br />

which responds to hormones, growth factors, and nutrient levels,<br />

activates the pathway. What triggers mTOR to fl ip on NF-�B and<br />

the alternative pathway remains unclear. Mitch Leslie<br />

Bakkar, N., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201108118.


Selected Highlights<br />

10.1083/jcb.1972iti2jcb.1972iti2Mitch Lesliemitchleslie@comcast.netjcb.1972iti2fig1.epsIn<br />

This IssueNewsBRCA1 touches<br />

10.1083/jcb.1964iti1jcb.1964iti1Mitch Lesliemitchleslie@comcast.netjcb.1964iti1fig1.epsIn<br />

This IssueNewsNo crystal<br />

structure? No problem<br />

It’s hard for crystallographers to determine<br />

the structures <strong>of</strong> all the macromolecular<br />

assemblies that cell biologists want to get<br />

a close look at. But researchers can piece<br />

together precise molecular structures by<br />

<strong>The</strong> structure <strong>of</strong> the<br />

Nup84 complex, as<br />

deduced from EM<br />

and domain deletion<br />

mapping results.<br />

10.1083/jcb.1956iti2jcb.1956iti2Ben Shortbshort@rockefeller.edujcb.1956iti2fi g1.epsIn This IssueNewsCUPS provide<br />

up microRNAs<br />

BRCA1, the well-known breast cancer susceptibility<br />

gene, helps control the maturation <strong>of</strong> microRNAs, Kawai and Amano show. <strong>The</strong> finding suggests another<br />

way that BRCA1 mutations promote cancer.<br />

<strong>The</strong> BRCA1 protein helps repair damaged DNA, and mutations<br />

in the gene raise the risk <strong>of</strong> breast and ovarian cancer and other<br />

tumor types. Some evidence implies that BRCA1 also takes part in<br />

the processing <strong>of</strong> microRNAs, the short RNA strands that modify<br />

gene expression. For example, microRNA levels are <strong>of</strong>ten abnormal<br />

in cells with BRCA1 mutations.<br />

Kawai and Amano tested this idea. <strong>The</strong>y found that boosting<br />

levels <strong>of</strong> the BRCA1 protein in cell lines increased the levels<br />

<strong>of</strong> several microRNAs. Deleting BRCA1 from cells had the<br />

opposite effect on the same microRNAs, all <strong>of</strong> which dwindle<br />

in cancer. BRCA1 had no impact on the levels <strong>of</strong> microRNAs<br />

considering other readily available data, Fernandez-Martinez et al. suggest.<br />

<strong>The</strong>ir new work builds on their previous<br />

findings that highlighted the value <strong>of</strong> lowresolution<br />

data, which most labs can obtain fairly<br />

easily but rarely use to infer molecular structures.<br />

For example, with a technique called domain<br />

deletion mapping, which involves pruning<br />

particular proteins and then determining which<br />

interactions remain and which are disrupted,<br />

researchers can deduce the connections between<br />

proteins and their orientations within a complex.<br />

a handle on Acb1 secretion<br />

Bruns et al. describe how several proteins required for<br />

an unconventional secretory pathway gather together in<br />

a novel membrane compartment.<br />

<strong>The</strong> Acyl-CoA binding protein Acb1 is secreted by starving<br />

budding yeast, but, unlike most secretory proteins, Acb1 doesn’t pass<br />

through the ER and Golgi on its way to the cell surface. <strong>The</strong> details<br />

<strong>of</strong> Acb1’s alternative route are unknown, but a diverse set <strong>of</strong> proteins<br />

mediate its journey. Components required for Acb1 secretion include<br />

autophagy proteins (such as Atg8 and Atg9), proteins that deliver<br />

cargo to multivesicular bodies (for example, Vps23), and Grh1, a<br />

homologue <strong>of</strong> a mammalian Golgi protein.<br />

Bruns et al. found that, upon starvation, Grh1 concentrated<br />

in membrane compartments near ER exit sites. <strong>The</strong>se structures<br />

didn’t contain markers <strong>of</strong> the ER, Golgi, or endosomes, but they<br />

did contain Vps23, Atg8, and Atg9, as well as the phosphoinositide<br />

PI(3)P. Blocking PI(3)P synthesis or deleting Grh1 prevented the<br />

formation <strong>of</strong> these compartments in starving yeast.<br />

whose abundance increases or remains<br />

the same in tumors, however.<br />

BRCA1 bound to primary<br />

microRNA transcripts, Kawai and<br />

Amano found. <strong>The</strong> protein also interacted<br />

with the DROSHA processing<br />

complex and the proteins Smad3<br />

and p53, which stimulate microRNA<br />

maturation. <strong>The</strong> results suggest that<br />

BRCA1 promotes the processing<br />

<strong>of</strong> specifi c microRNAs that might<br />

inhibit tumors. Whether BRCA1’s<br />

Fernandez-Martinez et al. applied the method to the Nup84<br />

complex, which contains seven proteins. Sixteen copies <strong>of</strong> the<br />

complex form the outer rings <strong>of</strong> the yeast nuclear pore complex<br />

(NPC). Electron microscopy and domain deletion mapping allowed<br />

the team to obtain spatial restraints, or structural limitations on the<br />

complex’s architecture. Using a computer algorithm, they could<br />

then build possible structures for the Nup84 complex that satisfi ed<br />

these restraints.<br />

Although the analysis confirmed some previous findings,<br />

such as the complex’s overall arrangement and “Y” shape, it also<br />

revealed new features and linked particular functions to specifi c<br />

structures. For example, the fi ndings suggest that three proteins<br />

at the top <strong>of</strong> the “Y,” Nup85, Nup120, and Seh1, are particularly<br />

important for linking the complex to the rest <strong>of</strong> the NPC, whereas<br />

Nup120 and a related protein, Nup133, are crucial for stabilizing<br />

the NPC’s interactions with the nuclear envelope. Mitch Leslie<br />

Fernandez-Martinez, J., et al. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201109008.<br />

By electron microscopy, the<br />

Grh1-containing membranes appeared<br />

cup-shaped, leading the authors to name<br />

them compartments for unconventional<br />

protein secretion or CUPS. <strong>The</strong>ir shape<br />

and the presence <strong>of</strong> Atg8 and Atg9 are<br />

reminiscent <strong>of</strong> autophagosome precursors,<br />

but Bruns et al. found that CUPS<br />

weren’t formed in response to the autophagy-inducing<br />

drug rapamycin, suggesting<br />

that CUPS are a novel, albeit<br />

related, compartment. Senior author<br />

BRCA1 (green) interacts with<br />

the DROSHA microRNA<br />

processing complex (red).<br />

effects on microRNAs contribute to its roles in DNA repair remains<br />

to be seen. Mitch Leslie<br />

Kawai, S., and A. Amano. 2012. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201110008.<br />

Immunoelectron microscopy<br />

reveals Grh1 (black dots) on<br />

a cup-shaped membrane<br />

structure (arrows, membrane<br />

lamellae).<br />

Vivek Malhotra says that the identifi cation <strong>of</strong> CUPS gives researchers<br />

a handle to uncover other steps in Acb1 secretion. CUPS may engulf<br />

Acb1 in the cytoplasm and deliver it to the plasma membrane, either<br />

directly or via fusion with secretory endosomes. Ben Short<br />

Bruns, C., et al. 2011. J. <strong>Cell</strong> Biol. http://dx.doi.org/10.1083/jcb.201106098.


10.1083/jcb.1971ifBen Shortbshort@rockefeller.eduIn FocusNewsBig enough<br />

for two<br />

Study identifies a signaling pathway that may control cell size by linking membrane transport<br />

to mitotic entry.<br />

In order to remain the right size, proliferating<br />

cells must coordinate their<br />

growth and division. If cells divide<br />

before they’ve grown suffi ciently, their<br />

daughters will be too small, whereas cells<br />

may grow too big if division is delayed.<br />

How cells balance growth and division is<br />

unclear, but Anastasia et al. identify a signaling<br />

pathway that might monitor transport<br />

<strong>of</strong> proteins and lipids to the plasma<br />

membrane and tell yeast cells when they’ve<br />

grown large enough to enter mitosis (1).<br />

jcb.1971iffi g1.eps<strong>Cell</strong> growth requires the delivery <strong>of</strong> new<br />

material to the plasma membrane via the<br />

secretory pathway. “Membrane growth<br />

must occur at the right place and time during<br />

the cell cycle,” says Doug Kellogg, from the<br />

<strong>University</strong> <strong>of</strong> California, Santa Cruz. “Yet<br />

nothing was known about how membrane<br />

traffi cking and the cell cycle are linked.”<br />

Kellogg and colleagues, led by Steph<br />

Anastasia, looked for potential connections<br />

between the two processes by blocking<br />

membrane transport in budding yeast using<br />

a temperature-sensitive mutant <strong>of</strong> the vesicle<br />

docking protein Sec6 (1). “When we blocked<br />

membrane traffi c, signaling to the core cell<br />

cycle regulators occurred within minutes,”<br />

Kellogg recalls. “<strong>The</strong> rapidity <strong>of</strong> that response<br />

really caught our attention.” Specifi -<br />

cally, Anastasia et al. found<br />

that preventing secretion led<br />

to changes in the phosphorylation,<br />

and thus activity,<br />

<strong>of</strong> Swe1 and Mih1, the<br />

budding yeast homologues<br />

<strong>of</strong> Wee1 kinase and Cdc25<br />

phosphastase, respectively,<br />

which regulate mitotic entry<br />

in all eukaryotes.<br />

To enter mitosis, Swe1<br />

must be hyperphosphorylated<br />

and inactivated,<br />

whereas Mih1 is dephosphorylated and<br />

switched on. Disrupting membrane transport<br />

reversed these events and caused<br />

yeast to arrest in early mitosis.<br />

Anastasia et al. then looked for proteins<br />

that might regulate Swe1 and Mih1<br />

“This model<br />

argues that<br />

a cell doesn’t<br />

really measure<br />

its size—it<br />

measures the<br />

amount <strong>of</strong><br />

growth.”<br />

in response to changes in membrane traffi cking.<br />

PP2A Cdc55 , a phosphatase that controls<br />

both proteins (2, 3), was a good candidate,<br />

and the researchers found that overexpressing<br />

Zds1, a regulator <strong>of</strong> PP2A Cdc55 , restored<br />

the normal phosphorylation pattern <strong>of</strong> Swe1<br />

and Mih1 and allowed yeast to divide even<br />

when membrane transport was inhibited.<br />

<strong>The</strong> authors then traced the signaling<br />

pathway upstream to protein kinase C<br />

(Pkc1), a protein that binds to Zds family<br />

members (4). Pkc1 promoted mitotic entry<br />

by inducing Mih1 dephosphorylation, a<br />

function that was lost in the absence <strong>of</strong><br />

PP2A Cdc55 . This suggests that<br />

Pkc1 regulates PP2A Cdc55 ,<br />

though how the kinase does<br />

this remains unknown.<br />

Pkc1, in turn, was regulated<br />

by the GTPase Rho1,<br />

which could induce Mih1<br />

dephosphorylation and mitotic<br />

entry as long as Pkc1<br />

was functional. But how is<br />

this pathway, from Rho1 to<br />

mitotic entry, linked to<br />

membrane traffi c? Inactive<br />

Rho1 is transported into the growing yeast<br />

bud on secretory vesicles and is then activated<br />

by a guanine nucleotide exchange factor<br />

on the plasma membrane (5).<br />

“So we think that it’s the delivery <strong>of</strong><br />

Rho1 to the site <strong>of</strong> membrane growth,<br />

FOCAL POINT<br />

JCB Highlights 2012 15<br />

(Left to right) Tracy MacDonough, Steph Anastasia, Doug Kellogg, Duy Nguyen, and colleagues<br />

(not pictured) uncover a signaling pathway that links membrane transport to mitotic entry in<br />

budding yeast. <strong>Cell</strong>s arrest in early mitosis when signaling through the pathway is disrupted,<br />

either by blocking membrane traffi c or by mutating pathway components like protein kinase C<br />

(right, compared with wild-type yeast, center). <strong>The</strong> researchers think that the pathway may<br />

allow cells to control their size by coordinating cell growth and division.<br />

and its activation there, that signals that<br />

membrane growth is happening,” explains<br />

Kellogg. According to this model, Rho1<br />

activity and signaling to Swe1 and Mih1<br />

would gradually increase during bud<br />

growth until a critical threshold was<br />

reached that could induce mitotic entry<br />

and cell division. Disruptions to membrane<br />

transport would shut <strong>of</strong>f the pathway<br />

and prevent cells from dividing<br />

when they were too small.<br />

“We’ve all been wondering how a cell<br />

knows how big it is,” says Kellogg. “This<br />

model argues that a cell doesn’t really<br />

measure its size—it measures the amount<br />

<strong>of</strong> growth that has occurred.” Because all<br />

the components are conserved in higher<br />

eukaryotes, the pathway might operate in<br />

cells <strong>of</strong> all shapes and sizes.<br />

This “growth-dependent signaling” model<br />

predicts that the strength <strong>of</strong> the signal is<br />

proportional to membrane growth. Kellogg<br />

and colleagues now want to test this prediction<br />

by developing a biosensor to monitor the<br />

pathway’s activity during the cell cycle and<br />

under different growth conditions. Ben Short<br />

1. Anastasia, S.D., et al. 2012. J. <strong>Cell</strong> Biol. http://<br />

dx.doi.org/10.1083/jcb.201108108.<br />

2. Pal, G., et al. 2008. J. <strong>Cell</strong> Biol. 180:931–945.<br />

3. Harvey, S.L., et al. 2011. Mol. Biol. <strong>Cell</strong>.<br />

22:3595–3608.<br />

4. Drees, B.L., et al. 2001. J. <strong>Cell</strong> Biol. 154:549–571.<br />

5. Abe, M., et al. 2003. J. <strong>Cell</strong> Biol. 162:85–97.<br />

PHOTO COURTESY OF VU THAI


Selected Highlights<br />

References<br />

Anastasia, S.D., D.L. Nguyen, V. Thai, M. Meloy, T. Macdonough, and D.R.<br />

Kellogg. 2012. A link between mitotic entry and membrane growth suggests a<br />

novel model for cell size control. J. <strong>Cell</strong> Biol. 197:89–104.<br />

Bakkar, N., K. Ladner, B.D. Canan, S. Liyanarachchi, N.C. Bal, M. Pant,<br />

M. Periasamy, Q. Li, P.M. Janssen, and D.C. Guttridge. 2012. IKKa and<br />

alternative NF-kB regulate PGC-1b to promote oxidative muscle metabolism.<br />

J. <strong>Cell</strong> Biol. 196:497–511.<br />

Bruns, C., J.M. McCaffery, A.J. Curwin, J.M. Duran, and V. Malhotra. 2011.<br />

Biogenesis <strong>of</strong> a novel compartment for autophagosome-mediated unconventional<br />

protein secretion. J. <strong>Cell</strong> Biol. 195:979–992.<br />

Calvert, M.E.K., G.D. Wright, F.Y. Leong, K.H. Chiam, Y. Chen, G. Jedd, and M.K.<br />

Balasubramanian. 2011. Myosin concentration underlies cell size-dependent<br />

scalability <strong>of</strong> actomyosin ring constriction. J. <strong>Cell</strong> Biol. 195:799–813.<br />

Chan, Y.W., A.A. Jeyaprakash, E.A. Nigg, and A. Santamaria. 2012. Aurora B<br />

controls kinetochore-microtubule attachments by inhibiting Ska complex-<br />

KMN network interaction. J. <strong>Cell</strong> Biol. 196:563–571.<br />

Fernandez-Martinez, J., J. Phillips, M.D. Sekedat, R. Diaz-Avalos, J. Velazquez-<br />

Muriel, J.D. Franke, R. Williams, D.L. Stokes, B.T. Chait, A. Sali, and M.P.<br />

Rout. 2012. Structure-function mapping <strong>of</strong> a heptameric module in the nuclear<br />

pore complex. J. <strong>Cell</strong> Biol. 196:419–434.<br />

Gong, J., Z. Sun, L. Wu, W. Xu, N. Schieber, D. Xu, G. Shui, H. Yang, R.G. Parton,<br />

and P. Li. 2011. Fsp27 promotes lipid droplet growth by lipid exchange and<br />

transfer at lipid droplet contact sites. J. <strong>Cell</strong> Biol. 195:953–963.<br />

Go to www.jcb.org for the FREE full text <strong>of</strong> these articles.<br />

7<br />

Kawai, S., and A. Amano. 2012. BRCA1 regulates microRNA biogenesis via the<br />

DROSHA microprocessor complex. J. <strong>Cell</strong> Biol. 197:201–208.<br />

Oakes, P.W., Y. Beckham, J. Stricker, and M.L. Gardel. 2012. Tension is required<br />

but not sufficient for focal adhesion maturation without a stress fiber template.<br />

J. <strong>Cell</strong> Biol. 196:363–374.<br />

Roux, K.J., D.I. Kim, M. Raida, and B. Burke. 2012. A promiscuous biotin ligase<br />

fusion protein identifies proximal and interacting proteins in mammalian cells.<br />

J. <strong>Cell</strong> Biol. 196:801–810.<br />

Sonneville, R., M. Querenet, A. Craig, A. Gartner, and J.J. Blow. 2012. <strong>The</strong> dynamics<br />

<strong>of</strong> replication licensing in live Caenorhabditis elegans embryos. J. <strong>Cell</strong> Biol.<br />

196:233–246.<br />

Steinberg, F., K.J. Heesom, M.D. Bass, and P.J. Cullen. 2012. SNX17 protects<br />

integrins from degradation by sorting between lysosomal and recycling<br />

pathways. J. <strong>Cell</strong> Biol. 197:219–230.<br />

Wen, L., F.L. Tang, Y. Hong, S.W. Luo, C.L. Wang, W. He, C. Shen, J.U. Jung,<br />

F. Xiong, D.H. Lee, Q.-G. Zhang, D. Brann, T.-W. Kim, R. Yan, L. Mei, and<br />

W.-C. Xiong. 2011. VPS35 haploinsufficiency increases Alzheimer’s disease<br />

neuropathology. J. <strong>Cell</strong> Biol. 195:765–779.<br />

Yamaguchi, Y., N. Shinotsuka, K. Nonomura, K. Takemoto, K. Kuida, H. Yosida,<br />

and M. Miura. 2011. Live imaging <strong>of</strong> apoptosis in a novel transgenic mouse<br />

highlights its role in neural tube closure. J. <strong>Cell</strong> Biol. 195:1047–1060.<br />

JCB Highlights 2012


<strong>The</strong> extracellular matrix: A dynamic niche<br />

in cancer progression<br />

Pengfei Lu , 1,2,3,4,5 Valerie M. Weaver , 6 and Zena Werb 4,5<br />

<strong>The</strong> local microenvironment, or niche, <strong>of</strong> a cancer cell plays<br />

important roles in cancer development. A major component<br />

<strong>of</strong> the niche is the extracellular matrix (ECM), a complex<br />

network <strong>of</strong> macromolecules with distinctive physical,<br />

biochemical, and biomechanical properties. Although<br />

tightly controlled during embryonic development and<br />

organ homeostasis, the ECM is commonly deregulated<br />

and becomes disorganized in diseases such as cancer.<br />

Abnormal ECM affects cancer progression by directly promoting<br />

cellular transformation and metastasis. Importantly,<br />

however, ECM anomalies also deregulate behavior <strong>of</strong><br />

stromal cells, facilitate tumor-associated angiogenesis and<br />

infl ammation, and thus lead to generation <strong>of</strong> a tumorigenic<br />

microenvironment. Understanding how ECM composition<br />

and topography are maintained and how their deregulation<br />

infl uences cancer progression may help develop new<br />

therapeutic interventions by targeting the tumor niche.<br />

Introduction<br />

<strong>The</strong> past 20 years have seen cancer biology and development biology<br />

converge, and both fi elds have greatly benefi ted from each<br />

other’s research progress ( Xie and Abbruzzese, 2003 ; Radtke<br />

and Clevers, 2005 ; Blanpain et al., 2007 ). Retrospectively, such<br />

a convergence is inevitable, as many <strong>of</strong> the same cell behaviors<br />

and processes essential for embryonic development are also indispensable<br />

for cancer progression ( Egeblad et al., 2010a ). <strong>The</strong><br />

concept that local microenvironments, or niches, play an important<br />

role in regulating cell behavior, which is one <strong>of</strong> the central<br />

themes in classical embryology, has become increasingly accepted<br />

in cancer biology ( Bissell and Radisky, 2001 ; Wiseman<br />

and Werb, 2002 ; Bissell and Labarge, 2005 ).<br />

Correspondence to Zena Werb: zena.werb@ucsf.edu<br />

Abbreviations used in this paper: CAF, cancer-associated fi broblast; LAIR,<br />

leukocyte-associated Ig-like receptor; LOX, lysyl oxidase; MMP, matrix metalloproteinase;<br />

MSC, mesenchymal stem cell.<br />

JCB: Review<br />

1 2 3<br />

Breakthrough Breast Cancer Research Unit, Paterson Institute for Cancer Research, and Wellcome Trust Centre for <strong>Cell</strong>-Matrix Research, Faculty <strong>of</strong> Life Sciences,<br />

<strong>University</strong> <strong>of</strong> Manchester, Manchester M20 4BX, England, UK<br />

4 Department <strong>of</strong> Anatomy, 5 Developmental and Stem <strong>Cell</strong> <strong>Biology</strong> Graduate Program, and 6 Center for Bioengineering and Tissue Regeneration, Department <strong>of</strong> Surgery,<br />

<strong>University</strong> <strong>of</strong> California, San Francisco, San Francisco, CA 94143<br />

Much effort has been devoted to determining how cellular<br />

components <strong>of</strong> the niche initiate and promote cancer development<br />

( Bhowmick et al., 2004 ). However, recent progress has<br />

also highlighted the importance <strong>of</strong> noncellular components<br />

<strong>of</strong> the niche, especially the ECM, during cancer progression<br />

( Sternlicht et al., 1999 ; Paszek et al., 2005 ; Erler et al., 2006 ,<br />

2009 ; Levental et al., 2009 ). Although long viewed as a stable<br />

structure that plays a mainly supportive role in maintaining<br />

tissue morphology, the ECM is an essential part <strong>of</strong> the milieu <strong>of</strong><br />

a cell that is surprisingly dynamic and versatile and infl uences<br />

fundamental aspects <strong>of</strong> cell biology ( Hynes, 2009 ). Through<br />

direct or indirect means, the ECM regulates almost all cellular<br />

behavior and is indispensable for major developmental processes<br />

( Wiseman et al., 2003 ; Stickens et al., 2004 ; Rebustini<br />

et al., 2009 ; Lu et al., 2011 ).<br />

Consistent with ECM’s many important roles, multiple<br />

regulatory mechanisms exist to ensure that ECM dynamics,<br />

collectively measured by its production, degradation, and remodeling,<br />

are normal during organ development and function<br />

( Page-McCaw et al., 2007 ). Disruption to such control mechanisms<br />

deregulates and disorganizes the ECM, leading to abnormal<br />

behaviors <strong>of</strong> cells residing in the niche and ultimately failure<br />

<strong>of</strong> organ homeostasis and function. Indeed, abnormal ECM dynamics<br />

are one <strong>of</strong> the most ostensible clinical outcomes in diseases<br />

such as tissue fi brosis and cancer ( Cox and Erler, 2011 ).<br />

A major challenge in ECM biology is to understand the<br />

roles <strong>of</strong> the ECM in normal development and how disruption <strong>of</strong><br />

ECM dynamics may contribute to diseases such as cancer. Here,<br />

we examine the diverse properties <strong>of</strong> the ECM that are essential<br />

for its versatile roles in cancer. We focus on how abnormal ECM<br />

deregulates the behavior <strong>of</strong> various epithelial and stromal cell<br />

components at different stages <strong>of</strong> cancer development.<br />

Properties and features <strong>of</strong> the ECM<br />

<strong>The</strong> ECM is composed <strong>of</strong> a large collection <strong>of</strong> biochemically<br />

distinct components including proteins, glycoproteins, proteoglycans,<br />

and polysaccharides with different physical and biochemical<br />

properties ( Whittaker et al., 2006 ; Ozbek et al., 2010 ).<br />

© 2012 Lu et al. This article is distributed under the terms <strong>of</strong> an Attribution–Noncommercial–<br />

Share Alike–No Mirror Sites license for the fi rst six months after the publication date (see<br />

http://www.rupress.org/terms). After six months it is available under a Creative Commons<br />

License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at<br />

http://creativecommons.org/licenses/by-nc-sa/3.0/).<br />

<strong>The</strong> <strong>Rockefeller</strong> <strong>University</strong> Press<br />

J. <strong>Cell</strong> Biol. Vol. 196 No. 4 395–406<br />

www.jcb.org/cgi/doi/10.1083/jcb.201102147 JCB 395


18<br />

396<br />

Structurally, these components make up both basement membrane,<br />

which is produced jointly by epithelial, endothelial, and<br />

stromal cells to separate epithelium or endothelium from stroma,<br />

and interstitial matrix, which is primarily made by stromal cells.<br />

Basement membrane is a specialized ECM, which is more compact<br />

and less porous than interstitial matrix. It has a distinctive<br />

composition containing type IV collagen, laminins, fi bronectin,<br />

and linker proteins such as nidogen and entactin, which connect<br />

collagens with other protein components. In contrast, interstitial<br />

matrix is rich in fi brillar collagens, proteoglycans, and various<br />

glycoproteins such as tenascin C and fi bronectin and is thus<br />

highly charged, hydrated, and contributes greatly to the tensile<br />

strength <strong>of</strong> tissues ( Egeblad et al., 2010b ).<br />

When put together in an orderly manner, the ECM components,<br />

with their remarkable structural and biochemical<br />

diversity and functional versatility, confer upon the matrices<br />

unique physical, biochemical, and biomechanical properties<br />

that are essential for regulating cell behavior. For example, the<br />

physical properties <strong>of</strong> the ECM refer to its rigidity, porosity,<br />

insolubility, spatial arrangement and orientation (or topography),<br />

and other physical features that together determine its role in<br />

scaffolding to support tissue architecture and integrity. Additionally,<br />

by functioning as a barrier, anchorage site, or movement<br />

track, the ECM’s physical properties play both negative<br />

and positive roles in cell migration ( Fig. 1 , stages 1–3).<br />

In contrast, the biochemical properties <strong>of</strong> the ECM pertain to<br />

its indirect and direct signaling capabilities that allow cells to sense<br />

and interact with their environments using various signal transduction<br />

cascades emanating from the cell surface to the nucleus,<br />

resulting in gene expression or other changes <strong>of</strong> cell behavior. For<br />

example, as a highly charged protein network rich in polysaccharide<br />

modifi cations, the ECM can bind to a myriad <strong>of</strong> growth<br />

factors, including bone morphogenetic proteins, FGFs, hedgehogs,<br />

and WNTs ( Hynes, 2009 ). In so doing, the ECM limits the diffusive<br />

range, accessibility, and signaling direction <strong>of</strong> ligands to their<br />

cognate receptors ( Fig. 1 , stages 4–6; Norton et al., 2005 ). Additionally,<br />

the ECM can also directly initiate signaling events, particularly<br />

by functioning as a precursor <strong>of</strong> biologically active signaling<br />

fragments ( Fig. 1 , stage 7; Hynes, 2009 ; Lu et al., 2011 ).<br />

A burgeoning area in ECM biology is how its biomechanical<br />

properties, including the elasticity <strong>of</strong> the ECM (that<br />

ranges from s<strong>of</strong>t and compliant to stiff and rigid), contribute<br />

to development and disease ( McBeath et al., 2004 ; Reilly and<br />

Engler, 2010 ). As it turns out, ECM elasticity helps determine<br />

how a cell senses and perceives external forces ( Paszek et al.,<br />

2005 ; Lopez et al., 2008 ; Gehler et al., 2009 ) and thus provides<br />

a major environmental cue that determines cell behavior<br />

( Kölsch et al., 2007 ; Montell, 2008 ; Fernandez-Gonzalez<br />

et al., 2009 ; Pouille et al., 2009 ; Solon et al., 2009 ; DuFort<br />

et al., 2011 ). Indeed, the focal adhesion complex, which consists<br />

<strong>of</strong> integrins and a multicomplex <strong>of</strong> adaptors and signaling<br />

proteins, can be viewed as a mechanosensor linking the actomyosin<br />

cytoskeleton with the ECM. Many <strong>of</strong> the focal adhesion<br />

components, including talin and p130Cas, undergo conformational<br />

changes that impart functional consequences in response<br />

to applied force ( Sawada et al., 2006 ; del Rio et al., 2009 ;<br />

Wang et al., 2011 ). Together with the cytoskeleton and nuclear<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

Figure 1. Mechanisms <strong>of</strong> ECM function. <strong>The</strong> versatile functions <strong>of</strong> the ECM<br />

depend on its diverse physical, biochemical, and biomechanical properties.<br />

Anchorage to the basement membrane is essential for various biological<br />

processes, including asymmetric cell division in stem cell biology<br />

and maintenance <strong>of</strong> tissue polarity (stage 1). Depending on contexts, the<br />

ECM may serve to block or facilitate cell migration (stages 2 and 3). In<br />

addition, by binding to growth factor signaling molecules and preventing<br />

their otherwise free diffusion, the ECM acts as a sink for these signals and<br />

helps shape a concentration gradient (stage 4). Certain ECM components,<br />

including heparan sulfate proteoglycans and the hyaluronic acid receptor<br />

CD44, can selectively bind to different growth factors and function as a<br />

signal coreceptor (stage 5) or a presenter (stage 6) and help determine<br />

the direction <strong>of</strong> cell–cell communication ( Lu et al., 2011 ). <strong>The</strong> ECM also<br />

direct signals to the cell by using its endogenous growth factor domains<br />

(not depicted) or functional fragment derivatives after being processed by<br />

proteases such as MMPs (stage 7). Finally, cells directly sense the biomechanical<br />

properties <strong>of</strong> the ECM, including its stiffness, and change a wide<br />

variety <strong>of</strong> behaviors accordingly (stage 8).<br />

matrices, nuclear envelope, and chromatin, they constitute a sophisticated<br />

mechanosensing machinery that determines how<br />

cells react to forces from the ECM ( DuFort et al., 2011 ). Interestingly,<br />

however, changes in mechanical force can be converted<br />

into differences in TGF- � signaling activities in the mouse tendon<br />

( Maeda et al., 2011 ), suggesting that conventional signaling<br />

pathways can be used to interpret the biomechanical properties<br />

<strong>of</strong> the ECM. As a result, ECM’s biomechanical properties regulate<br />

various essential cell behaviors, including cell fate determination,<br />

differentiation, and tissue function ( Fig. 1 , stage 8;<br />

Engler et al., 2006 ; Lutolf et al., 2009 ; Gilbert et al., 2010 ).<br />

Importantly, several outstanding characteristics <strong>of</strong> the<br />

properties <strong>of</strong> the ECM contribute to its importance in development<br />

and disease. First, the different properties <strong>of</strong> the ECM are<br />

not independent; rather, they are intertwined. <strong>The</strong>refore, when<br />

the ECM stiffens, as, for example, under pathological conditions,<br />

its biomechanical properties change, and cells respond by<br />

exerting markedly different kinds <strong>of</strong> force ( Yu et al., 2011 ). In<br />

addition, matrix stiffening also changes other ECM physical<br />

properties and, as a consequence, directly impacts how migrating<br />

cells interact with the ECM. Thus, linearized cross-linked<br />

collagen bundles, which are quite stiff, potentiate cell migration,<br />

whereas a dense network <strong>of</strong> stiff cross-linked matrix fi bers impedes<br />

migration, unless matrix metalloproteinases (MMPs) are<br />

simultaneously activated ( Egeblad et al., 2010b ).<br />

Second, the ECM is highly dynamic, constantly being<br />

remodeled in different tissues at various embryonic and postnatal


stages. ECM dynamics may result from changes <strong>of</strong> the absolute<br />

amount or composition <strong>of</strong> the ECM, for example as a<br />

result <strong>of</strong> altered synthesis or degradation <strong>of</strong> one or more<br />

ECM components. Alternatively, ECM dynamics may show<br />

no compositional changes <strong>of</strong> its components but instead involve<br />

only how individual ECM components are laid down, crosslinked,<br />

and spatially arranged together via covalent and noncovalent<br />

modifi cations.<br />

Finally, one <strong>of</strong> the most prominent features <strong>of</strong> cell–ECM<br />

interactions is that they are reciprocal. On the one hand, cells<br />

are constantly creating, breaking down, or otherwise rearranging<br />

and realigning ECM components to change one or more<br />

properties <strong>of</strong> the ECM. On the other hand, because the ECM<br />

regulates diverse cell behavior, any changes in the ECM as a<br />

result <strong>of</strong> cellular activities will in turn infl uence adjacent cells<br />

and modify their behaviors ( Butcher et al., 2009 ). This feedback<br />

regulatory mechanism between cells and the ECM allows<br />

cells and tissues to swiftly adapt to their environment<br />

( Samuel et al., 2011 ).<br />

Deregulated ECM dynamics are a hallmark<br />

<strong>of</strong> cancer<br />

ECM remodeling is tightly regulated during development and<br />

primarily accomplished by controlling the expression or activities<br />

<strong>of</strong> ECM enzymes at multiple levels. Take for example ECM<br />

degrading enzymes, which include MMPs, a disintegrin and<br />

metalloproteinase with thrombospondin motifs, and the serine<br />

protease plasmin: left unchecked, the potent activities <strong>of</strong> these<br />

enzymes can have devastating destructive consequences on tissues<br />

and cause demise <strong>of</strong> the whole organism. As a result, ECM<br />

remodeling enzymes are not only regulated at the transcriptional<br />

and translational levels but also posttranslationally with<br />

the use <strong>of</strong> their functionally inhibitive prodomains and selective<br />

proteinase inhibitors ( Page-McCaw et al., 2007 ; Aitken and<br />

Bägli, 2009 ).<br />

Despite having multiple control mechanisms, activities<br />

<strong>of</strong> ECM remodeling enzymes may be deregulated with age or<br />

under disease conditions. Consequently, ECM dynamics may<br />

become abnormal as the amount, composition, or topography <strong>of</strong><br />

the ECM turn aberrant, leading to disorganization and changes<br />

in the essential properties <strong>of</strong> the ECM. <strong>The</strong> main contributors<br />

<strong>of</strong> altered activities <strong>of</strong> ECM remodeling enzymes and thus<br />

abnormal ECM metabolism are stromal cells, including cancerassociated<br />

fi broblasts (CAFs) and immune cells ( Bhowmick<br />

et al., 2004 ; Orimo et al., 2005 ). However, other cell types, including<br />

epithelial cells and mesenchymal stem cells (MSCs),<br />

may also be involved at late stages <strong>of</strong> cancer development<br />

( Quante et al., 2011 ; Singer and Caplan, 2011 ).<br />

Abnormal ECM dynamics are well documented in clinical<br />

studies <strong>of</strong> many diseases and are a hallmark <strong>of</strong> cancer. For<br />

example, excess ECM production or reduced ECM turnover are<br />

prominent in tissue fi brosis <strong>of</strong> many organs ( Frantz et al., 2010 ).<br />

Various collagens, including collagen I, II, III, V, and IX, show<br />

increased deposition during tumor formation ( Zhu et al., 1995 ;<br />

Kauppila et al., 1998 ; Huijbers et al., 2010 ). As we age, there is<br />

a reduction <strong>of</strong> collagen deposition and increased MMP activity<br />

( Norton et al., 2005 ; Butcher et al., 2009 ). Moreover, many<br />

JCB Highlights 2012 19<br />

other ECM components and their receptors such as heparan sulfate<br />

proteoglycans and CD44 that facilitate growth factor signaling<br />

are frequently overproduced in cancer ( Kainz et al.,<br />

1995 ; Stauder et al., 1995 ; Nasser, 2008 ). Thus, abnormal<br />

changes in the amount and composition <strong>of</strong> the ECM can greatly<br />

alter ECM biochemical properties, potentiate the oncogenic<br />

effects <strong>of</strong> various growth factor signaling pathways, and deregulate<br />

cell behaviors during malignant transformation.<br />

In addition to changes in its biochemical properties, the<br />

architecture and other physical properties <strong>of</strong> tumor-associated<br />

ECM are fundamentally different from that <strong>of</strong> the normal tissue<br />

stroma; rather than relaxed nonoriented fi brils, the collagen I in<br />

breast tumors is <strong>of</strong>ten highly linearized and either oriented adjacent<br />

to the epithelium or projecting perpendicularly into the<br />

tissue ( Provenzano et al., 2006 ; Levental et al., 2009 ). Consistent<br />

with these changes, expression <strong>of</strong> many ECM remodeling<br />

enzymes is <strong>of</strong>ten deregulated in human cancers. Heparanases,<br />

6-O-sulfatases, cysteine cathepsins, urokinase, and, most notably,<br />

many MMPs are frequently overexpressed in different cancers<br />

( Ilan et al., 2006 ; Kessenbrock et al., 2010 ).<br />

Furthermore, ECM’s biomechanical properties also change<br />

under disease conditions. For example, tumor stroma is typically<br />

stiffer than normal stroma; in the case <strong>of</strong> breast cancer, diseased<br />

tissue can be 10 times stiffer than normal breast ( Levental et al.,<br />

2009 ; Lopez et al., 2011 ). Part <strong>of</strong> the increase in tissue stiffness<br />

can be attributed to excess activities <strong>of</strong> lysyl oxidase (LOX),<br />

which cross-links collagen fi bers and other ECM components.<br />

Indeed, up-regulation <strong>of</strong> LOX expression has been observed<br />

in various cancers, including breast cancer and head and neck<br />

cancer, and is a poor prognostic marker ( Le et al., 2009 ; Barker<br />

et al., 2011 ). Importantly, a study using mouse genetics has<br />

shown that overexpression <strong>of</strong> LOX increases ECM stiffness and<br />

promotes tumor cell invasion and progression ( Levental et al.,<br />

2009 ). In contrast, inhibition <strong>of</strong> LOX reduces tissue fi brosis and<br />

tumor incidence in the Neu breast cancer model ( Levental et al.,<br />

2009 ). Together, these data demonstrate that deregulation <strong>of</strong><br />

collagen cross-linking and ECM stiffness is more than just a secondary<br />

outcome but instead plays a causative role in cancer pathogenesis.<br />

Interestingly, however, overexpression <strong>of</strong> LOX alone<br />

is insuffi cient to cause tumors to form ( Levental et al., 2009 ), suggesting<br />

that deregulation <strong>of</strong> ECM remodeling is a coconspirator<br />

rather than a primary inducer <strong>of</strong> tumorigenesis in the breast.<br />

Abnormal ECM dynamics during<br />

cancer progression<br />

Multicellular organisms have evolved many redundant mechanisms<br />

to prevent a cell that is intimately integrated with other cells<br />

in a functional tissue from becoming cancerous and leading to<br />

organ failure and demise <strong>of</strong> the organism. To overcome these protective<br />

measures and become cancerous, a cell must accumulate<br />

multiple oncogenic properties that ultimately result in malignant<br />

transformation. <strong>The</strong>se include the acquisition by cancer cells <strong>of</strong> the<br />

ability to survive, grow, and invade ( Hanahan and Weinberg, 2000 ,<br />

2011 ). Along the way, cancer cells <strong>of</strong>ten lose their differentiation<br />

state and polarity, disrupt tissue integrity, and corrupt stromal cells<br />

to promote their own growth at both primary tumor and distant<br />

sites ( Feigin and Muthuswamy, 2009 ; Luo et al., 2009 ).<br />

Extracellular matrix in cancer progression • Lu et al.<br />

397


20<br />

398<br />

Abnormal ECM can promote many <strong>of</strong> the aforementioned<br />

steps. An increase in collagen deposition or ECM stiffness,<br />

alone or in combination, up-regulates integrin signaling and can<br />

thus promote cell survival and proliferation ( Wozniak et al.,<br />

2003 ; Paszek et al., 2005 ). Increased collagen cross-linking and<br />

ECM stiffness as a result <strong>of</strong> LOX overproduction promote focal<br />

adhesion assembly and ERK and PI3 kinase signaling and facilitate<br />

Neu-mediated oncogenic transformation ( Levental et al.,<br />

2009 ). Moreover, various ECM components or their functional<br />

fragment derivatives have pro- or antiapoptotic effects ( Mott<br />

and Werb, 2004 ). <strong>The</strong>refore, deregulation <strong>of</strong> ECM remodeling<br />

can lead to apoptotic evasion by mutant cells. Among the numerous<br />

roles <strong>of</strong> abnormal ECM, we focus in the next section on<br />

how it may convert a normal stem cell niche into a cancer stem<br />

cell niche and how it may disrupt tissue polarity and integrity to<br />

promote tissue invasion, both <strong>of</strong> which are essential steps during<br />

cancer progression.<br />

<strong>The</strong> ECM is an essential component<br />

<strong>of</strong> the stem cell niche and the cancer<br />

stem cell niche<br />

Mounting evidence suggests that the ECM is an essential noncellular<br />

component <strong>of</strong> the adult stem cell niche. For example,<br />

various ECM receptors have been used as markers to enrich<br />

adult stem cells in many in vitro and in vivo systems ( Shen<br />

et al., 2008 ; Raymond et al., 2009 ), suggesting that contact with<br />

the ECM is necessary for cells to acquire or maintain stem cell<br />

properties. In contrast, loss <strong>of</strong> ECM contact by either functional<br />

ablation ( Yamashita et al., 2005 ; Tanentzapf et al., 2007 ;<br />

O’Reilly et al., 2008 ) or reduction ( Frye et al., 2003 ) <strong>of</strong> the<br />

ECM receptor integrins or reduction <strong>of</strong> ECM components, including<br />

the glycoproteins osteopontin ( Kollet et al., 2006 ; Lymperi<br />

et al., 2010 ), tenascin C ( Garcion et al., 2004 ), or biglycan<br />

( Bi et al., 2007 ), reduces the number <strong>of</strong> stem cells in different<br />

vertebrate and invertebrate systems.<br />

Studies now show that the ECM plays multiple roles in the<br />

stem cell niche. For example, ECM receptors allow stem cells to<br />

anchor to the special local niche environment where stem cell<br />

properties can be maintained. Such an anchorage physically constrains<br />

stem cells to make direct contact with niche cells, which<br />

produce paracrine signaling molecules that are essential for<br />

maintaining stem cell properties ( Fig. 2 A , stage 1; Li and Xie,<br />

2005 ). Moreover, anchorage allows stem cells to maintain cell<br />

polarity, orient their mitotic spindles, and undergo asymmetric<br />

cell division ( Fig. 2 A , stage 2), a fundamental mechanism<br />

whereby stem cell self-renewal and differentiation are thought to<br />

be determined ( Lambert and Nagy, 2002 ; Fuchs et al., 2004 ;<br />

Lechler and Fuchs, 2005 ; Yamashita and Fuller, 2008 ).<br />

In addition to maintaining stem cell properties, the ECM,<br />

via its diverse and potent signaling abilities, can directly regulate<br />

stem cell differentiation, although the molecular details<br />

<strong>of</strong> how this is achieved have only just started to emerge. Many<br />

<strong>of</strong> the signaling pathways that play an important role in stem<br />

cell biology in numerous model systems are subject to ECM<br />

modulation. For example, tenascin C can modulate FGF2 and<br />

BMP4 signaling, both <strong>of</strong> which are essential for neural stem cell<br />

biology ( Garcion et al., 2004 ), whereas the ECM regulates<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

Figure 2. ECM is an essential component <strong>of</strong> normal and cancer stem cell<br />

niche. <strong>The</strong> ECM plays multiple roles in maintaining stem cell properties.<br />

(A) ECM anchorage restricts stem cells in the niche and thus allows them to be<br />

exposed to paracrine (stage 1) and cell–cell contact signals (not depicted)<br />

that are essential for maintaining stem cell properties. Anchorage is also<br />

important for orienting the mitotic spindle and makes it possible for stem cells<br />

to undergo asymmetric cell division (stage 2), which is essential for stem<br />

cell self-renewal and generation <strong>of</strong> daughter cells that are destined to<br />

undergo cell differentiation. <strong>The</strong> exact mechanism whereby ECM anchorage<br />

controls asymmetric cell division remains unclear, although one possibility<br />

is to allow cytoplasmic cell fate determinants to be differentially distributed<br />

between the daughter cells. <strong>The</strong> ECM also maintains stem cell properties<br />

via its many other features including its biomechanical properties such as<br />

ECM stiffness that affects cell fate determination (stage 3). (B) In the presence<br />

<strong>of</strong> abnormal ECM (pink) or loss <strong>of</strong> ECM contact, stem cell properties<br />

fail to be maintained and undergo symmetric cell division instead, leading<br />

to an overexpansion <strong>of</strong> the (cancer) stem cell pool. Abnormal changes <strong>of</strong><br />

the ECM can also disrupt the cellular differentiation process, resulting in<br />

loss <strong>of</strong> differentiation and an increase <strong>of</strong> stem/progenitor cells.<br />

ligand accessibility <strong>of</strong> the Janus kinase–signal transducer and<br />

activator <strong>of</strong> transcription signaling pathway in the fl y testis<br />

( Yamashita et al., 2005 ).<br />

<strong>The</strong> biomechanical properties <strong>of</strong> the ECM also play an<br />

important role in regulating stem cell biology. MSCs grown on<br />

polymer gels with similar elasticity to the brain express neuronal<br />

markers and morphology, whereas those grown on gels that<br />

are semicompliant like smooth and skeletal muscle tissues or<br />

rigid like the bone express muscle or bone proteins, respectively<br />

( McBeath et al., 2004 ; Engler et al., 2006 ). Likewise, muscle


stem cells grown on s<strong>of</strong>t hydrogels with elasticity mimicking<br />

that <strong>of</strong> real muscle differentiate into functional muscle ( Gilbert<br />

et al., 2010 ), highlighting the great promise that tissue engineering<br />

may hold in regenerative medicine. Together, it is conceivable<br />

that by modulating various aspects <strong>of</strong> ECM properties, a<br />

lineage-specifi c ECM may be created to facilitate cell differentiation<br />

processes during lineage specifi cation and organ development<br />

( Fig. 2 A , stage 3).<br />

<strong>The</strong> decision between stem cell expansion and differentiation<br />

is a delicate one and must be tightly controlled during normal<br />

organ homeostasis and function. An imbalance <strong>of</strong> these two<br />

events can lead to the generation <strong>of</strong> tumor-initiating cells, which<br />

have been called cancer stem cells by either overexpanding the<br />

stem cell pool or a failure in stem cell differentiation. Indeed,<br />

loss <strong>of</strong> cell polarity as a result <strong>of</strong> ablation <strong>of</strong> Numb or Lgl protein,<br />

essential components <strong>of</strong> the cell polarity machinery, disrupts<br />

asymmetric cell division and leads to overexpansion <strong>of</strong><br />

neural stem cells and tumor formation in the brain ( Li et al.,<br />

2003 ; Klezovitch et al., 2004 ). <strong>The</strong>refore, the essential roles<br />

that the ECM plays in the stem cell niche make it a likely candidate<br />

to be targeted to create a cancer stem cell niche during cellular<br />

transformation. It is possible, at least theoretically, that<br />

deregulated ECM dynamics may cause formation <strong>of</strong> abnormal<br />

lineage-specifi c ECM and lead to cancer stem cell overexpansion<br />

and loss <strong>of</strong> differentiation ( Fig. 2 B ). However, whether a<br />

cancer stem cell niche may result from such an event <strong>of</strong> ECM<br />

dynamics deregulation remains to be rigorously tested.<br />

<strong>The</strong> ECM maintains tissue polarity<br />

and architecture and prevents cancer<br />

cell invasion<br />

An important feature <strong>of</strong> epithelial organs, which is <strong>of</strong>ten lost in<br />

cancer, is that cells in them have distinct polarity and architecture<br />

that are indispensable for organ formation and function ( Ghajar<br />

and Bissell, 2008 ). Studies have shown that ECM is essential<br />

for the establishment and maintenance <strong>of</strong> tissue polarity and architecture.<br />

For example, � 1-integrin maintains tissue polarity in<br />

solid organs including the mammary gland ( Akhtar et al., 2009 ),<br />

whereas various ECM components are important for planar cell<br />

polarity during epithelial morphogenesis ( Davidson et al., 2006 ;<br />

Latimer and Jessen, 2010 ; Skoglund and Keller, 2010 ). Abnormal<br />

ECM dynamics can compromise basement membrane as a<br />

physical barrier and promote epithelial–mesenchymal transition,<br />

which together can facilitate tissue invasion by cancer cells<br />

( Song et al., 2000 ; Duong and Erickson, 2004 ; Radisky and<br />

Radisky, 2010 ).<br />

One way the physical barrier <strong>of</strong> basement membrane can<br />

be removed, at least partially, is by overexpressing MMPs. Consistent<br />

with this notion, mice overexpressing MMP3, MMP7, or<br />

MMP14 form mammary tumors ( Sternlicht et al., 1999 ). It is<br />

reasonable to predict that cancer cells or their accompanying<br />

stromal and immune cells bearing MMPs have selective advantage<br />

over those that are not because, presumably, they can readily<br />

enter and exit the endothelial basement membrane and<br />

metastasize to distant sites. Additionally, changes in ECM topography<br />

may also facilitate cancer cell migration. Thickening<br />

and linearization <strong>of</strong> collagen fi bers are common in cancers, and<br />

JCB Highlights 2012 21<br />

they are <strong>of</strong>ten found in areas where active tissue invasion and<br />

tumor vasculature are observed ( Condeelis and Segall, 2003 ;<br />

Provenzano et al., 2006 ; Levental et al., 2009 ), suggesting that they<br />

play an active role in facilitating cancer cell invasion. Indeed,<br />

studies using live imaging have shown that cancer cells migrate<br />

rapidly on collagen fi bers in areas enriched in collagen ( Wang<br />

et al., 2002 ; Condeelis and Segall, 2003 ; Wyck<strong>of</strong>f et al., 2007 ).<br />

Together, deregulation <strong>of</strong> ECM dynamics can facilitate cellular<br />

dedifferentiation and cancer stem cell expansion. Additionally,<br />

they disrupt tissue polarity and promote tissue invasion. As a<br />

result, epithelial cells are directly affected by deregulated ECM<br />

dynamics, leading to cellular transformation and metastasis.<br />

Abnormal ECM promotes formation <strong>of</strong> a<br />

tumor microenvironment<br />

Abnormal ECM also indirectly affects cancer cells by infl uencing<br />

the behavior <strong>of</strong> stromal cells, including endothelial cells, immune<br />

cells, and fi broblasts, which are the main initial culprits<br />

that cause abnormal ECM production ( Bhowmick et al., 2004 ;<br />

Orimo et al., 2005 ; Quante et al., 2011 ). As a result, abnormal<br />

ECM further perpetuates the local niche and promotes the formation<br />

<strong>of</strong> a tumorigenic microenvironment.<br />

Role <strong>of</strong> the ECM in tumor angiogenesis<br />

and lymphangiogenesis<br />

As a disorganized organ, tumor develops by using many <strong>of</strong> the<br />

same cellular and developmental processes essential for organogenesis<br />

( Ruoslahti, 2002 ; Egeblad et al., 2010a ). For a tumor<br />

to increase in size, for example, tumor cells face the same increasing<br />

demand for nutrient, oxygen, and waste exchange as<br />

normal cells do in a growing organ during development. As in<br />

normal development, such a demand is met by angiogenesis, the<br />

process whereby new blood vessels sprout from the existing<br />

vasculature ( Davis and Senger, 2005 ). Furthermore, tumor vasculature,<br />

together with the lymphatic system, is the main route<br />

through which cancer cells metastasize and immune cells infi ltrate.<br />

Consequently, tumor-associated angiogenesis and lymphangiogenesis,<br />

the process whereby lymphatic vessels are<br />

generated, are important aspects <strong>of</strong> cancer progression ( Fig. 3 ;<br />

Avraamides et al., 2008 ).<br />

<strong>The</strong> role <strong>of</strong> abnormal ECM in tumor angiogenesis is a result<br />

<strong>of</strong> the various functions that ECM components play in<br />

blood vessel formation during normal development. For example,<br />

many ECM fragments, including endostatin, tumstatin,<br />

canstatin, arresten, and hexastatin, all <strong>of</strong> which are derived from<br />

collagens type IV and XVIII, have potent stimulatory or inhibitory<br />

effects on angiogenesis ( Mott and Werb, 2004 ). <strong>The</strong>y are<br />

likely to collaborate with other pro- or antiangiogenic factors,<br />

including VEGF, to determine where to initiate vascular branching<br />

and the fi nal branch pattern ( Fig. 3 A , stage 1). To initiate<br />

vascular branching, vessel basement membrane ECM needs to<br />

be removed most likely by MMPs expressed by invading endothelial<br />

cells ( Fig. 3 A , stage 2). MMPs, for example MMP14<br />

(MT1-MMP), are also required for the invading tip cell, which<br />

is at the leading edge <strong>of</strong> an endothelial branch, to wade through<br />

the interstitial matrix toward target cells ( Fig. 3 A , stage 3;<br />

Genís et al., 2007 ; van Hinsbergh and Koolwijk, 2008 ). In addition,<br />

Extracellular matrix in cancer progression • Lu et al.<br />

399


22<br />

400<br />

Figure 3. ECM role in tumor angiogenesis, lymphangiogenesis, and<br />

infl ammation. (A) Angiogenesis and lymphangiogenesis depend on the<br />

ECM. Tumor cells produce various components, including VEGF and angiogenic<br />

and antiangiogenic ECM fragments, to regulate blood vessel<br />

formation (stage 1). During branch initiation, endothelial cells secrete proteases<br />

to break down the basement membrane to grow out (stage 2). <strong>The</strong><br />

outgrowth process <strong>of</strong> endothelial branching is propelled by at least two<br />

groups <strong>of</strong> cells: tip cells, which lead the migration toward the angiogenic<br />

chemoattractant source, and stalk cells, which depend on the ECM and<br />

its derivatives to survive and proliferate to provide building blocks for vessel<br />

formation (stage 3). Additionally, ECM components participate in cell<br />

migration and other aspects <strong>of</strong> tubulogenesis <strong>of</strong> blood vessels. Although<br />

details remain unclear, lymphangiogenesis depends on the ECM and, together<br />

with angiogenesis, provides routes for cancer cell metastasis and<br />

immune cell infi ltration. (B) <strong>The</strong> ECM plays multiple roles in tumor infl ammation.<br />

In addition to promoting survival and proliferation (not depicted),<br />

ECM components function as a chemoattractant to immune cells (stage a).<br />

<strong>The</strong> exact details <strong>of</strong> how immune cells including neutrophil transmigrate<br />

endothelial basement membrane are not clear, though it seems the ECM<br />

plays both positive and negative roles in the process. Macrophage<br />

activation depends on the ECM to release its potent cytokine signals<br />

and protease content (stage b). Further, immune cell differentiation, including<br />

maturation <strong>of</strong> T helper cells, requires participation <strong>of</strong> ECM components<br />

(stage c).<br />

hypoxia can lead to overproduction <strong>of</strong> LOX-like protein-2 and<br />

a subsequent increase in ECM cross-linking and stiffening,<br />

resulting in sprouting angiogenesis ( Bignon et al., 2011 ). <strong>The</strong>se<br />

data suggest that ECM biomechanical properties also play<br />

essential roles in angiogenesis.<br />

Angiogenesis is a complex process, requiring coordination<br />

<strong>of</strong> many cellular activities. Thus, in addition to guiding endothelial<br />

cell migration and branching, ECM and its fragments may be<br />

involved in endothelial cell survival and proliferation to supply<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

cellular building blocks for vessel growth ( Sweet et al., 2011 ).<br />

Furthermore, ECM components are involved in cellular morphogenesis,<br />

including vessel lumen formation ( Newman et al., 2011 )<br />

and other aspects <strong>of</strong> tubulogenesis during tumor angiogenesis<br />

( Davis and Senger, 2005 ). <strong>The</strong> biomechanical properties <strong>of</strong> the<br />

ECM appear to play an especially important role in this process.<br />

Indeed, vascular networks with markedly distinct branching patterns<br />

have been observed when endothelial cells are grown on<br />

matrix with different elasticity ( Myers et al., 2011 ).<br />

Finally, new ECM is deposited to form basement membrane<br />

to surround blood vessels during tumor angiogenesis.<br />

Importantly, however, the basement membrane <strong>of</strong> the tumor<br />

vasculature is more porous and leaky than normal ( Hewitt et al.,<br />

1997 ; Hashizume et al., 2000 ), which facilitates tumor cell metastasis<br />

and immune cell infi ltration and promotes cancer progression<br />

( Ruoslahti, 2002 ; Egeblad et al., 2010a ). Likewise, the<br />

lymphatic system can also transport tumor and immune cells.<br />

Recent studies show that the ECM receptor integrin � 9 � 1 plays<br />

an important role in the formation <strong>of</strong> lymphatic vessels ( Huang<br />

et al., 2000 ; Avraamides et al., 2008 ), suggesting that the ECM<br />

is likely to play a role in tumor lymphangiogenesis as well.<br />

However, this suggestion awaits further experimental testing,<br />

as do the details <strong>of</strong> how abnormal ECM dynamics may deregulate<br />

lymphangiogenesis during cancer progression.<br />

Role <strong>of</strong> the ECM in tumorassociated<br />

infl ammation<br />

Infl ammation, characterized by massive infl ux <strong>of</strong> immune cells,<br />

plays a causative role in cancer development. Although their<br />

initial function is supposed to suppress tumor growth, immune<br />

cells including macrophages are <strong>of</strong>ten altered and recruited by<br />

tumor cells at later stages to promote cancer ( Coussens and<br />

Werb, 2002 ). As in tumor angiogenesis, abnormal ECM affects<br />

many aspects <strong>of</strong> immune cell behaviors, including infi ltration,<br />

differentiation, and functional activation.<br />

For example, mice lacking the ECM glycoprotein SPARC<br />

(secreted protein acidic and rich in cysteine) have an increased<br />

number <strong>of</strong> macrophages in tumors, suggesting that the ECM<br />

can infl uence the number <strong>of</strong> immune cells. One way the ECM<br />

affects immune cells is by regulating cell proliferation ( Adair-<br />

Kirk and Senior, 2008 ; Sorokin, 2010 ). ECM components also<br />

may function as chemoattractants to immune cells ( Fig. 3 B ,<br />

stage a). For example, elastin fragments are able to recruit<br />

monocytes, but not neutrophils, in the rat lung ( Houghton et al.,<br />

2006 ). <strong>The</strong> acetylated tripeptide Pro-Gly-Pro derived from collagen<br />

I proteolysis by MMP8 or MMP9 can functionally mimic<br />

the chemoattractant CXCL8 on neutrophils in a lung infl ammation<br />

model ( Weathington et al., 2006 ). Alternatively, activation<br />

<strong>of</strong> collagen receptor DDR1 can also promote macrophage infi ltration<br />

in atherosclerotic plaques ( Franco et al., 2009 ).<br />

To reach the infl amed or tumor sites, immune cells encounter<br />

two kinds <strong>of</strong> potential ECM barriers: the endothelial<br />

basement membrane and interstitial matrix. Studies using EM<br />

and, more recently, intravital imaging have shown that transmigration<br />

across the endothelial basement membrane is a ratelimiting<br />

step during T cell extravasation ( Wang et al., 2006 ;<br />

Bartholomäus et al., 2009 ). Interestingly, however, inhibition <strong>of</strong>


integrin � 6 � 1, which binds to laminin, results in reduced neutrophil<br />

infi ltration and trapping <strong>of</strong> neutrophils between endothelium<br />

and the basement membrane ( Dangerfi eld et al., 2002 ).<br />

<strong>The</strong>se data suggest that, although the basement membrane is a<br />

barrier to immune cell extravasation, binding and attachment to<br />

ECM components are necessary for transmigration to occur. It<br />

remains unclear how immune cells transmigrate across the basement<br />

membrane, for example, regarding whether ECM degradation<br />

is involved and whether immune cells have preferred and<br />

presumably more porous passage sites along the vessel wall<br />

( Rowe and Weiss, 2008 ). Once they enter the stroma, immune<br />

cells travel through the interstitial matrix during infi ltration. As<br />

in the cases <strong>of</strong> tumor and endothelial cells, ECM topography<br />

such as collagen fi bril size and density can infl uence migration<br />

<strong>of</strong> immune cells ( Fig. 3 B , stage a; Lämmermann et al., 2008 ).<br />

<strong>The</strong> ECM also regulates the activation <strong>of</strong> immune cells.<br />

For example, increased ECM stiffness can promote integrinmediated<br />

adhesion complex assembly and activate T cells<br />

( Ashkar et al., 2000 ; Adler et al., 2001 ; Hur et al., 2007 ; Sorokin,<br />

2010 ). Although collagen type I promotes infi ltration <strong>of</strong> immune<br />

cells, it inhibits the ability <strong>of</strong> macrophages to kill cancer<br />

cells by blocking polarization and, thus, activation <strong>of</strong> macrophages<br />

( Fig. 3 B , stage b; Kaplan, 1983 ). <strong>The</strong>se results highlight<br />

the complex nature <strong>of</strong> how ECM deregulation may affect<br />

behaviors <strong>of</strong> different groups <strong>of</strong> immune cells. <strong>The</strong> inhibitory<br />

effect <strong>of</strong> collagen I on immune cells is likely mediated by its<br />

binding with the leukocyte-associated Ig-like receptors (LAIRs),<br />

which are expressed at the surface <strong>of</strong> most immune cells<br />

( Meyaard, 2008 ; Frantz et al., 2010 ). At present, it is not clear<br />

whether LAIRs and integrins cooperate; however, the activation<br />

<strong>of</strong> LAIRs is a plausible mechanism whereby high levels <strong>of</strong><br />

tumor collagen can attenuate the otherwise tumor-suppressive<br />

function <strong>of</strong> immune cells. Additionally, the ECM plays an important<br />

role in immune cell differentiation, including the maturation<br />

process <strong>of</strong> T helper cells ( Chabas et al., 2001 ; Hur et al., 2007 ). A<br />

study also shows that hyaluronan can induce regulatory T cell differentiation<br />

from effector memory T cell precursors ( Bollyky<br />

et al., 2011 ). <strong>The</strong>refore, one plausible mechanism whereby abnormal<br />

ECM sabotages the immune system during cancer development<br />

may be to prevent immune cells from undergoing their<br />

normal differentiation and maturation process ( Fig. 3 B , stage c).<br />

Finally, another group <strong>of</strong> stromal cells, MSCs, has<br />

emerged as an important player in the cancer niche. As multipotent<br />

stem cells, MSCs normally can give rise to various cell<br />

types, including osteoblasts, chondrocytes, adipocytes, and, at<br />

least under pathological conditions, CAFs ( Quante et al., 2011 ),<br />

which are essential for abnormal ECM metabolism. Because the<br />

ECM plays an important role in MSC differentiation ( Engler et al.,<br />

2006 ), it is likely that MSCs may be yet another target cell population<br />

<strong>of</strong> abnormal ECM dynamics in the formation <strong>of</strong> a cancer<br />

niche. This is an especially important point, as MSCs can exert<br />

pleiotropic effects on infl ammation ( Aggarwal and Pittenger,<br />

2005 ; Ripoll et al., 2011 ; Singer and Caplan, 2011 ). Together,<br />

these data reinforce the possibility that, once beyond a certain<br />

threshold, deregulated ECM dynamics may cause irreversible<br />

changes to the normal niche and convert it into a cancerpromoting<br />

environment.<br />

JCB Highlights 2012 23<br />

In summary, abnormal ECM dynamics deregulate behaviors<br />

<strong>of</strong> both cancer cells and stromal cells. On the one hand,<br />

ECM anomalies promote cancer cell transformation and tissue<br />

invasion; on the other hand, they help generate a tumorigenic<br />

niche that further facilitates cancer progression. Such a doublewhammy<br />

effect is a recurring theme at later stages <strong>of</strong> cancer<br />

metastasis, as is evident from the next section.<br />

<strong>The</strong> ECM: An essential component <strong>of</strong><br />

premetastatic and metastatic niches<br />

Cancer cell metastasis is a multistep process, consisting <strong>of</strong> local<br />

invasion and intravasation at the primary site, survival in the<br />

circulation, and extravasation and colonization at the distant<br />

site ( Paget, 1889 ). Depending on cancer type and organ destination,<br />

these steps may have distinct kinetics during cancer metastasis<br />

( Nguyen et al., 2009 ). A successful metastasis requires not<br />

only a local niche to support cancer cell growth at the primary<br />

site but also one, the metastatic niche, to allow invading cancer<br />

cells to survive, colonize, and expand to form a macrometastasis<br />

( Psaila and Lyden, 2009 ).<br />

Although still in its infancy, studies support that the ECM<br />

is, as in the primary tumor niche, an essential component <strong>of</strong> the<br />

metastatic niche. For example, although most metastatic cancer<br />

cells die, mammary carcinoma cells expressing the hyaluronan<br />

receptor CD44 survive better than cells with low levels <strong>of</strong> CD44<br />

( Yu et al., 1997 ). <strong>The</strong>se data imply that hyaluronan and maybe<br />

other ECM components promote survival <strong>of</strong> metastatic cancer<br />

cells. Moreover, as in the case <strong>of</strong> primary tumor niche, LOX activities<br />

are <strong>of</strong>ten up-regulated in metastatic cancer sites as a result<br />

<strong>of</strong> increased production from cancer cells or activated<br />

fi broblasts at the metastatic niche ( Erler et al., 2009 ). Increase in<br />

mechanical force as a result <strong>of</strong> LOX expression and ECM stiffening<br />

presumably facilitates colonization <strong>of</strong> cancer cells and infi<br />

ltration <strong>of</strong> immune cells at the metastatic site. <strong>The</strong>se changes<br />

may be similar to the ones at the primary niche and together may<br />

further trigger the angiogenic switch and lead to cancer cell expansion<br />

from micrometastasis to macrometastasis ( Fig. 4 ). However,<br />

this notion remains to be tested experimentally.<br />

Remarkably, mounting evidence suggests that cancer cells<br />

may remotely modify, <strong>of</strong>ten with the involvement <strong>of</strong> other cell<br />

types including hematopoietic progenitor cells, distant sites and<br />

proactively participate in the creation <strong>of</strong> a premetastatic niche<br />

before metastasis ( McAllister and Weinberg, 2010 ; Bateman,<br />

2011 ). For example, cancer cells at the primary site produce<br />

osteopontin and other factors to recruit granulin-expressing<br />

hematopoietic progenitor cells, which can then deregulate<br />

behaviors <strong>of</strong> the distant stromal cells ( Elkabets et al., 2011 ).<br />

Interestingly, granulin, belonging to the epithelin family <strong>of</strong><br />

secreted growth factors, can increase the expression <strong>of</strong> a variety<br />

<strong>of</strong> ECM components and their modifying enzymes in stromal<br />

fi broblasts ( Elkabets et al., 2011 ).<br />

Changes <strong>of</strong> ECM composition are important for continued<br />

recruitment <strong>of</strong> hematopoietic progenitor cells to the premetastatic<br />

niche. For example, increased fi bronectin expression<br />

is essential for VEGF receptor 1 + (VEGFR1 + ) hematopoietic<br />

progenitor cells, which also express the fi bronectin receptor<br />

integrin � 4 � 1, to migrate and adhere to the niche in the lung<br />

Extracellular matrix in cancer progression • Lu et al.<br />

401


24<br />

402<br />

Figure 4. Abnormal ECM promotes cancer progression. (A) ECM remodeling is tightly controlled to ensure organ homeostasis and functions. Normal ECM<br />

dynamics are essential for maintaining tissue integrity and keep rare tumor-prone cells, together with resident fi broblasts, eosinophils, macrophages, and<br />

other stromal cells, in check by maintaining an overall healthy microenvironment. (B) With age or under pathological conditions, tissues can enter a series<br />

<strong>of</strong> tumorigenic events. One <strong>of</strong> the earlier events is the generation <strong>of</strong> activated fi broblasts or CAFs (stage 1), which contributes to abnormal ECM buildup<br />

and deregulated expression <strong>of</strong> ECM remodeling enzymes (stage 2). Abnormal ECM has pr<strong>of</strong>ound impacts on surrounding cells, including epithelial,<br />

endothelial, and immune cells and other stromal cell types. Deregulated ECM promotes epithelial cellular transformation and hyperplasia (stage 3).<br />

(C) In late-stage tumors, immune cells are <strong>of</strong>ten recruited to the tumor site to promote cancer progression (stage 4). In addition, deregulated ECM affects various<br />

aspects <strong>of</strong> vascular biology and promotes tumor-associated angiogenesis (stage 5). Creation <strong>of</strong> a leaky tumor vasculature in turn facilitates tumor cell<br />

invasion and metastasis to distant sites (stage 6). (D) At distant sites, cancer cells leave the circulation and take hold <strong>of</strong> the local tissue. Together with local<br />

stromal cells, cancer cells express ECM remodeling enzymes and create a local metastatic niche. Abnormal niche ECM promotes extravasation, survival,<br />

and proliferation <strong>of</strong> cancer cells (stage 7). At later stages when cancer cells awake from dormancy, abnormal ECM turns on the angiogenic switch (stage 8),<br />

presumably using a mechanism similar to that used at the primary site (stage 5), and promotes the rapid growth <strong>of</strong> cancer cells and an expansion <strong>of</strong><br />

micrometastasis to macrometastasis.<br />

( Kaplan et al., 2005 ). Once there, VEGFR1 + hematopoietic progenitor<br />

cells secrete MMP9, which is known to play a role in<br />

lung-specifi c metastasis ( Hiratsuka et al., 2002 ), and thus further<br />

modulate and deregulate the premetastatic niche. In addition<br />

to fi bronectin, other ECM components may also be important<br />

for the function <strong>of</strong> the premetastatic niche. For example, hyaluronan<br />

and its receptor CD44 facilitate signaling via C-X-C chemokine<br />

receptor 4 (CXCR4) and its ligand stromal-derived growth<br />

factor 1 (SDF1/CXCL12; Netelenbos et al., 2002 ; Avigdor et al.,<br />

2004 ), which are essential for organ-specifi c metastasis <strong>of</strong><br />

tumor cells to the lung or bone marrow ( Jones et al., 2006 ).<br />

Thus, these data suggest that deregulation <strong>of</strong> ECM dynamics is<br />

an important step during the formation <strong>of</strong> a premetastatic niche.<br />

Collectively, a picture has started to emerge with regard<br />

to ECM’s roles in cancer progression: normal ECM dynamics<br />

are essential for embryonic organ development and postnatal<br />

function ( Fig. 4 A ); deregulated ECM dynamics disrupt tissue<br />

polarity, architecture, and integrity and promote epithelial cell<br />

transformation and invasion ( Fig. 4 B ). Furthermore, abnormal<br />

ECM dynamics derail stromal cell behavior, leading to<br />

tumor-promoting angiogenesis and infl ammation by endothelial<br />

cells and immune cells, respectively, both at the primary<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

and metastatic sites. <strong>The</strong> resultant changes in the stromal components<br />

further exacerbate the tumorigenic microenvironment<br />

and facilitate the process <strong>of</strong> oncogenic transformation, tissue<br />

invasion, and metastasis during cancer initiation and progression<br />

( Fig. 4, C and D ).<br />

Concluding remarks<br />

From the initial belief that the intrinsic properties <strong>of</strong> cancer<br />

cells determine most major aspects <strong>of</strong> cancer initiation and progression,<br />

our understanding <strong>of</strong> cancer biology has taken remarkable<br />

strides. We now regard cancer as a heterogeneous disease<br />

not only in the sense that different molecular etiologies may underlie<br />

the same clinical outcome but also that multiple cell<br />

types, in addition to cancer cells, and noncellular components<br />

need to be mobilized and coordinated to support the survival,<br />

growth, and invasion <strong>of</strong> cancer cells. As a major component <strong>of</strong><br />

the local niche, the ECM has emerged as an essential player at<br />

various stages <strong>of</strong> the carcinogenic process. Its functional diversity<br />

and dynamic nature, which allows the ECM to be an active<br />

participant in most major cell behavior and developmental processes,<br />

also makes it a necessary target whose deregulation may<br />

be a rate-limiting step in cancer progression.


An important area <strong>of</strong> future cancer research will be to determine<br />

whether abnormal ECM could be an effective cancer therapeutic<br />

target. To achieve this goal, we must understand how ECM<br />

composition and organization are normally maintained and regulated<br />

and how they may be deregulated in cancer. A daunting task<br />

in this regard will be to determine the kind <strong>of</strong> ECM changes that<br />

have causative effects on disease progression and how these<br />

changes <strong>of</strong> the ECM, alone or in combination, may affect cancer<br />

cells and cells in the stromal compartment. Additionally, with the<br />

growing documentation <strong>of</strong> the diverse functions <strong>of</strong> the ECM in<br />

development and cancer, a major challenge will be to understand<br />

the molecular basis <strong>of</strong> these functions, whether they involve only<br />

receptor signaling, rearrangements <strong>of</strong> the cytoskeleton, changes<br />

<strong>of</strong> gene expression, or other aspects <strong>of</strong> cell behavior, and how<br />

such changes are integrated with conventional signaling cascades<br />

that are known to play a role in these processes.<br />

Abnormal ECM stiffness, as observed in tissue fi brosis,<br />

clearly plays an important role in cancer progression. However,<br />

we have only begun to decipher how different cell types respond<br />

to changes in ECM elasticity and which receptors detect<br />

the various types <strong>of</strong> physical force. It remains to be an important<br />

area <strong>of</strong> research to determine whether ECM elasticity may<br />

be restored to normal in cancer and how such a restoration may<br />

benefi t treatment prognosis. ECM anomalies, including stiffness,<br />

have been associated with delivery and resistance <strong>of</strong> conventional<br />

drugs ( Egeblad et al., 2010b ). Indeed, a decrease in the<br />

fi broblast pool and thus the ECM improves drug uptake in the<br />

mouse ( Loeffl er et al., 2006 ; Olive et al., 2009 ). <strong>The</strong>refore, targeting<br />

abnormal ECM may provide yet another effective avenue<br />

to combat the complicated illness that is cancer.<br />

We apologize to those whose work could not be cited due to space constraints.<br />

We thank Dr. Tim Hardingham and members <strong>of</strong> the Lu laboratory for critical<br />

reading <strong>of</strong> the manuscript.<br />

This work was supported by grants from Breakthrough Breast Cancer<br />

(to P. Lu) and the National Institutes <strong>of</strong> Health (R03 HD060807 to P. Lu, R01<br />

CA057621 and a Developmental Project from P50 CA058207 to Z. Werb,<br />

U01 ES019458 to Z. Werb and V.M. Weaver, and R01 CA138818 to<br />

V.M. Weaver).<br />

Submitted: 28 February 2011<br />

Accepted: 23 January 2012<br />

References<br />

Adair-Kirk , T.L. , and R.M. Senior . 2008 . Fragments <strong>of</strong> extracellular matrix as<br />

mediators <strong>of</strong> infl ammation . Int. J. Biochem. <strong>Cell</strong> Biol. 40 : 1101 – 1110 .<br />

http://dx.doi.org/10.1016/j.biocel.2007.12.005<br />

Adler , B. , S. Ashkar , H. Cantor , and G.F. Weber . 2001 . Costimulation by extracellular<br />

matrix proteins determines the response to TCR ligation . <strong>Cell</strong>.<br />

Immunol. 210 : 30 – 40 . http://dx.doi.org/10.1006/cimm.2001.1800<br />

Aggarwal , S. , and M.F. Pittenger . 2005 . Human mesenchymal stem cells modulate<br />

allogeneic immune cell responses . Blood . 105 : 1815 – 1822 . http://<br />

dx.doi.org/10.1182/blood-2004-04-1559<br />

Aitken , K.J. , and D.J. Bägli . 2009 . <strong>The</strong> bladder extracellular matrix. Part I:<br />

Architecture, development and disease . Nat Rev Urol . 6 : 596 – 611 . http://<br />

dx.doi.org/10.1038/nrurol.2009.201<br />

Akhtar , N. , R. Marlow , E. Lambert , F. Schatzmann , E.T. Lowe , J. Cheung , E.<br />

Katz , W. Li , C. Wu , S. Dedhar , et al . 2009 . Molecular dissection <strong>of</strong> integrin<br />

signalling proteins in the control <strong>of</strong> mammary epithelial development<br />

and differentiation . Development . 136 : 1019 – 1027 . http://dx.doi<br />

.org/10.1242/dev.028423<br />

Ashkar , S. , G.F. Weber , V. Panoutsakopoulou , M.E. Sanchirico , M. Jansson , S.<br />

Zawaideh , S.R. Rittling , D.T. Denhardt , M.J. Glimcher , and H. Cantor . 2000 .<br />

Eta-1 (osteopontin): An early component <strong>of</strong> type-1 (cell-mediated) immunity<br />

. Science . 287 : 860 – 864 . http://dx.doi.org/10.1126/science.287.5454.860<br />

JCB Highlights 2012 25<br />

Avigdor , A. , P. Goichberg , S. Shivtiel , A. Dar , A. Peled , S. Samira , O. Kollet ,<br />

R. Hershkoviz , R. Alon , I. Hardan , et al . 2004 . CD44 and hyaluronic<br />

acid cooperate with SDF-1 in the traffi cking <strong>of</strong> human CD34+ stem/<br />

progenitor cells to bone marrow . Blood . 103 : 2981 – 2989 . http://dx.doi.org/<br />

10.1182/blood-2003-10-3611<br />

Avraamides , C.J. , B. Garmy-Susini , and J.A. Varner . 2008 . Integrins in angiogenesis<br />

and lymphangiogenesis . Nat. Rev. Cancer . 8 : 604 – 617 . http://<br />

dx.doi.org/10.1038/nrc2353<br />

Barker , H.E. , J. Chang , T.R. Cox , G. Lang , D. Bird , M. Nicolau , H.R. Evans , A.<br />

Gartland , and J.T. Erler . 2011 . LOXL2-mediated matrix remodeling in<br />

metastasis and mammary gland involution . Cancer Res. 71 : 1561 – 1572 .<br />

http://dx.doi.org/10.1158/0008-5472.CAN-10-2868<br />

Bartholomäus , I. , N. Kawakami , F. Odoardi , C. Schläger , D. Miljkovic , J.W.<br />

Ellwart , W.E. Klinkert , C. Flügel-Koch , T.B. Issekutz , H. Wekerle ,<br />

and A. Flügel . 2009 . Effector T cell interactions with meningeal vascular<br />

structures in nascent autoimmune CNS lesions . Nature . 462 : 94 – 98 .<br />

http://dx.doi.org/10.1038/nature08478<br />

Bateman , A. 2011 . Growing a tumor stroma: A role for granulin and the bone<br />

marrow . J. Clin. Invest. 121 : 516 – 519 . http://dx.doi.org/10.1172/JCI46088<br />

Bhowmick , N.A. , E.G. Neilson , and H.L. Moses . 2004 . Stromal fi broblasts in<br />

cancer initiation and progression . Nature . 432 : 332 – 337 . http://dx.doi.org/<br />

10.1038/nature03096<br />

Bi , Y. , D. Ehirchiou , T.M. Kilts , C.A. Inkson , M.C. Embree , W. Sonoyama ,<br />

L. Li , A.I. Leet , B.M. Seo , L. Zhang , et al . 2007 . Identifi cation <strong>of</strong> tendon<br />

stem/progenitor cells and the role <strong>of</strong> the extracellular matrix in their<br />

niche . Nat. Med. 13 : 1219 – 1227 . http://dx.doi.org/10.1038/nm1630<br />

Bignon , M. , C. Pichol-Thievend , J. Hardouin , M. Malbouyres , N. Bréchot , L.<br />

Nasciutti , A. Barret , J. Teillon , E. Guillon , E. Etienne , et al . 2011 . Lysyl<br />

oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen<br />

assembly in the endothelial basement membrane . Blood . 118 : 3979 –<br />

3989 . http://dx.doi.org/10.1182/blood-2010-10-313296<br />

Bissell , M.J. , and D. Radisky . 2001 . Putting tumours in context . Nat. Rev.<br />

Cancer . 1 : 46 – 54 . http://dx.doi.org/10.1038/35094059<br />

Bissell , M.J. , and M.A. Labarge . 2005 . Context, tissue plasticity, and cancer:<br />

Are tumor stem cells also regulated by the microenvironment? Cancer<br />

<strong>Cell</strong> . 7 : 17 – 23 .<br />

Blanpain , C. , V. Horsley , and E. Fuchs . 2007 . Epithelial stem cells: Turning over<br />

new leaves . <strong>Cell</strong> . 128 : 445 – 458 . http://dx.doi.org/10.1016/j.cell.2007<br />

.01.014<br />

Bollyky , P.L. , R.P. Wu , B.A. Falk , J.D. Lord , S.A. Long , A. Preisinger , B. Teng ,<br />

G.E. Holt , N.E. Standifer , K.R. Braun , et al . 2011 . ECM components<br />

guide IL-10 producing regulatory T-cell (TR1) induction from effector<br />

memory T-cell precursors . Proc. Natl. Acad. Sci. USA . 108 : 7938 – 7943 .<br />

http://dx.doi.org/10.1073/pnas.1017360108<br />

Butcher , D.T. , T. Alliston , and V.M. Weaver . 2009 . A tense situation: Forcing<br />

tumour progression . Nat. Rev. Cancer . 9 : 108 – 122 . http://dx.doi.org/10<br />

.1038/nrc2544<br />

Chabas , D.e. , S.E. Baranzini , D. Mitchell , C.C.A. Bernard , S.R. Rittling , D.T.<br />

Denhardt , R.A. Sobel , C. Lock , M. Karpuj , R. Pedotti , et al . 2001 . <strong>The</strong><br />

infl uence <strong>of</strong> the proinfl ammatory cytokine, osteopontin, on autoimmune demyelinating<br />

disease . Science . 294 : 1731 – 1735 . http://dx.doi.org/10.1126/<br />

science.1062960<br />

Condeelis , J. , and J.E. Segall . 2003 . Intravital imaging <strong>of</strong> cell movement<br />

in tumours . Nat. Rev. Cancer . 3 : 921 – 930 . http://dx.doi.org/10.1038/<br />

nrc1231<br />

Coussens , L.M. , and Z. Werb . 2002 . Infl ammation and cancer . Nature . 420 : 860 –<br />

867 . http://dx.doi.org/10.1038/nature01322<br />

Cox , T.R. , and J.T. Erler . 2011 . Remodeling and homeostasis <strong>of</strong> the extracellular<br />

matrix: Implications for fi brotic diseases and cancer . Dis Model Mech .<br />

4 : 165 – 178 . http://dx.doi.org/10.1242/dmm.004077<br />

Dangerfi eld , J. , K.Y. Larbi , M.T. Huang , A. Dewar , and S. Nourshargh . 2002 .<br />

PECAM-1 (CD31) homophilic interaction up-regulates alpha6beta1 on<br />

transmigrated neutrophils in vivo and plays a functional role in the ability<br />

<strong>of</strong> alpha6 integrins to mediate leukocyte migration through the perivascular<br />

basement membrane . J. Exp. Med. 196 : 1201 – 1211 . http://dx.doi<br />

.org/10.1084/jem.20020324<br />

Davidson , L.A. , M. Marsden , R. Keller , and D.W. Desimone . 2006 . Integrin<br />

alpha5beta1 and fi bronectin regulate polarized cell protrusions required<br />

for Xenopus convergence and extension . Curr. Biol. 16 : 833 – 844 . http://<br />

dx.doi.org/10.1016/j.cub.2006.03.038<br />

Davis , G.E. , and D.R. Senger . 2005 . Endothelial extracellular matrix: Biosynthesis,<br />

remodeling, and functions during vascular morphogenesis and neovessel<br />

stabilization . Circ. Res. 97 : 1093 – 1107 . http://dx.doi.org/10.1161/01<br />

.RES.0000191547.64391.e3<br />

del Rio , A. , R. Perez-Jimenez , R. Liu , P. Roca-Cusachs , J.M. Fernandez , and<br />

M.P. Sheetz . 2009 . Stretching single talin rod molecules activates vinculin<br />

binding . Science . 323 : 638 – 641 . http://dx.doi.org/10.1126/science<br />

.1162912<br />

Extracellular matrix in cancer progression • Lu et al.<br />

403


26<br />

404<br />

DuFort , C.C. , M.J. Paszek , and V.M. Weaver . 2011 . Balancing forces:<br />

Architectural control <strong>of</strong> mechanotransduction . Nat. Rev. Mol. <strong>Cell</strong> Biol.<br />

12 : 308 – 319 . http://dx.doi.org/10.1038/nrm3112<br />

Duong , T.D. , and C.A. Erickson . 2004 . MMP-2 plays an essential role in producing<br />

epithelial-mesenchymal transformations in the avian embryo . Dev.<br />

Dyn. 229 : 42 – 53 . http://dx.doi.org/10.1002/dvdy.10465<br />

Egeblad , M. , E.S. Nakasone , and Z. Werb . 2010a . Tumors as organs: Complex<br />

tissues that interface with the entire organism . Dev. <strong>Cell</strong> . 18 : 884 – 901 .<br />

http://dx.doi.org/10.1016/j.devcel.2010.05.012<br />

Egeblad , M. , M.G. Rasch , and V.M. Weaver . 2010b . Dynamic interplay between<br />

the collagen scaffold and tumor evolution . Curr. Opin. <strong>Cell</strong> Biol. 22 : 697 –<br />

706 . http://dx.doi.org/10.1016/j.ceb.2010.08.015<br />

Elkabets , M. , A.M. Gifford , C. Scheel , B. Nilsson , F. Reinhardt , M.A. Bray ,<br />

A.E. Carpenter , K. Jirström , K. Magnusson , B.L. Ebert , et al . 2011 .<br />

Human tumors instigate granulin-expressing hematopoietic cells that<br />

promote malignancy by activating stromal fi broblasts in mice . J. Clin.<br />

Invest. 121 : 784 – 799 . http://dx.doi.org/10.1172/JCI43757<br />

Engler , A.J. , S. Sen , H.L. Sweeney , and D.E. Discher . 2006 . Matrix elasticity<br />

directs stem cell lineage specifi cation . <strong>Cell</strong> . 126 : 677 – 689 . http://dx.doi<br />

.org/10.1016/j.cell.2006.06.044<br />

Erler , J.T. , K.L. Bennewith , M. Nicolau , N. Dornhöfer , C. Kong , Q.T. Le , J.T.<br />

Chi , S.S. Jeffrey , and A.J. Giaccia . 2006 . Lysyl oxidase is essential for<br />

hypoxia-induced metastasis . Nature . 440 : 1222 – 1226 . http://dx.doi.org/10<br />

.1038/nature04695<br />

Erler , J.T. , K.L. Bennewith , T.R. Cox , G. Lang , D. Bird , A. Koong , Q.-T. Le ,<br />

and A.J. Giaccia . 2009 . Hypoxia-induced lysyl oxidase is a critical mediator<br />

<strong>of</strong> bone marrow cell recruitment to form the premetastatic niche .<br />

Cancer <strong>Cell</strong> . 15 : 35 – 44 . http://dx.doi.org/10.1016/j.ccr.2008.11.012<br />

Feigin , M.E. , and S.K. Muthuswamy . 2009 . Polarity proteins regulate mammalian<br />

cell-cell junctions and cancer pathogenesis . Curr. Opin. <strong>Cell</strong> Biol.<br />

21 : 694 – 700 . http://dx.doi.org/10.1016/j.ceb.2009.07.003<br />

Fernandez-Gonzalez , R. , Sde.M. Simoes , J.C. Röper , S. Eaton , and J.A. Zallen .<br />

2009 . Myosin II dynamics are regulated by tension in intercalating cells .<br />

Dev. <strong>Cell</strong> . 17 : 736 – 743 . http://dx.doi.org/10.1016/j.devcel.2009.09.003<br />

Franco , C. , K. Britto , E. Wong , G. Hou , S.-N. Zhu , M. Chen , M.I. Cybulsky , and<br />

M.P. Bendeck . 2009 . Discoidin domain receptor 1 on bone marrow-derived<br />

cells promotes macrophage accumulation during atherogenesis . Circ. Res.<br />

105 : 1141 – 1148 . http://dx.doi.org/10.1161/CIRCRESAHA.109.207357<br />

Frantz , C. , K.M. Stewart , and V.M. Weaver . 2010 . <strong>The</strong> extracellular matrix at a<br />

glance . J. <strong>Cell</strong> Sci. 123 : 4195 – 4200 . http://dx.doi.org/10.1242/jcs.023820<br />

Frye , M. , C. Gardner , E.R. Li , I. Arnold , and F.M. Watt . 2003 . Evidence that Myc<br />

activation depletes the epidermal stem cell compartment by modulating<br />

adhesive interactions with the local microenvironment . Development .<br />

130 : 2793 – 2808 . http://dx.doi.org/10.1242/dev.00462<br />

Fuchs , E. , T. Tumbar , and G. Guasch . 2004 . Socializing with the neighbors:<br />

Stem cells and their niche . <strong>Cell</strong> . 116 : 769 – 778 . http://dx.doi.org/10.1016/<br />

S0092-8674(04)00255-7<br />

Garcion , E. , A. Halilagic , A. Faissner , and C. ffrench-Constant . 2004 . Generation<br />

<strong>of</strong> an environmental niche for neural stem cell development by the<br />

extracellular matrix molecule tenascin C . Development . 131 : 3423 – 3432 .<br />

http://dx.doi.org/10.1242/dev.01202<br />

Gehler , S. , M. Baldassarre , Y. Lad , J.L. Leight , M.A. Wozniak , K.M. Riching ,<br />

K.W. Eliceiri , V.M. Weaver , D.A. Calderwood , and P.J. Keely . 2009 .<br />

Filamin A-beta1 integrin complex tunes epithelial cell response to matrix<br />

tension . Mol. Biol. <strong>Cell</strong> . 20 : 3224 – 3238 . http://dx.doi.org/10.1091/mbc<br />

.E08-12-1186<br />

Genís , L. , P. Gonzalo , A.S. Tutor , B.G. Gálvez , A. Martínez-Ruiz , C. Zaragoza ,<br />

S. Lamas , K. Tryggvason , S.S. Apte , and A.G. Arroyo . 2007 . Functional<br />

interplay between endothelial nitric oxide synthase and membrane type 1<br />

matrix metalloproteinase in migrating endothelial cells . Blood . 110 : 2916 –<br />

2923 . http://dx.doi.org/10.1182/blood-2007-01-068080<br />

Ghajar , C.M. , and M.J. Bissell . 2008 . Extracellular matrix control <strong>of</strong> mammary<br />

gland morphogenesis and tumorigenesis: Insights from imaging .<br />

Histochem. <strong>Cell</strong> Biol. 130 : 1105 – 1118 . http://dx.doi.org/10.1007/s00418-<br />

008-0537-1<br />

Gilbert , P.M. , K.L. Havenstrite , K.E.G. Magnusson , A. Sacco , N.A. Leonardi , P.<br />

Kraft , N.K. Nguyen , S. Thrun , M.P. Lutolf , and H.M. Blau . 2010 . Substrate<br />

elasticity regulates skeletal muscle stem cell self-renewal in culture . Science .<br />

329 : 1078 – 1081 . http://dx.doi.org/10.1126/science.1191035<br />

Hanahan , D. , and R.A. Weinberg . 2000 . <strong>The</strong> hallmarks <strong>of</strong> cancer . <strong>Cell</strong> . 100 : 57 – 70 .<br />

http://dx.doi.org/10.1016/S0092-8674(00)81683-9<br />

Hanahan , D. , and R.A. Weinberg . 2011 . Hallmarks <strong>of</strong> cancer: <strong>The</strong> next generation<br />

. <strong>Cell</strong> . 144 : 646 – 674 . http://dx.doi.org/10.1016/j.cell.2011.02.013<br />

Hashizume , H. , P. Baluk , S. Morikawa , J.W. McLean , G. Thurston , S. Roberge ,<br />

R.K. Jain , and D.M. McDonald . 2000 . Openings between defective endothelial<br />

cells explain tumor vessel leakiness . Am. J. Pathol. 156 : 1363 –<br />

1380 . http://dx.doi.org/10.1016/S0002-9440(10)65006-7<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

Hewitt , R.E. , D.G. Powe , K. Morrell , E. Balley , I.H. Leach , I.O. Ellis , and D.R.<br />

Turner . 1997 . Laminin and collagen IV subunit distribution in normal and<br />

neoplastic tissues <strong>of</strong> colorectum and breast . Br. J. Cancer . 75 : 221 – 229 .<br />

http://dx.doi.org/10.1038/bjc.1997.37<br />

Hiratsuka , S. , K. Nakamura , S. Iwai , M. Murakami , T. Itoh , H. Kijima , J.M.<br />

Shipley , R.M. Senior , and M. Shibuya . 2002 . MMP9 induction by vascular<br />

endothelial growth factor receptor-1 is involved in lung-specifi c metastasis<br />

. Cancer <strong>Cell</strong> . 2 : 289 – 300 . http://dx.doi.org/10.1016/S1535-6108(02)<br />

00153-8<br />

Houghton , A.M. , P.A. Quintero , D.L. Perkins , D.K. Kobayashi , D.G. Kelley ,<br />

L.A. Marconcini , R.P. Mecham , R.M. Senior , and S.D. Shapiro . 2006 .<br />

Elastin fragments drive disease progression in a murine model <strong>of</strong> emphysema<br />

. J. Clin. Invest. 116 : 753 – 759 . http://dx.doi.org/10.1172/JCI25617<br />

Huang , X.Z. , J.F. Wu , R. Ferrando , J.H. Lee , Y.L. Wang , R.V. Farese Jr ., and<br />

D. Sheppard . 2000 . Fatal bilateral chylothorax in mice lacking the integrin<br />

alpha9beta1 . Mol. <strong>Cell</strong>. Biol. 20 : 5208 – 5215 . http://dx.doi.org/10<br />

.1128/MCB.20.14.5208-5215.2000<br />

Huijbers , I.J. , M. Iravani , S. Popov , D. Robertson , S. Al-Sarraj , C. Jones , and<br />

C.M. Isacke . 2010 . A role for fi brillar collagen deposition and the collagen<br />

internalization receptor endo180 in glioma invasion . PLoS ONE .<br />

5 : e9808 . http://dx.doi.org/10.1371/journal.pone.0009808<br />

Hur , E.M. , S. Youssef , M.E. Haws , S.Y. Zhang , R.A. Sobel , and L. Steinman .<br />

2007 . Osteopontin-induced relapse and progression <strong>of</strong> autoimmune brain<br />

disease through enhanced survival <strong>of</strong> activated T cells . Nat. Immunol.<br />

8 : 74 – 83 . http://dx.doi.org/10.1038/ni1415<br />

Hynes , R.O. 2009 . <strong>The</strong> extracellular matrix: Not just pretty fi brils . Science .<br />

326 : 1216 – 1219 . http://dx.doi.org/10.1126/science.1176009<br />

Ilan , N. , M. Elkin , and I. Vlodavsky . 2006 . Regulation, function and clinical signifi -<br />

cance <strong>of</strong> heparanase in cancer metastasis and angiogenesis . Int. J. Biochem.<br />

<strong>Cell</strong> Biol. 38 : 2018 – 2039 . http://dx.doi.org/10.1016/j.biocel.2006.06.004<br />

Jones , D.H. , T. Nakashima , O.H. Sanchez , I. Kozieradzki , S.V. Komarova ,<br />

I. Sarosi , S. Morony , E. Rubin , R. Sarao , C.V. Hojilla , et al . 2006 .<br />

Regulation <strong>of</strong> cancer cell migration and bone metastasis by RANKL .<br />

Nature . 440 : 692 – 696 . http://dx.doi.org/10.1038/nature04524<br />

Kainz , C. , P. Kohlberger , C. Tempfer , G. Sliutz , G. Gitsch , A. Reinthaller ,<br />

and G. Breitenecker . 1995 . Prognostic value <strong>of</strong> CD44 splice variants in<br />

human stage III cervical cancer . Eur. J. Cancer . 31A : 1706 – 1709 . http://<br />

dx.doi.org/10.1016/0959-8049(95)00353-K<br />

Kaplan , G. 1983 . In vitro differentiation <strong>of</strong> human monocytes. Monocytes cultured<br />

on glass are cytotoxic to tumor cells but monocytes cultured on collagen are<br />

not . J. Exp. Med. 157 : 2061 – 2072 . http://dx.doi.org/10.1084/jem.157.6.2061<br />

Kaplan , R.N. , R.D. Riba , S. Zacharoulis , A.H. Bramley , L. Vincent , C. Costa , D.D.<br />

MacDonald , D.K. Jin , K. Shido , S.A. Kerns , et al . 2005 . VEGFR1-positive<br />

haematopoietic bone marrow progenitors initiate the pre-metastatic niche .<br />

Nature . 438 : 820 – 827 . http://dx.doi.org/10.1038/nature04186<br />

Kauppila , S. , F. Stenbäck , J. Risteli , A. Jukkola , and L. Risteli . 1998 . Aberrant<br />

type I and type III collagen gene expression in human breast cancer<br />

in vivo . J. Pathol. 186 : 262 – 268 . http://dx.doi.org/10.1002/(SICI)1096-<br />

9896(1998110)186:33.0.CO;2-3<br />

Kessenbrock , K. , V. Plaks , and Z. Werb . 2010 . Matrix metalloproteinases:<br />

Regulators <strong>of</strong> the tumor microenvironment . <strong>Cell</strong> . 141 : 52 – 67 . http://dx<br />

.doi.org/10.1016/j.cell.2010.03.015<br />

Klezovitch , O. , T.E. Fernandez , S.J. Tapscott , and V. Vasioukhin . 2004 . Loss <strong>of</strong><br />

cell polarity causes severe brain dysplasia in Lgl1 knockout mice . Genes<br />

Dev. 18 : 559 – 571 . http://dx.doi.org/10.1101/gad.1178004<br />

Kollet , O. , A. Dar , S. Shivtiel , A. Kalinkovich , K. Lapid , Y. Sztainberg , M. Tesio ,<br />

R.M. Samstein , P. Goichberg , A. Spiegel , et al . 2006 . Osteoclasts degrade<br />

endosteal components and promote mobilization <strong>of</strong> hematopoietic progenitor<br />

cells . Nat. Med. 12 : 657 – 664 . http://dx.doi.org/10.1038/nm1417<br />

Kölsch , V. , T. Seher , G.J. Fernandez-Ballester , L. Serrano , and M. Leptin .<br />

2007 . Control <strong>of</strong> Drosophila gastrulation by apical localization <strong>of</strong> adherens<br />

junctions and RhoGEF2 . Science . 315 : 384 – 386 . http://dx.doi.org/<br />

10.1126/science.1134833<br />

Lambert , J.D. , and L.M. Nagy . 2002 . Asymmetric inheritance <strong>of</strong> centrosomally<br />

localized mRNAs during embryonic cleavages . Nature . 420 : 682 – 686 .<br />

http://dx.doi.org/10.1038/nature01241<br />

Lämmermann , T. , B.L. Bader , S.J. Monkley , T. Worbs , R. Wedlich-Söldner , K.<br />

Hirsch , M. Keller , R. Förster , D.R. Critchley , R. Fässler , and M. Sixt .<br />

2008 . Rapid leukocyte migration by integrin-independent fl owing and<br />

squeezing . Nature . 453 : 51 – 55 . http://dx.doi.org/10.1038/nature06887<br />

Latimer , A. , and J.R. Jessen . 2010 . Extracellular matrix assembly and organization<br />

during zebrafi sh gastrulation . Matrix Biol. 29 : 89 – 96 . http://dx.doi<br />

.org/10.1016/j.matbio.2009.10.002<br />

Le , Q.T. , J. Harris , A.M. Magliocco , C.S. Kong , R. Diaz , B. Shin , H. Cao , A.<br />

Trotti , J.T. Erler , C.H. Chung , et al . 2009 . Validation <strong>of</strong> lysyl oxidase as a<br />

prognostic marker for metastasis and survival in head and neck squamous<br />

cell carcinoma: Radiation <strong>The</strong>rapy Oncology Group trial 90-03 . J. Clin.<br />

Oncol. 27 : 4281 – 4286 . http://dx.doi.org/10.1200/JCO.2008.20.6003


Lechler , T. , and E. Fuchs . 2005 . Asymmetric cell divisions promote stratifi cation<br />

and differentiation <strong>of</strong> mammalian skin . Nature . 437 : 275 – 280 . http://<br />

dx.doi.org/10.1038/nature03922<br />

Levental , K.R. , H. Yu , L. Kass , J.N. Lakins , M. Egeblad , J.T. Erler , S.F. Fong ,<br />

K. Csiszar , A. Giaccia , W. Weninger , et al . 2009 . Matrix crosslinking<br />

forces tumor progression by enhancing integrin signaling . <strong>Cell</strong> . 139 : 891 –<br />

906 . http://dx.doi.org/10.1016/j.cell.2009.10.027<br />

Li , H.-S. , D. Wang , Q. Shen , M.D. Schonemann , J.A. Gorski , K.R. Jones ,<br />

S. Temple , L.Y. Jan , and Y.N. Jan . 2003 . Inactivation <strong>of</strong> Numb and<br />

Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts<br />

cortical morphogenesis . Neuron . 40 : 1105 – 1118 . http://dx.doi.org/<br />

10.1016/S0896-6273(03)00755-4<br />

Li , L. , and T. Xie . 2005 . Stem cell niche: Structure and function . Annu. Rev.<br />

<strong>Cell</strong> Dev. Biol. 21 : 605 – 631 . http://dx.doi.org/10.1146/annurev.cellbio.21<br />

.012704.131525<br />

Loeffl er , M. , J.A. Krüger , A.G. Niethammer , and R.A. Reisfeld . 2006 . Targeting<br />

tumor-associated fi broblasts improves cancer chemotherapy by increasing<br />

intratumoral drug uptake . J. Clin. Invest. 116 : 1955 – 1962 . http://dx.doi<br />

.org/10.1172/JCI26532<br />

Lopez , J.I. , J.K. Mouw , and V.M. Weaver . 2008 . Biomechanical regulation <strong>of</strong><br />

cell orientation and fate . Oncogene . 27 : 6981 – 6993 . http://dx.doi.org/10<br />

.1038/onc.2008.348<br />

Lopez , J.I. , I. Kang , W.-K. You , D.M. McDonald , and V.M. Weaver . 2011 .<br />

In situ force mapping <strong>of</strong> mammary gland transformation . Integr Biol<br />

(Camb) . 3 : 910 – 921 . http://dx.doi.org/10.1039/c1ib00043h<br />

Lu , P. , K. Takai , V.M. Weaver , and Z. Werb . 2011 . Extracellular matrix degradation<br />

and remodeling in development and disease . Cold Spring Harb. Perspect.<br />

Biol. 3 : a005058 . http://dx.doi.org/10.1101/cshperspect.a005058<br />

Luo , J. , N.L. Solimini , and S.J. Elledge . 2009 . Principles <strong>of</strong> cancer therapy:<br />

Oncogene and non-oncogene addiction . <strong>Cell</strong> . 136 : 823 – 837 . http://dx.doi<br />

.org/10.1016/j.cell.2009.02.024<br />

Lutolf , M.P. , P.M. Gilbert , and H.M. Blau . 2009 . Designing materials to direct stemcell<br />

fate . Nature . 462 : 433 – 441 . http://dx.doi.org/10.1038/nature08602<br />

Lymperi , S. , F. Ferraro , and D.T. Scadden . 2010 . <strong>The</strong> HSC niche concept has<br />

turned 31. Has our knowledge matured? Ann. NY Acad. Sci. 1192 : 12 – 18 .<br />

http://dx.doi.org/10.1111/j.1749-6632.2009.05223.x<br />

Maeda , T. , T. Sakabe , A. Sunaga , K. Sakai , A.L. Rivera , D.R. Keene , T. Sasaki ,<br />

E. Stavnezer , J. Iannotti , R. Schweitzer , et al . 2011 . Conversion <strong>of</strong> mechanical<br />

force into TGF- � -mediated biochemical signals . Curr. Biol.<br />

21 : 933 – 941 . http://dx.doi.org/10.1016/j.cub.2011.04.007<br />

McAllister , S.S. , and R.A. Weinberg . 2010 . Tumor-host interactions: A far-reaching<br />

relationship . J. Clin. Oncol. 28 : 4022 – 4028 . http://dx.doi.org/10.1200/JCO<br />

.2010.28.4257<br />

McBeath , R. , D.M. Pirone , C.M. Nelson , K. Bhadriraju , and C.S. Chen . 2004 . <strong>Cell</strong><br />

shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment<br />

. Dev. <strong>Cell</strong> . 6 : 483 – 495 . http://dx.doi.org/10.1016/S1534-5807(04)<br />

00075-9<br />

Meyaard , L. 2008 . <strong>The</strong> inhibitory collagen receptor LAIR-1 (CD305) . J. Leukoc.<br />

Biol. 83 : 799 – 803 . http://dx.doi.org/10.1189/jlb.0907609<br />

Montell , D.J. 2008 . Morphogenetic cell movements: Diversity from modular mechanical<br />

properties . Science . 322 : 1502 – 1505 . http://dx.doi.org/10.1126/<br />

science.1164073<br />

Mott , J.D. , and Z. Werb . 2004 . Regulation <strong>of</strong> matrix biology by matrix metalloproteinases<br />

. Curr. Opin. <strong>Cell</strong> Biol. 16 : 558 – 564 . http://dx.doi.org/10<br />

.1016/j.ceb.2004.07.010<br />

Myers , K.A. , K.T. Applegate , G. Danuser , R.S. Fischer , and C.M. Waterman .<br />

2011 . Distinct ECM mechanosensing pathways regulate microtubule dynamics<br />

to control endothelial cell branching morphogenesis . J. <strong>Cell</strong> Biol.<br />

192 : 321 – 334 . http://dx.doi.org/10.1083/jcb.201006009<br />

Nasser , N.J. 2008 . Heparanase involvement in physiology and disease . <strong>Cell</strong>. Mol.<br />

Life Sci. 65 : 1706 – 1715 . http://dx.doi.org/10.1007/s00018-008-7584-6<br />

Netelenbos , T. , S. Zuijderduijn , J. Van Den Born , F.L. Kessler , S. Zweegman ,<br />

P.C. Huijgens , and A.M. Dräger . 2002 . Proteoglycans guide SDF-1induced<br />

migration <strong>of</strong> hematopoietic progenitor cells . J. Leukoc. Biol.<br />

72 : 353 – 362 .<br />

Newman , A.C. , M.N. Nakatsu , W. Chou , P.D. Gershon , and C.C.W. Hughes .<br />

2011 . <strong>The</strong> requirement for fi broblasts in angiogenesis: Fibroblast-derived<br />

matrix proteins are essential for endothelial cell lumen formation . Mol.<br />

Biol. <strong>Cell</strong> . 22 : 3791 – 3800 . http://dx.doi.org/10.1091/mbc.E11-05-0393<br />

Nguyen , D.X. , P.D. Bos , and J. Massagué . 2009 . Metastasis: From dissemination<br />

to organ-specifi c colonization . Nat. Rev. Cancer . 9 : 274 – 284 . http://<br />

dx.doi.org/10.1038/nrc2622<br />

Norton , W.H.J. , J. Ledin , H. Grandel , and C.J. Neumann . 2005 . HSPG synthesis by<br />

zebrafi sh Ext2 and Extl3 is required for Fgf10 signalling during limb development<br />

. Development . 132 : 4963 – 4973 . http://dx.doi.org/10.1242/dev.02084<br />

Olive , K.P. , M.A. Jacobetz , C.J. Davidson , A. Gopinathan , D. McIntyre , D.<br />

Honess , B. Madhu , M.A. Goldgraben , M.E. Caldwell , D. Allard , et al .<br />

JCB Highlights 2012 27<br />

2009 . Inhibition <strong>of</strong> Hedgehog signaling enhances delivery <strong>of</strong> chemotherapy<br />

in a mouse model <strong>of</strong> pancreatic cancer . Science . 324 : 1457 – 1461 .<br />

http://dx.doi.org/10.1126/science.1171362<br />

O’Reilly , A.M. , H.H. Lee , and M.A. Simon . 2008 . Integrins control the positioning<br />

and proliferation <strong>of</strong> follicle stem cells in the Drosophila ovary . J. <strong>Cell</strong><br />

Biol. 182 : 801 – 815 . http://dx.doi.org/10.1083/jcb.200710141<br />

Orimo , A. , P.B. Gupta , D.C. Sgroi , F. Arenzana-Seisdedos , T. Delaunay , R.<br />

Naeem , V.J. Carey , A.L. Richardson , and R.A. Weinberg . 2005 . Stromal<br />

fi broblasts present in invasive human breast carcinomas promote tumor<br />

growth and angiogenesis through elevated SDF-1/CXCL12 secretion .<br />

<strong>Cell</strong> . 121 : 335 – 348 . http://dx.doi.org/10.1016/j.cell.2005.02.034<br />

Ozbek , S. , P.G. Balasubramanian , R. Chiquet-Ehrismann , R.P. Tucker , and J.C.<br />

Adams . 2010 . <strong>The</strong> evolution <strong>of</strong> extracellular matrix . Mol. Biol. <strong>Cell</strong> .<br />

21 : 4300 – 4305 . http://dx.doi.org/10.1091/mbc.E10-03-0251<br />

Page-McCaw , A. , A.J. Ewald , and Z. Werb . 2007 . Matrix metalloproteinases and<br />

the regulation <strong>of</strong> tissue remodelling . Nat. Rev. Mol. <strong>Cell</strong> Biol. 8 : 221 – 233 .<br />

http://dx.doi.org/10.1038/nrm2125<br />

Paget , S. 1889 . <strong>The</strong> distribution <strong>of</strong> secondary growths in cancer <strong>of</strong> the breast .<br />

Lancet . 133 : 571 – 573 . http://dx.doi.org/10.1016/S0140-6736(00)49915-0<br />

Paszek , M.J. , N. Zahir , K.R. Johnson , J.N. Lakins , G.I. Rozenberg , A. Gefen ,<br />

C.A. Reinhart-King , S.S. Margulies , M. Dembo , D. Boettiger , et al .<br />

2005 . Tensional homeostasis and the malignant phenotype . Cancer <strong>Cell</strong> .<br />

8 : 241 – 254 . http://dx.doi.org/10.1016/j.ccr.2005.08.010<br />

Pouille , P.A. , P. Ahmadi , A.C. Brunet , and E. Farge . 2009 . Mechanical signals<br />

trigger Myosin II redistribution and mesoderm invagination in Drosophila<br />

embryos . Sci. Signal. 2 : ra16 . http://dx.doi.org/10.1126/scisignal.2000098<br />

Provenzano , P.P. , K.W. Eliceiri , J.M. Campbell , D.R. Inman , J.G. White , and P.J.<br />

Keely . 2006 . Collagen reorganization at the tumor-stromal interface facilitates<br />

local invasion . BMC Med. 4 : 38 . http://dx.doi.org/10.1186/1741-<br />

7015-4-38<br />

Psaila , B. , and D. Lyden . 2009 . <strong>The</strong> metastatic niche: Adapting the foreign soil .<br />

Nat. Rev. Cancer . 9 : 285 – 293 . http://dx.doi.org/10.1038/nrc2621<br />

Quante , M. , S.P. Tu , H. Tomita , T. Gonda , S.S.W. Wang , S. Takashi , G.H. Baik ,<br />

W. Shibata , B. Diprete , K.S. Betz , et al . 2011 . Bone marrow-derived my<strong>of</strong>i<br />

broblasts contribute to the mesenchymal stem cell niche and promote<br />

tumor growth . Cancer <strong>Cell</strong> . 19 : 257 – 272 . http://dx.doi.org/10.1016/j.ccr<br />

.2011.01.020<br />

Radisky , E.S. , and D.C. Radisky . 2010 . Matrix metalloproteinase-induced<br />

epithelial-mesenchymal transition in breast cancer . J. Mammary Gland<br />

Biol. Neoplasia . 15 : 201 – 212 . http://dx.doi.org/10.1007/s10911-010-<br />

9177-x<br />

Radtke , F. , and H. Clevers . 2005 . Self-renewal and cancer <strong>of</strong> the gut: Two sides<br />

<strong>of</strong> a coin . Science . 307 : 1904 – 1909 . http://dx.doi.org/10.1126/science<br />

.1104815<br />

Raymond , K. , M.A. Deugnier , M.M. Faraldo , and M.A. Glukhova . 2009 .<br />

Adhesion within the stem cell niches . Curr. Opin. <strong>Cell</strong> Biol. 21 : 623 – 629 .<br />

http://dx.doi.org/10.1016/j.ceb.2009.05.004<br />

Rebustini , I.T. , C. Myers , K.S. Lassiter , A. Surmak , L. Szabova , K. Holmbeck ,<br />

V. Pedchenko , B.G. Hudson , and M.P. H<strong>of</strong>fman . 2009 . MT2-MMPdependent<br />

release <strong>of</strong> collagen IV NC1 domains regulates submandibular<br />

gland branching morphogenesis . Dev. <strong>Cell</strong> . 17 : 482 – 493 . http://dx.doi.org/<br />

10.1016/j.devcel.2009.07.016<br />

Reilly , G.C. , and A.J. Engler . 2010 . Intrinsic extracellular matrix properties regulate<br />

stem cell differentiation . J. Biomech. 43 : 55 – 62 . http://dx.doi.org/<br />

10.1016/j.jbiomech.2009.09.009<br />

Ripoll , C.B. , M. Flaat , J. Klopf-Eiermann , J.M. Fisher-Perkins , C.B. Trygg , B.A.<br />

Scruggs , M.L. McCants , H.P. Leonard , A.F. Lin , S. Zhang , et al . 2011 .<br />

Mesenchymal lineage stem cells have pronounced anti-infl ammatory effects<br />

in the twitcher mouse model <strong>of</strong> Krabbe’s disease . Stem <strong>Cell</strong>s . 29 : 67 – 77 .<br />

http://dx.doi.org/10.1002/stem.555<br />

Rowe , R.G. , and S.J. Weiss . 2008 . Breaching the basement membrane: Who,<br />

when and how? Trends <strong>Cell</strong> Biol. 18 : 560 – 574 . http://dx.doi.org/10.1016/<br />

j.tcb.2008.08.007<br />

Ruoslahti , E. 2002 . Specialization <strong>of</strong> tumour vasculature . Nat. Rev. Cancer .<br />

2 : 83 – 90 . http://dx.doi.org/10.1038/nrc724<br />

Samuel , M.S. , J.I. Lopez , E.J. McGhee , D.R. Cr<strong>of</strong>t , D. Strachan , P. Timpson ,<br />

J. Munro , E. Schröder , J. Zhou , V.G. Brunton , et al . 2011 . Actomyosinmediated<br />

cellular tension drives increased tissue stiffness and � -catenin<br />

activation to induce epidermal hyperplasia and tumor growth . Cancer<br />

<strong>Cell</strong> . 19 : 776 – 791 . http://dx.doi.org/10.1016/j.ccr.2011.05.008<br />

Sawada , Y. , M. Tamada , B.J. Dubin-Thaler , O. Cherniavskaya , R. Sakai , S.<br />

Tanaka , and M.P. Sheetz . 2006 . Force sensing by mechanical extension<br />

<strong>of</strong> the Src family kinase substrate p130Cas . <strong>Cell</strong> . 127 : 1015 – 1026 . http://<br />

dx.doi.org/10.1016/j.cell.2006.09.044<br />

Shen , Q. , Y. Wang , E. Kokovay , G. Lin , S.M. Chuang , S.K. Goderie , B.<br />

Roysam , and S. Temple . 2008 . Adult SVZ stem cells lie in a vascular<br />

niche: A quantitative analysis <strong>of</strong> niche cell-cell interactions . <strong>Cell</strong> Stem<br />

<strong>Cell</strong> . 3 : 289 – 300 . http://dx.doi.org/10.1016/j.stem.2008.07.026<br />

Extracellular matrix in cancer progression • Lu et al.<br />

405


28<br />

406<br />

Singer , N.G. , and A.I. Caplan . 2011 . Mesenchymal stem cells: Mechanisms <strong>of</strong><br />

infl ammation . Annu. Rev. Pathol. 6 : 457 – 478 . http://dx.doi.org/10.1146/<br />

annurev-pathol-011110-130230<br />

Skoglund , P. , and R. Keller . 2010 . Integration <strong>of</strong> planar cell polarity and ECM<br />

signaling in elongation <strong>of</strong> the vertebrate body plan . Curr. Opin. <strong>Cell</strong> Biol.<br />

22 : 589 – 596 . http://dx.doi.org/10.1016/j.ceb.2010.07.012<br />

Solon , J. , A. Kaya-Copur , J. Colombelli , and D. Brunner . 2009 . Pulsed forces<br />

timed by a ratchet-like mechanism drive directed tissue movement during<br />

dorsal closure . <strong>Cell</strong> . 137 : 1331 – 1342 . http://dx.doi.org/10.1016/j.cell.2009<br />

.03.050<br />

Song , W. , K. Jackson , and P.G. McGuire . 2000 . Degradation <strong>of</strong> type IV collagen<br />

by matrix metalloproteinases is an important step in the epithelialmesenchymal<br />

transformation <strong>of</strong> the endocardial cushions . Dev. Biol.<br />

227 : 606 – 617 . http://dx.doi.org/10.1006/dbio.2000.9919<br />

Sorokin , L. 2010 . <strong>The</strong> impact <strong>of</strong> the extracellular matrix on infl ammation . Nat.<br />

Rev. Immunol. 10 : 712 – 723 . http://dx.doi.org/10.1038/nri2852<br />

Stauder , R. , W. Eisterer , J. Thaler , and U. Günthert . 1995 . CD44 variant is<strong>of</strong>orms<br />

in non-Hodgkin’s lymphoma: A new independent prognostic factor<br />

. Blood . 85 : 2885 – 2899 .<br />

Sternlicht , M.D. , A. Lochter , C.J. Sympson , B. Huey , J.P. Rougier , J.W. Gray , D.<br />

Pinkel , M.J. Bissell , and Z. Werb . 1999 . <strong>The</strong> stromal proteinase MMP3/<br />

stromelysin-1 promotes mammary carcinogenesis . <strong>Cell</strong> . 98 : 137 – 146 .<br />

http://dx.doi.org/10.1016/S0092-8674(00)81009-0<br />

Stickens , D. , D.J. Behonick , N. Ortega , B. Heyer , B. Hartenstein , Y. Yu , A.J.<br />

Fosang , M. Schorpp-Kistner , P. Angel , and Z. Werb . 2004 . Altered<br />

endochondral bone development in matrix metalloproteinase 13-defi cient<br />

mice . Development . 131 : 5883 – 5895 . http://dx.doi.org/10.1242/dev<br />

.01461<br />

Sweet , D.T. , Z. Chen , D.M. Wiley , V.L. Bautch , and E. Tzima . 2011 . <strong>The</strong> adaptor<br />

protein Shc integrates growth factor and ECM signaling during postnatal<br />

angiogenesis . Blood .<br />

Tanentzapf , G. , D. Devenport , D. Godt , and N.H. Brown . 2007 . Integrin-dependent<br />

anchoring <strong>of</strong> a stem-cell niche . Nat. <strong>Cell</strong> Biol. 9 : 1413 – 1418 . http://dx.doi<br />

.org/10.1038/ncb1660<br />

van Hinsbergh , V.W. , and P. Koolwijk . 2008 . Endothelial sprouting and angiogenesis:<br />

Matrix metalloproteinases in the lead . Cardiovasc. Res. 78 : 203 –<br />

212 . http://dx.doi.org/10.1093/cvr/cvm102<br />

Wang , P. , C. Ballestrem , and C.H. Streuli . 2011 . <strong>The</strong> C terminus <strong>of</strong> talin links<br />

integrins to cell cycle progression . J. <strong>Cell</strong> Biol. 195 : 499 – 513 . http://dx.doi<br />

.org/10.1083/jcb.201104128<br />

Wang , S. , M.B. Voisin , K.Y. Larbi , J. Dangerfi eld , C. Scheiermann , M. Tran ,<br />

P.H. Maxwell , L. Sorokin , and S. Nourshargh . 2006 . Venular basement<br />

membranes contain specifi c matrix protein low expression regions that<br />

act as exit points for emigrating neutrophils . J. Exp. Med. 203 : 1519 –<br />

1532 . http://dx.doi.org/10.1084/jem.20051210<br />

Wang , W. , J.B. Wyck<strong>of</strong>f , V.C. Frohlich , Y. Oleynikov , S. Hüttelmaier , J.<br />

Zavadil , L. Cermak , E.P. Bottinger , R.H. Singer , J.G. White , et al . 2002 .<br />

Single cell behavior in metastatic primary mammary tumors correlated<br />

with gene expression patterns revealed by molecular pr<strong>of</strong>i ling . Cancer<br />

Res. 62 : 6278 – 6288 .<br />

Weathington , N.M. , A.H. van Houwelingen , B.D. Noerager , P.L. Jackson , A.D.<br />

Kraneveld , F.S. Galin , G. Folkerts , F.P. Nijkamp , and J.E. Blalock . 2006 .<br />

A novel peptide CXCR ligand derived from extracellular matrix degradation<br />

during airway infl ammation . Nat. Med. 12 : 317 – 323 . http://dx.doi<br />

.org/10.1038/nm1361<br />

Whittaker , C.A. , K.-F. Bergeron , J. Whittle , B.P. Brandhorst , R.D. Burke , and<br />

R.O. Hynes . 2006 . <strong>The</strong> echinoderm adhesome . Dev. Biol. 300 : 252 – 266 .<br />

http://dx.doi.org/10.1016/j.ydbio.2006.07.044<br />

Wiseman , B.S. , and Z. Werb . 2002 . Stromal effects on mammary gland development<br />

and breast cancer . Science . 296 : 1046 – 1049 . http://dx.doi.org/<br />

10.1126/science.1067431<br />

Wiseman , B.S. , M.D. Sternlicht , L.R. Lund , C.M. Alexander , J. Mott , M.J.<br />

Bissell , P. Soloway , S. Itohara , and Z. Werb . 2003 . Site-specifi c inductive<br />

and inhibitory activities <strong>of</strong> MMP-2 and MMP-3 orchestrate mammary<br />

gland branching morphogenesis . J. <strong>Cell</strong> Biol. 162 : 1123 – 1133 . http://<br />

dx.doi.org/10.1083/jcb.200302090<br />

Wozniak , M.A. , R. Desai , P.A. Solski , C.J. Der , and P.J. Keely . 2003 . ROCKgenerated<br />

contractility regulates breast epithelial cell differentiation in response<br />

to the physical properties <strong>of</strong> a three-dimensional collagen matrix .<br />

J. <strong>Cell</strong> Biol. 163 : 583 – 595 . http://dx.doi.org/10.1083/jcb.200305010<br />

Wyck<strong>of</strong>f , J.B. , Y. Wang , E.Y. Lin , J.F. Li , S. Goswami , E.R. Stanley , J.E. Segall ,<br />

J.W. Pollard , and J. Condeelis . 2007 . Direct visualization <strong>of</strong> macrophage-assisted<br />

tumor cell intravasation in mammary tumors . Cancer Res.<br />

67 : 2649 – 2656 . http://dx.doi.org/10.1158/0008-5472.CAN-06-1823<br />

Xie , K. , and J.L. Abbruzzese . 2003 . Developmental biology informs cancer: <strong>The</strong><br />

emerging role <strong>of</strong> the hedgehog signaling pathway in upper gastrointestinal<br />

cancers . Cancer <strong>Cell</strong> . 4 : 245 – 247 . http://dx.doi.org/10.1016/S1535-<br />

6108(03)00246-0<br />

JCB • VOLUME 196 • NUMBER 4 • 2012<br />

Yamashita , Y.M. , and M.T. Fuller . 2008 . Asymmetric centrosome behavior and<br />

the mechanisms <strong>of</strong> stem cell division . J. <strong>Cell</strong> Biol. 180 : 261 – 266 . http://<br />

dx.doi.org/10.1083/jcb.200707083<br />

Yamashita , Y.M. , M.T. Fuller , and D.L. Jones . 2005 . Signaling in stem cell<br />

niches: Lessons from the Drosophila germline . J. <strong>Cell</strong> Sci. 118 : 665 – 672 .<br />

http://dx.doi.org/10.1242/jcs.01680<br />

Yu , H. , J.K. Mouw , and V.M. Weaver . 2011 . Forcing form and function:<br />

Biomechanical regulation <strong>of</strong> tumor evolution . Trends <strong>Cell</strong> Biol. 21 : 47 – 56 .<br />

http://dx.doi.org/10.1016/j.tcb.2010.08.015<br />

Yu , Q. , B.P. Toole , and I. Stamenkovic . 1997 . Induction <strong>of</strong> apoptosis <strong>of</strong> metastatic<br />

mammary carcinoma cells in vivo by disruption <strong>of</strong> tumor cell surface<br />

CD44 function . J. Exp. Med. 186 : 1985 – 1996 . http://dx.doi.org/10.1084/<br />

jem.186.12.1985<br />

Zhu , G.-G. , L. Risteli , M. Mäkinen , J. Risteli , A. Kauppila , and F. Stenbäck .<br />

1995 . Immunohistochemical study <strong>of</strong> type I collagen and type I pN-collagen<br />

in benign and malignant ovarian neoplasms . Cancer . 75 : 1010 – 1017 .<br />

http://dx.doi.org/10.1002/1097-0142(19950215)75:43.0.CO;2-O


Tracing epithelial stem cells during development,<br />

homeostasis, and repair<br />

Alexandra Van Keymeulen 1 and Cédric Blanpain 1,2<br />

1<br />

Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), B-1070 Bruxelles, Belgium<br />

2 WELBIO, Université Libre de Bruxelles, 1070 Bruxelles, Belgium<br />

Epithelia ensure many critical functions <strong>of</strong> the body, including<br />

protection against the external environment, nutrition,<br />

respiration, and reproduction. Stem cells (SCs) located in<br />

the various epithelia ensure the homeostasis and repair <strong>of</strong><br />

these tissues throughout the lifetime <strong>of</strong> the animal. Genetic<br />

lineage tracing in mice has allowed the labeling <strong>of</strong> SCs and<br />

their progeny. This technique has been instrumental in characterizing<br />

the origin and heterogeneity <strong>of</strong> epithelial SCs,<br />

their tissue location, and their differentiation potential under<br />

physiological conditions and during tissue regeneration.<br />

Introduction<br />

Epithelia are sheets <strong>of</strong> cells that constitute the lining <strong>of</strong> most <strong>of</strong><br />

the organs <strong>of</strong> the body—such as the skin, the digestive and<br />

respiratory tracts, and the urogenital system—and separate the<br />

inside <strong>of</strong> the body from the outside ( Blanpain et al., 2007 ). An<br />

epithelium can be composed <strong>of</strong> one (simple epithelium) or multiple<br />

layers <strong>of</strong> cells (stratifi ed epithelium), and forms the majority<br />

<strong>of</strong> the glands. A variety <strong>of</strong> specialized differentiated cells present<br />

in these epithelia ensure the important diversity <strong>of</strong> physiological<br />

functions they control. <strong>The</strong> skin epidermis acts as a barrier that<br />

keeps fl uids in and protects the animal from the aggressions<br />

<strong>of</strong> the external environment. <strong>The</strong> lungs allow the gas exchange<br />

necessary for cellular respiration. <strong>The</strong> gut together with its associated<br />

glands allows the absorption <strong>of</strong> water and nutrients. <strong>The</strong><br />

urologic system allows the evacuation <strong>of</strong> ions, water, and toxic<br />

byproducts <strong>of</strong> metabolism. <strong>The</strong> genital tract ensures reproductive<br />

function. Due to their vital functions, epithelia have mechanisms<br />

to ensure their proper maintenance and functionality. Some<br />

epithelia such as the skin or the intestine have a very high cellular<br />

turnover to replace the cells that are continuously lost ( Barker<br />

et al., 2010a ). Other epithelia, such as those <strong>of</strong> the airway tracts,<br />

renew much more slowly under physiological conditions but<br />

nevertheless can rapidly and extensively proliferate to repair<br />

tissue upon damage or injuries ( Rock and Hogan, 2011 ). Stem<br />

cells (SCs) located in these different adult tissues are essential<br />

Correspondence to Cédric Blanpain: Cedric.Blanpain@ulb.ac.be<br />

Abbreviations used in this paper: HF, hair follicle; SC, stem cell.<br />

JCB: Review<br />

to sustain tissue turnover and repair these different epithelia<br />

upon injuries. SCs can renew throughout life and can differentiate<br />

into the different cell lineages <strong>of</strong> their tissue <strong>of</strong> origin. <strong>The</strong> balance<br />

between SC proliferation and differentiation must be precisely<br />

controlled, as deregulation <strong>of</strong> this process may lead to tissue atrophy<br />

and cancer formation. Carcinoma, which are tumors arising<br />

from epithelium, are by far the most common cancers in humans<br />

and lead to millions <strong>of</strong> death per year throughout the world.<br />

Different assays have been developed to study the function<br />

<strong>of</strong> epithelial SCs. Inspired by the fi eld <strong>of</strong> hematopoietic SCs,<br />

the most common assay to assess the renewal and differentiation<br />

<strong>of</strong> putative epithelial SCs is their transplantation into immunodefi<br />

cient animals ( Blanpain et al., 2007 ). Although transplantation<br />

assays are very informative about the differentiation potential<br />

<strong>of</strong> SCs, they do not necessarily refl ect physiological conditions<br />

because SCs are dissociated from their normal environment and<br />

very <strong>of</strong>ten transplanted into a heterotopic site, such as into the<br />

renal capsule (the fi brous layer surrounding the kidney) or the<br />

dermis, with or without their normal underlying mesenchyme.<br />

<strong>The</strong>se assays recapitulate embryonic development or severe<br />

regeneration conditions rather than normal tissue homeostasis.<br />

Lineage tracing has now become the method <strong>of</strong> choice to study<br />

the renewal and the differentiation potential <strong>of</strong> SCs in intact tissue,<br />

as this approach avoids the many drawbacks <strong>of</strong> transplantation<br />

experiments. In this technique, a particular cell lineage is labeled<br />

and the fate <strong>of</strong> the labeled cells and their progeny is analyzed<br />

over time. <strong>The</strong>se experiments are usually performed in mice coexpressing<br />

two different transgenes: a CRE recombinase expressed<br />

under a lineage-specifi c promoter, and a reporter gene only<br />

expressed when the CRE removes a stop cassette that precedes<br />

the reporter gene. Upon CRE excision <strong>of</strong> the stop cassette, the<br />

reporter transgene is permanently expressed in these cells and<br />

all their future progeny. Two different CRE genes can be used<br />

to perform such experiments: a constitutive CRE, which is naturally<br />

active, and an inducible CRE, which is usually fused to a<br />

mutated nuclear hormone receptor such as the estrogen receptor<br />

(ER) called CREER or progesterone receptor (PR) called CREPR.<br />

In the absence <strong>of</strong> their synthetic ligands (such as tamoxifen for the<br />

CREER or RU486 for the CREPR), the CREER is maintained<br />

© 2012 Van Keymeulen and Blanpain This article is distributed under the terms <strong>of</strong> an<br />

Attribution–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months after the<br />

publication date (see http://www.rupress.org/terms). After six months it is available under<br />

a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license,<br />

as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).<br />

<strong>The</strong> <strong>Rockefeller</strong> <strong>University</strong> Press<br />

J. <strong>Cell</strong> Biol. Vol. 197 No. 5 575–584<br />

www.jcb.org/cgi/doi/10.1083/jcb.201201041 JCB 575


30<br />

576<br />

inactive in the cytoplasm. Administration <strong>of</strong> the synthetic ligand<br />

induces activation <strong>of</strong> the inducible CRE recombinase, which in<br />

turn induces the expression <strong>of</strong> the reporter gene in the cells<br />

expressing the CRE and all their subsequent progeny, allowing<br />

the fate <strong>of</strong> labeled cells to be followed over time. <strong>The</strong> limitation<br />

<strong>of</strong> the inducible lineage tracing experiments is the identifi cation<br />

<strong>of</strong> a specifi c promoter that targets the SC <strong>of</strong> interest and the<br />

mosaic expression <strong>of</strong> the reporter gene within the SC population.<br />

<strong>The</strong> latter precludes one from drawing any fi rm conclusions<br />

about the fate <strong>of</strong> the nonlabeled cells. In these studies, it is generally<br />

assumed that the labeled cells are representative <strong>of</strong> the<br />

whole SC population. Because there is an important heterogeneity<br />

within epithelial SCs, one should always leave open the<br />

possibility <strong>of</strong> the existence <strong>of</strong> another population <strong>of</strong> epithelial<br />

SCs not labeled by this approach. <strong>The</strong> frequency <strong>of</strong> labeled cells<br />

over time is a good indication <strong>of</strong> whether these cells are in equilibrium<br />

with other SC populations; if nonlabeled SCs replace<br />

labeled cells, the frequency <strong>of</strong> labeled cells should decrease over<br />

time. Clonal analysis allows following the fate <strong>of</strong> single<br />

marked cells. To perform clonal analysis, it is necessary to mark<br />

individual cells suffi ciently distant from each other to follow<br />

the fate <strong>of</strong> individual clones. This can be achieved by lowering<br />

the dose <strong>of</strong> the TAM until it induces CREER activity in isolated<br />

cells. Lineage-tracing experiments provide important information<br />

about the cellular hierarchy that governs epithelium development<br />

and homeostasis, and uncover the diversity <strong>of</strong> epithelial SCs,<br />

their origin, tissue location, renewal, migration, and differentiation<br />

potential, as well as their ability to contribute to tissue repair and<br />

tumor initiation. Different methods to perform lineage tracing in<br />

vertebrates and invertebrates have been recently thoroughly<br />

reviewed elsewhere ( Buckingham and Meilhac, 2011 ; Kretzschmar<br />

and Watt, 2012 ). In this review, we discuss the novel insights<br />

into epithelial SCs and their lineages that have been gathered<br />

thanks to the use <strong>of</strong> this technique in mice.<br />

<strong>The</strong> skin epidermis<br />

<strong>The</strong> skin epidermis is composed <strong>of</strong> the interfollicular epidermis,<br />

which forms the skin barrier, and its various appendages such<br />

as the hair follicle (HF), the sebaceous gland, and the sweat<br />

gland ( Fig. 1 A ; Blanpain and Fuchs, 2006 ). During mouse embryonic<br />

development, HFs are specifi ed through an epithelial–<br />

mesenchymal interaction around embryonic day (E) 16. At this<br />

stage, a group <strong>of</strong> cells that present an elongated morphology<br />

called the placode progress to form a bud called the hair germ,<br />

which keeps growing and differentiates into the seven concentric<br />

cell lineages that form the mature HF ( Blanpain and Fuchs,<br />

2006 ). Lineage tracing during embryonic epidermal development<br />

using ShhCRE ( Levy et al., 2005 ) or Sox9CRE ( Nowak et al.,<br />

2008 ), which are specifi cally expressed in the hair germ, demonstrated<br />

that all HF lineages including adult HF SCs and the sebaceous<br />

gland arise from embryonic progenitors expressing these<br />

two markers during HF morphogenesis. Similar long-term labeling<br />

<strong>of</strong> the HF lineages has been obtained using Lgr6CREER lineage<br />

tracing at E17.5, which is also expressed in embryonic hair germ,<br />

although its expression is broader and included cells <strong>of</strong> the<br />

interfollicular epidermis ( Snippert et al., 2010a ). Embryonic<br />

lineage tracing using ShhCRE ( Levy et al., 2005 ) and Sox9CRE<br />

JCB • VOLUME 197 • NUMBER 5 • 2012<br />

( Nowak et al., 2008 ) also revealed that HFs were entirely labeled<br />

whereas the interfollicular epidermis was not labeled, demonstrating<br />

that the interfollicular epidermis and the HF lineages<br />

arise from two independent sources <strong>of</strong> cells that are maintained<br />

independently in adult animals.<br />

In addition to ensuring the barrier function and thermoregulation,<br />

the skin epidermis is also a sensory organ that perceives all<br />

kinds <strong>of</strong> sensory stimuli. Merkel cells are neuroendocrine cells<br />

scattered in the epidermis that are responsible for the fi ne touch<br />

sensation ( Maricich et al., 2009 ; Lumpkin et al., 2010 ). Merkel<br />

cells present a number <strong>of</strong> characteristics <strong>of</strong> presynaptic neurons.<br />

<strong>The</strong>y are excitable cells that express pro-neural transcription<br />

factors, possess many components <strong>of</strong> the presynaptic machinery,<br />

and contact the end <strong>of</strong> sensory nerves ( Haeberle et al., 2004 ).<br />

Due to their resemblance with neuronal cells, there has been a<br />

long-standing debate whether Merkel cells originate from the<br />

neural crest derivatives or from epidermal cells. Two independent<br />

groups have recently demonstrated using lineage-tracing experiments<br />

that Merkel cells do not originate from neural crest cells,<br />

but rather from epidermal progenitors by a mechanism depending<br />

on the expression <strong>of</strong> the proneural transcription factor Atoh1<br />

in epidermal progenitors ( Morrison et al., 2009 ; Van Keymeulen<br />

et al., 2009 ).<br />

Transplantation experiments suggested that the permanent<br />

portion <strong>of</strong> the HF called the bulge contains multipotent<br />

SCs able to differentiate into all epidermal lineages including<br />

HF, sebaceous gland, and interfollicular epidermis upon transplantation<br />

with embryonic skin mesenchyme into immunodefi<br />

cient mice ( Rochat et al., 1994 ; Oshima et al., 2001 ; Blanpain<br />

et al., 2004 ; Morris et al., 2004 ; Claudinot et al., 2005 ; Jaks et al.,<br />

2008 ). Lineage tracing <strong>of</strong> adult bulge SCs using the K15CREPR<br />

( Morris et al., 2004 ), ShhCRE ( Levy et al., 2005 ), Sox9CRE<br />

( Nowak et al., 2008 ), Lgr5CREER ( Jaks et al., 2008 ), and<br />

K19CREER ( Youssef et al., 2010 ) markers confi rmed that bulge<br />

SCs are indeed multipotent SCs responsible for the maintenance<br />

<strong>of</strong> all HF lineages under physiological conditions ( Fig. 1, B and C ).<br />

Clonal analysis <strong>of</strong> bulge SCs indicated that some bulge SCs<br />

can differentiate into all HF lineages, whereas others are committed<br />

to either the outer or the inner cell layers ( Legué et al.,<br />

2010 ; Zhang et al., 2010 ). <strong>The</strong>se results suggest that the hete rogeneity<br />

in the differentiation potential <strong>of</strong> bulge SCs is either<br />

related to an intrinsic heterogeneity <strong>of</strong> bulge cells containing<br />

multipotent and unipotent SCs or through a regulation <strong>of</strong> the<br />

lineage differentiation potential <strong>of</strong> multipotent SCs. Similarly<br />

to the embryonic HF lineage tracing, lineage tracing <strong>of</strong> adult<br />

bulge SCs also revealed that the HF lineages do not contribute<br />

to the homeostasis the interfollicular epidermis under physiological<br />

conditions ( Morris et al., 2004 ; Jaks et al., 2008 ;<br />

Youssef et al., 2010 ), consistent with the presence <strong>of</strong> two separate<br />

pools <strong>of</strong> SCs that separately maintain HF and interfollicular<br />

epidermis turnover ( Fig. 1 D ). However, upon wounding,<br />

bulge SCs are rapidly activated and actively participate in the<br />

repair <strong>of</strong> the damaged interfollicular epidermis ( Fig. 1, E and F ;<br />

Tumbar et al., 2004 ; Ito et al., 2005 ; Levy et al., 2007 ). <strong>The</strong>se<br />

experiments suggested that the multipotency <strong>of</strong> bulge SCs<br />

observed in transplantation assays represents the fate <strong>of</strong> bulge<br />

SCs in a wounding or regenerative environment. Lineage tracing


<strong>of</strong> HF matrix cells demonstrated that these cells are transient<br />

amplifying cells that differentiate into one <strong>of</strong> the six lineages<br />

depending on their spatial position within the matrix ( Legué<br />

and Nicolas, 2005 ; Youssef et al., 2010 ).<br />

JCB Highlights 2012 31<br />

Figure 1. Lineage tracing <strong>of</strong> the skin epidermis. (A) Schematic representation <strong>of</strong> the skin epidermis and the different epidermal SCs: the interfollicular<br />

epidermis (IFE) SCs, the isthmus SCs, and the bulge SCs . (B and C) Lineage tracing <strong>of</strong> bulge stem cells (green) using K19CREER-RosaYFP mice induced<br />

with 10 mg tamoxifen between d 21 and 25, and analyzed 1 wk (B) or 5 wk (C) after induction. Immunostaining <strong>of</strong> CD34 (B) or integrin � 4 (C) and YFP<br />

show the initial labeling <strong>of</strong> CD34+ bulge SC (B) and the presence <strong>of</strong> YFP cells in the newly formed hair follicle 5 wk after (C). (D) Lineage tracing <strong>of</strong> basal<br />

cells (green) from the interfollicular epidermis using K14CREER-RosaYFP mice induced with 1 mg tamoxifen and analyzed 5 wk later. Immunostaining <strong>of</strong><br />

K14 (red) and YFP (green) shows the presence <strong>of</strong> a column <strong>of</strong> YFP-marked cells spanning from the basal layer (red) to the cornifi ed layer, corresponding to<br />

a unit <strong>of</strong> interfollicular epidermis maintained by a single SC. (E and F) Migration <strong>of</strong> H2B-GFP label-retaining bulge SCs to the interfollicular epidermis after<br />

wounding, showing the early contribution <strong>of</strong> bulge SC to the wound repair. Adapted from Tumbar et al. (2004) with permission from AAAS. (G) Lineage<br />

tracing using Lgr6-GFP-IresCREER/Rosa-LacZ mice induced at d 20 and analyzed 1 yr later, showing the labeling <strong>of</strong> the sebaceous gland, and demonstrating<br />

the existence <strong>of</strong> long-lived SC <strong>of</strong> the sebaceous gland. Adapted from Snippert et al. (2010a) with permission from AAAS. Bu, bulge; DP, dermal papilla;<br />

HG, hair germ; IFE, interfollicular epidermis; SG, sebaceous gland; In, infudibulum; Ep, epidermis; w, wound. Bars, 50 μM.<br />

Sebaceous gland SCs arise from multipotent embryonic HF<br />

progenitors expressing Shh, Lgr5, Sox9, and Lgr6 ( Levy et al.,<br />

2005 ; Nowak et al., 2008 ; Snippert et al., 2010a ). Within the<br />

next few days, Blimp1-expressing progenitors are specifi ed along<br />

Lineage tracing <strong>of</strong> epithelial cells • Van Keymeulen and Blanpain<br />

577


32<br />

578<br />

the HF and give rise to the cells <strong>of</strong> the adult sebaceous gland<br />

including sebaceous gland SCs ( Horsley et al., 2006 ). <strong>The</strong> longterm<br />

labeling <strong>of</strong> the sebaceous gland observed after Lgr6 lineage<br />

tracing in adult skin demonstrates the presence <strong>of</strong> resident<br />

Lgr6-expressing sebaceous gland SCs ( Fig. 1 G ). Similar to<br />

bulge SCs, Lgr6-expressing isthmus SCs are also recruited<br />

toward the interfollicular epidermis upon wounding and contribute<br />

to the repair <strong>of</strong> the damaged epidermis ( Snippert et al.,<br />

2010a ). A recent study using new K15CREER transgenic mice<br />

suggests that a fraction <strong>of</strong> bulge SCs migrate upward toward the<br />

isthmus region and replenish the sebaceous gland under homeostatic<br />

and physiopathological conditions ( Petersson et al., 2011 ).<br />

Further studies will be required to better understand the respective<br />

contribution <strong>of</strong> bulge versus resident Lgr6+ SCs in maintaining<br />

the homeostasis <strong>of</strong> the sebaceous gland and defi ning<br />

the mechanisms leading to the recruitment and the migration<br />

<strong>of</strong> bulge SCs to this gland.<br />

As previously mentioned, the interfollicular epidermis<br />

is maintained by a source <strong>of</strong> SCs that is distinct from the HF<br />

lineages during postnatal physiological conditions. Many small<br />

units <strong>of</strong> proliferation called epidermal proliferative units (EPUs)<br />

scattered all along the interfollicular epidermis ensure the constant<br />

turnover <strong>of</strong> the epidermis and its proper differentiation.<br />

Based on morphological and proliferation studies, it has been<br />

proposed that the interfollicular epidermis is maintained by hexagonal<br />

shaped EPUs containing one SC and � 10 transit-amplifying<br />

cells ( Potten, 1974 , 1981 ). Retroviral fate mapping indeed demonstrated<br />

the presence <strong>of</strong> columns <strong>of</strong> labeled cells spanning<br />

from the basal layer to the top <strong>of</strong> the cornifi ed layer a long time<br />

after the clonal marking ( Ghazizadeh and Taichman, 2001 ),<br />

consistent with the presence <strong>of</strong> long-lived SCs ensuring the longterm<br />

homeostasis <strong>of</strong> an EPU. However, genetic lineage tracing<br />

showed that the EPU was not hexagonal in shape as suggested<br />

by histological analysis and was sometimes bigger than the<br />

10 basal cells expected from the model based on morphological<br />

observations ( Ro and Rannala, 2004 , 2005 ). <strong>The</strong>se data were<br />

interpreted as the consequence <strong>of</strong> SC migration from one EPU<br />

to another. Recently, clonal analysis studies labeling basal<br />

epidermal cells <strong>of</strong> the tail and the ear epidermis using a nontissuespecifi<br />

c drug inducible CREER (AhCREER) showed that the<br />

majority <strong>of</strong> labeled cells are not maintained long-term and are<br />

lost over time. However, the surviving clones seemed to expand<br />

continuously, in contrast to what would be expected if these<br />

cells were maintaining a discrete and predetermined unit <strong>of</strong> the<br />

epidermis. Mathematical modeling <strong>of</strong> these data suggests that<br />

the epidermis could be maintained by one type <strong>of</strong> progenitor,<br />

without the presence <strong>of</strong> transit-amplifying cells, and these progenitors<br />

undergo population asymmetric renewal by balancing<br />

asymmetric and symmetric cell division in a stochastic manner<br />

( Clayton et al., 2007 ; Doupé et al., 2010 ). Although this model<br />

is appealing in its simplicity, it relies on the assumption that all<br />

basal cells <strong>of</strong> the epidermis behave like the basal cells labeled<br />

by the AhCREER. <strong>The</strong> model also does not easily explain the<br />

ability <strong>of</strong> the tissue to respond rapidly to increased cell demand,<br />

such as during wound healing. Importantly, these data cannot rule<br />

out the presence <strong>of</strong> a small proportion <strong>of</strong> more quiescent SCs that<br />

would exist in equilibrium with more committed basal cells,<br />

JCB • VOLUME 197 • NUMBER 5 • 2012<br />

as it has been previously suggested. New studies combining clonal<br />

analysis with different epidermal-specifi c CREER and proliferation<br />

kinetic data will be helpful to address these open questions.<br />

In summary, lineage-tracing experiments in the skin epidermis<br />

indicate the existence <strong>of</strong> multiple populations <strong>of</strong> stem cells<br />

that ensure the maintenance <strong>of</strong> different compartments <strong>of</strong> the<br />

epidermis and play distinct roles during homeostasis and repair.<br />

<strong>The</strong> mammary gland<br />

<strong>The</strong> mammary gland <strong>of</strong> the mother plays an essential role during<br />

the early postnatal life <strong>of</strong> young mammalian <strong>of</strong>fspring by providing<br />

them nutrients, water, and electrolytes, and immune defense<br />

until they reach the size and maturity to survive independently.<br />

Mammary glands are epidermal appendages that are specifi ed<br />

along the ventral epidermis around E12 during mouse embryonic<br />

development. <strong>The</strong>se glands are initially visible as placode-like<br />

structures that progressively invade the underlying mesenchyme,<br />

called the mammary fat pad. At puberty, the mammary gland<br />

expands considerably to form a highly branched tubular structure<br />

that progressively fi lls the entire fat pad. <strong>The</strong> epithelial part<br />

<strong>of</strong> the mammary gland comprises two main cell types, the basal<br />

myoepithelial cells and the luminal cells, which can differentiate<br />

either into ductal cells or milk-producing alveolar cells ( Fig. 2,<br />

A and B ). During pregnancy, the mammary gland further expands<br />

and differentiates into milk-producing cells. After each cycle<br />

<strong>of</strong> pregnancy, the mammary gland involutes through a massive<br />

apoptosis <strong>of</strong> alveolar cells after which the gland returns to a<br />

similar morphology as before pregnancy ( Watson and Khaled,<br />

2008 ). Transplantation studies using different populations <strong>of</strong> mammary<br />

epithelial cells isolated by fl uorescence-activated cell sorting<br />

have demonstrated that rare single cells are able to reconstitute<br />

an entire functional mammary gland ( Shackleton et al., 2006 ;<br />

Stingl et al., 2006 ). <strong>The</strong>se results suggest the presence <strong>of</strong> rare<br />

multipotent mammary SCs at the top <strong>of</strong> the cellular hierarchy <strong>of</strong><br />

the breast epithelium ( Visvader, 2009 ). <strong>The</strong> whey acidic protein<br />

(WAP) promoter is active in luminal cells during pregnancy<br />

and lactation. Lineage-tracing experiments using the WAP-CRE,<br />

which labeled luminal cells during pregnancy, identifi ed luminal<br />

cells capable <strong>of</strong> resisting apoptosis during involution and which<br />

clonally expand upon the succeeding pregnancy to give rise to<br />

luminal and alveolar cells. <strong>The</strong>se cells were therefore described<br />

as alveolar progenitors and called parity-induced cells ( Wagner<br />

et al., 2002 ). More recently, lineage tracing <strong>of</strong> the mammary<br />

gland using inducible CRE expressed either in myoepithelial<br />

cells (K14- or K5-expressing cells) or in luminal cells (K8- or<br />

K18-expressing cells) demonstrated that the mammary gland<br />

initially develops from multipotent embryonic K14-expressing<br />

progenitors, which give rise to both myoepithelial cells and<br />

luminal cells. However, postnatal mammary gland development<br />

that occurred during puberty, as well as mammary gland expansion<br />

that accompanied pregnancies, are ensured by the presence<br />

<strong>of</strong> two types <strong>of</strong> long-lived SCs. K14/K5-expressing myoepithelial<br />

and K8/18-expressing luminal unipotent SCs are able to<br />

differentiate at the clonal level into myoepithelial or luminal<br />

lineages, respectively, rather than being maintained by rare<br />

multipotent SCs ( Fig. 2, C–H ). Decreasing the ratio <strong>of</strong> luminal<br />

to myoepithelial SCs stimulates the luminal differentiation <strong>of</strong>


myoepithelial SCs in transplantation assay ( Van Keymeulen<br />

et al., 2011 ). Further studies will be necessary to defi ne the<br />

mechanisms that restrict the differentiation potential <strong>of</strong> myoepithelial<br />

SCs under physiological conditions, and whether pathophysiological<br />

conditions can expand the differentiation potential<br />

<strong>of</strong> SCs in the intact mammary gland. Also, it would be interesting<br />

to determine whether other glandular epithelia such as the<br />

prostate or sweat glands are also maintained by the presence<br />

<strong>of</strong> distinct classes <strong>of</strong> SCs during postnatal development and<br />

adult homeostasis.<br />

<strong>The</strong> gut<br />

<strong>The</strong> gut regulates the absorption <strong>of</strong> water, electrolytes, nutrients,<br />

and vitamins essential for the survival <strong>of</strong> the animal. <strong>The</strong><br />

gut can be subdivided into the esophagus, stomach, intestine,<br />

and colon. <strong>The</strong> esophagus is a stratifi ed epithelium resembling<br />

skin epidermis, whereas the stomach, intestine, and colon are<br />

simple epithelia composed <strong>of</strong> only one cell layer that contains<br />

the different cell lineages present in the different parts <strong>of</strong> the gut<br />

( Barker et al., 2010a ).<br />

<strong>The</strong> stomach can be subdivided into the corpus, the pylorus,<br />

the cardia, and the fundus. In the corpus, the parietal cells<br />

secrete the acid necessary to activate digestion, while the mucus<br />

cells secrete a protective barrier and the enteroendocrine cells<br />

JCB Highlights 2012 33<br />

Figure 2. Lineage tracing <strong>of</strong> the mammary<br />

gland. (A and B) Schematic representation <strong>of</strong><br />

the main epithelial cell types (myoepithelial,<br />

luminal, and alveolar cells) <strong>of</strong> the breast during<br />

post-natal development (A) and pregnancy<br />

(B). (C–E) Lineage tracing <strong>of</strong> myoepithelial cells<br />

(green) using K14rtTA/TetOCre/RosaYFP mice<br />

induced at the onset <strong>of</strong> puberty (4 wk old) and<br />

analyzed 1 wk (C) or 10 wk (D) later or during<br />

lactation (E). Immunostaining <strong>of</strong> K14 (C and D)<br />

or K5 (E) (red) and YFP (green) demonstrates<br />

the labeling <strong>of</strong> unipotent SCs that ensure myoepithelial<br />

lineage expansion during puberty<br />

and pregnancy. (F–H) Lineage tracing <strong>of</strong> luminal<br />

cells (green) using K8CREER/RosaYFP mice<br />

induced at the onset <strong>of</strong> puberty (4 wk old) and<br />

analyzed 1 wk (F) or 10 wk later (G), or during<br />

lactation (H) shows the labeling <strong>of</strong> unipotent<br />

SCs that ensure luminal lineage expansion<br />

during puberty and pregnancy. Adapted from<br />

Van Keymeulen et al. (2011) with permission<br />

from Nature Publishing Group. Bars, 10 μM.<br />

regulate gut contractility and the secretion <strong>of</strong> the various digestive<br />

enzymes. Although the mucus cells renew quite rapidly, the<br />

chief cells and the parietal cells responsible for acid secretion<br />

display a slow turnover. Random marking <strong>of</strong> stomach SCs after<br />

chemical mutagen administration demonstrated the coexistence<br />

<strong>of</strong> long-lived multipotent and unipotent stomach SCs ( Bjerknes<br />

and Cheng, 2002 ). In the pylorus, the vast majority <strong>of</strong> the proliferating<br />

cells are located in the middle zone called the isthmus.<br />

Lgr5 lineage tracing, which marked cells located at the bottom<br />

<strong>of</strong> the gland, demonstrated that the progeny <strong>of</strong> Lgr5-expressing<br />

cells migrate into the isthmus region, proliferate, and give rise<br />

to all lineages <strong>of</strong> the stomach ( Barker et al., 2010b ). Recently,<br />

Sox2 lineage tracing, which appears to mark cells distinct from<br />

Lgr5+ cells, showed that Sox2 also marked long-lived multipotent<br />

stomach SCs ( Arnold et al., 2011 ). Further studies will<br />

be required to understand the relationship between Sox2+ and<br />

Lgr5+ stomach SCs.<br />

<strong>The</strong> small intestine ensures the absorption <strong>of</strong> nutrients.<br />

<strong>The</strong> intestine is composed <strong>of</strong> proliferating crypts that produce<br />

the cells giving rise to the differentiated villi. Villi are protrusions<br />

<strong>of</strong> the epithelium in the gut lumen that massively increase<br />

the surface area <strong>of</strong> the gut to allow for greater absorption. <strong>The</strong><br />

intestine is one <strong>of</strong> the most rapidly proliferating tissues in the body,<br />

which completely self-renews in less than a week. Several cell<br />

Lineage tracing <strong>of</strong> epithelial cells • Van Keymeulen and Blanpain<br />

579


34<br />

580<br />

lineages are present in the intestine: the absorptive enterocytes<br />

are the most abundant cells, the goblet cells produce the mucus,<br />

and the enteroendocrine cells regulate the motility <strong>of</strong> the gut and<br />

the secretion <strong>of</strong> the digestive enzymes while the paneth cells<br />

residing at the base <strong>of</strong> the crypt produce microbicide proteins<br />

( Fig. 3 A ). Based on proliferation kinetics experiments, it has been<br />

suggested that intestinal SCs reside in the crypt at position +4<br />

with respect to the base <strong>of</strong> the crypt ( Potten et al., 1978 ).<br />

<strong>The</strong> existence <strong>of</strong> multipotent SCs in the intestine has been<br />

suggested by the presence <strong>of</strong> long-lived clones <strong>of</strong> marked cells<br />

that contain several types <strong>of</strong> differentiated intestinal cells<br />

( Bjerknes and Cheng, 1999 ). Barker et al. (2007) identifi ed<br />

Lgr5 as a Wnt target gene in colonic cancer lines, and demonstrated<br />

that Lgr5 is expressed at the base <strong>of</strong> the crypt in intestinal<br />

crypt base columnar cells intercalated between paneth cells.<br />

In contrast to the vast majority <strong>of</strong> Wnt target genes, which are<br />

expressed throughout the crypt, including in the transit amplifying<br />

cells, Lgr5 expression is restricted to crypt base columnar cells.<br />

Lgr5CREER-IRES-GFP lineage tracing demonstrated that indeed<br />

Lgr5-expressing crypt base columnar cells are rapidly cycling<br />

multipotent SCs <strong>of</strong> the intestine giving rise to all cell lineages<br />

<strong>of</strong> the intestine including enterocytes, goblet cells, and neuroendocrine<br />

cells, as well as paneth cells ( Fig. 3, B and C ; Barker<br />

et al., 2007 ).<br />

Bmi1, a polycomb repressor, is expressed in the proximal<br />

intestine and preferentially marks the cells located in position +4.<br />

<strong>Cell</strong>s labeled in lineage-tracing experiments using Bmi1CREER,<br />

similarly to Lgr5+ cells, give rise to all cell lineages <strong>of</strong> the intestine<br />

( Fig. 3, D and E ; Sangiorgi and Capecchi, 2008 ), suggesting<br />

the existence <strong>of</strong> two distinct classes <strong>of</strong> SCs in the small intestine.<br />

Two independent studies using CREER show that preferentially<br />

but not exclusively labeled +4 cells (mTertCREER and Hopx-<br />

CREER) give rise to all intestinal lineages ( Montgomery et al.,<br />

2011 ; Takeda et al., 2011 ), confi rming the presence <strong>of</strong> multipotent<br />

intestinal SCs in the +4 position. <strong>The</strong> faster expansion<br />

<strong>of</strong> Lgr5 progeny in comparison to Bmi1- or mTert-derived cells<br />

suggests that +4 intestinal SCs could be more quiescent than<br />

Lgr5+ SCs, but yet long-lived. Interestingly, although the ablation<br />

<strong>of</strong> Bmi1+ cells leads to the degeneration <strong>of</strong> the crypts ( Sangiorgi<br />

and Capecchi, 2008 ), the ablation <strong>of</strong> Lgr5 cells has no effect on<br />

intestinal homeostasis, as Bmi1+ SCs can compensate for the<br />

loss <strong>of</strong> Lgr5 cells ( Tian et al., 2011 ). Under physiological conditions<br />

or after the destruction <strong>of</strong> Lgr5+ cells, Bmi1 cells can replenish<br />

the Lgr5 pool. Similarly, mTert and Hopx labeled cells<br />

also give rise to Lgr5+ cells and conversely Lgr5 cells can give<br />

rise to Hopx cells ( Takeda et al., 2011 ), suggesting that the Lgr5<br />

SCs are in equilibrium with the +4 cells SCs.<br />

Although there are around 16 Lgr5+ cells per crypt, Lgr5<br />

lineage tracing using a multicolor reporter mouse demonstrated<br />

that the crypt rapidly evolves from polyclonal labeling (multicolor)<br />

to monoclonal labeling (monocolor) ( Fig. 3, F and G ).<br />

Analysis <strong>of</strong> Lgr5 cell division revealed that they mostly divide<br />

symmetrically giving rise to 2 Lgr5+ cells, incompatible with a<br />

model in which homeostasis is maintained by pure asymmetric<br />

cell division (one SC gives one transit-amplifying cell). Instead,<br />

this supports a model in which SC divisions are symmetric at the<br />

cellular level, but, at the level <strong>of</strong> the SC pool, the divisions seem<br />

JCB • VOLUME 197 • NUMBER 5 • 2012<br />

Figure 3. Lineage tracing <strong>of</strong> the intestine. (A) Schematic representation<br />

<strong>of</strong> the intestinal epithelium lineages (enterocytes, enteroendocrine, goblet,<br />

and paneth cells) and its SCs. (B and C) Lineage tracing <strong>of</strong> Lgr5+ SCs<br />

(blue) using Lgr5-GFP-IresCREER/RosaLacZ mice analyzed 12 h (B) or 60 d<br />

(C) after induction demonstrates the initial labeling <strong>of</strong> columnar basal cells<br />

(B) that give rise to the differentiated cells <strong>of</strong> a villus (C). Adapted from<br />

Barker et al. (2007) with permission from Nature Publishing Group.<br />

(D and E) Lineage tracing <strong>of</strong> Bmi1+ SCs (green) using Bmi1CREER/Rosa<br />

YFP mice analyzed 5 d (D) or 2 mo (E) after induction. Staining <strong>of</strong> YFP<br />

(green) and <strong>of</strong> chromogranin A (ChGA) labeling enteroendocrine cells<br />

(red); and lysozyme (Lys) antibody, labeling Paneth cells (red), showing<br />

the initial labeling <strong>of</strong> cells above the paneth cells (D) that give rise to the<br />

differentiated cells <strong>of</strong> a villus (E). Images courtesy <strong>of</strong> E. Sangiorgi and<br />

M. Capecchi. (F and G) Lineage tracing <strong>of</strong> crypts using Ah-CREER/<br />

RosaConfetti mice analyzed 1 wk (F) or 8 wk (G) after induction, showing<br />

the initial multicolor labeling <strong>of</strong> the crypt and villus unit that progressively<br />

become monoclonal (one color per crypt) over time. Adapted from Snippert<br />

et al. (2010b) with permission from Elsevier.


asymmetric because for one SC that divides, one SC is lost, leading<br />

to neutral drift dynamics in which SCs expand or are lost at<br />

random ( Lopez-Garcia et al., 2010 ; Snippert et al., 2010b ).<br />

How to reconcile the data supporting the existence <strong>of</strong> two<br />

populations <strong>of</strong> intestinal SCs in equilibrium with each other,<br />

with the presence <strong>of</strong> neutral drift toward monoclonality <strong>of</strong> the<br />

intestinal crypt? One possibility is that, despite their relatively<br />

distinct tissue localization, Lgr5 and Bmi1 are functionally equipotent<br />

SCs competing with each other in the neutral drift proliferation<br />

dynamics. Another possibility is that the long-term lineage<br />

tracing in both models results from the labeling <strong>of</strong> the same multipotent<br />

intestinal SCs, as there is a small overlap between the<br />

cells traced with Lgr5CREER and the cells traced with Bmi1,<br />

Hopx, mTER CREER. Further studies analyzing the rate <strong>of</strong> the<br />

drift toward monoclonality using Lgr5+CREER and the other<br />

+4 CREER will help to address this open question.<br />

Although Lgr5 can also mark colonic SCs ( Barker et al.,<br />

2007 ), the low frequency <strong>of</strong> Lgr5-marked crypts due to the<br />

mosaic expression Lgr5CREER in the colon renders it diffi cult<br />

JCB Highlights 2012 35<br />

Figure 4. Lineage tracing <strong>of</strong> the airway epithelium. (A and B) Schematic representation <strong>of</strong> the airway epithelium that can be divided into trachea and<br />

bronchi, bronchioli, and alveoli. (C–F) Lineage tracing <strong>of</strong> tracheal basal cells using K5CREER/Rosa-LacZ and analyzed 6 d (C and E), 3 wk (F), or 12 wk<br />

(D) after TAM administration. Paraffi n sections <strong>of</strong> X-gal–stained (blue) (K5-labeled cells and their progeny) and anti-acetylated tubulin (brown, cilia), showing<br />

the initial labeling <strong>of</strong> basal cells (C) that give rise to luminal cells during postnatal development (D). (E and F) Lineage tracing <strong>of</strong> tracheal basal cells<br />

using K5CREER/Rosa-YFP and analyzed 3 and 15 wk after TAM administration showing the initial labeling <strong>of</strong> basal cells (green) that give rise to Clara<br />

cells (red). Adapted from Rock et al. (2009) with permission from Proc. Natl. Acad. Sci. USA . (G–I) Lineage tracing <strong>of</strong> the Clara cells in the bronchioli<br />

using Scgb1a1CREER/RosaYFP mice induced at E18.5 and analyzed 2 d (G), 3 wk (H), or 1 yr (I) after induction. Immunostaining <strong>of</strong> GFP (green), pro-<br />

SPC (AEC2) (red), and Scgb1a1 (Clara cells) (blue) shows the long-term renewal <strong>of</strong> Clara cells and the expansion <strong>of</strong> ciliated cells over time. Arrowheads<br />

represent lineage-labeled AEC2 cells. Arrows represent lineage-labeled putative BASCs. Inset in H shows labeled ciliated cells (arrowheads), but no neuroendocrine<br />

cells (red, arrow). <strong>The</strong> stable frequency <strong>of</strong> lineage-labeled AEC2 cells over time (1–3%) suggests that BASC cells do not contribute to alveoli<br />

expansion during postnatal growth. Adapted from Rawlins et al. (2009) with permission from Elsevier. AEC1, alveolar type I; AEC2, alveolar type II; BADJ,<br />

bronchioalveolar duct junction; BASC, bronchioalveolar stem cell. Bars: (C and D) 20 μM; (E and F) 25 μM; (G) 50 μM.<br />

to ascertain whether there is one or more colonic SCs contributing<br />

to the homeostasis and the regenerative potential <strong>of</strong> the<br />

colonic epithelium.<br />

<strong>The</strong> airway system<br />

<strong>The</strong> airway system is compartmentalized along the proximal–<br />

distal axis into three anatomically distinct regions: the trachea<br />

and bronchi, the bronchioles, and the alveoli. <strong>The</strong> cellular composition<br />

<strong>of</strong> the lung epithelium varies in the different regions, as<br />

well as the cellular hierarchy that regulates the maintenance and<br />

repair <strong>of</strong> these epithelia ( Rock and Hogan, 2011 ). <strong>The</strong> trachea<br />

and bronchi are pseudostratifi ed epithelia containing ciliated<br />

cells, secretory cells (Clara cells and goblet cells), and basal<br />

cells ( � 30% <strong>of</strong> tracheal epithelial cells; Fig. 4 A ). <strong>The</strong> function<br />

<strong>of</strong> this fi rst part <strong>of</strong> the airway tract is to allow the circulation <strong>of</strong><br />

the air but also to protect the lung epithelium by absorbing dust<br />

particles and microbes that are constantly inhaled. Through<br />

movement <strong>of</strong> the cilia, these cells chase the dirty mucus out <strong>of</strong><br />

the respiratory tract. Rare neuroendocrine cells are also dispersed<br />

Lineage tracing <strong>of</strong> epithelial cells • Van Keymeulen and Blanpain<br />

581


36<br />

582<br />

in the luminal layer <strong>of</strong> the trachea, which regulate the contraction<br />

<strong>of</strong> the respiratory tracts as well as the secretion <strong>of</strong> the mucus<br />

( Rock and Hogan, 2011 ).<br />

In contrast to the constant and rapid turnover occurring in<br />

the intestine or the skin epidermis, the airway system presents<br />

a very low renewal under steady-state conditions. For example,<br />

lineage tracing using Foxj1-CREER, which labeled ciliated<br />

cells, supports the view that ciliated cells are postmitotic with<br />

a half time <strong>of</strong> several months under homeostatic conditions<br />

( Rawlins et al., 2007 ). <strong>The</strong>re is increasing evidence that basal<br />

cells function as multipotent SCs in the trachea and bronchi,<br />

able to self-renew and differentiate into both Clara cells and<br />

ciliated cells under steady-state conditions and after injury.<br />

<strong>The</strong> fi rst evidence that basal cells contain multipotent SCs<br />

came from lineage-tracing experiments using the K14-CREER<br />

to label basal cells in the trachea and bronchi during naphthaleneinduced<br />

epithelium regeneration, demonstrating the massive<br />

contribution <strong>of</strong> basal cells during trachea and bronchi regeneration<br />

( Hong et al., 2004a , b ). However, under physiological<br />

conditions most mouse basal cells express K5, whereas only<br />

a subset <strong>of</strong> basal cells expresses K14, which is up-regulated in<br />

the basal cell population upon injury. <strong>The</strong>se studies did not<br />

assess the contribution <strong>of</strong> the basal cells under steady-state<br />

conditions. Rock et al. (2009) used a K5-CREER to label basal<br />

cells <strong>of</strong> the upper airway tract postnatally under physiological<br />

conditions and demonstrated that basal cells contain selfrenewing<br />

multipotent SCs, giving rise to Clara and ciliated<br />

cells during postnatal growth, adult homeostasis, and epithelial<br />

repair ( Fig. 4, C–F ). Lineage tracing using Scgb1a1 (also called<br />

Secretoglobin 1a1 or CC10) CREER mice, which specifi cally<br />

marked Clara cells in the trachea and the main bronchi, demonstrated<br />

that some <strong>of</strong> these cells can undergo several rounds <strong>of</strong><br />

replication giving rise to Clara and ciliated cells. However,<br />

most <strong>of</strong> them are progressively lost and replaced over time by<br />

cells that are not marked by Scgb1a1CREER ( Rawlins et al.,<br />

2009 ), suggesting that Clara cells in the trachea and the main<br />

bronchi do not contain SCs and behave as a transit-amplifying<br />

cell population.<br />

Bronchioles lack basal cells but are surrounded instead<br />

by my<strong>of</strong>i broblast cells ( Fig. 4 B ). <strong>The</strong>y are mainly composed<br />

<strong>of</strong> ciliated and secretory cells, and also contain clusters <strong>of</strong> neuroendocrine<br />

cells. Lineage tracing <strong>of</strong> Clara cells with Scgb1a1-<br />

CREER showed that Clara cells from bronchioles self-renew<br />

over a long period <strong>of</strong> time and give rise to ciliated cells, during<br />

postnatal growth, homeostasis, and repair <strong>of</strong> the bronchiolar<br />

epithelium. This is consistent with the presence <strong>of</strong> bipotent<br />

Scgb1a1-expressing SCs, which ensure the homeostasis <strong>of</strong> the<br />

bronchioles ( Fig. 4, G–I ; Rawlins et al., 2009 ).<br />

Alveoli are the sites <strong>of</strong> exchange between the inhaled air<br />

and the gas <strong>of</strong> the blood. To maximize the surface <strong>of</strong> exchange<br />

between the blood and the air, the bronchioles end in multiple<br />

sacs, called alveoli, which are encased by a dense capillary network.<br />

<strong>The</strong> alveoli contain two major cell types: the alveolar<br />

type 1 cells, which are squamous cells that comprise the major<br />

surface <strong>of</strong> the lung and express different ion transporters critical<br />

for fl uidity <strong>of</strong> the mucus produced, whereas alveolar type 2 cells<br />

are cuboidal cells that secrete the surfactant protein C (SPC)<br />

JCB • VOLUME 197 • NUMBER 5 • 2012<br />

essential to maintain the alveoli open. Proliferation kinetic<br />

experiments suggested that the alveolar type 1 cells are terminally<br />

differentiated cells that do not divide, neither under physiological<br />

conditions nor during tissue regeneration. On the other hand, type<br />

2 cells divide during homeostasis and repair, and were assumed<br />

to contain SCs <strong>of</strong> the alveoli ( Adamson and Bowden, 1975 ),<br />

although no lineage-tracing experiment has formally demo n strated<br />

this hypothesis. <strong>Cell</strong>s expressing both Scgb1a1 (the Clara marker)<br />

and pro-SPC (a marker <strong>of</strong> cuboidal alveolar type 2 cells) have<br />

been described at the bronchioalveolar junction. <strong>The</strong>se cells do<br />

not die upon injury, become proliferatively active, and exhibit<br />

SC properties in culture, and therefore were called bronchioalveolar<br />

SCs ( Kim et al., 2005 ). Labeling <strong>of</strong> bronchiolar cells,<br />

including the bronchioalveolar SCs, with the Scgb1a1-CREER<br />

demonstrated that these cells do not contribute to the alveoli<br />

during postnatal growth and after hyperoxia injury but rather<br />

contribute to the bronchiolar regeneration ( Rawlins et al., 2009 ).<br />

However, a new study showed that cells labeled with the<br />

Scgb1a1-CREER contribute extensively to the alveoli regeneration<br />

after bleomycin-induced lung injury, suggesting that the<br />

contribution <strong>of</strong> Clara cells to lung regeneration can vary depending<br />

on the type <strong>of</strong> injury ( Rock et al., 2011 ). Consistent with the<br />

role <strong>of</strong> Scgb1a1+ cells during lung repair after bleomycininduced<br />

injury, lineage tracing <strong>of</strong> alveolar type 2 cells using<br />

SPC-CREER demonstrated that SPC-derived cells are replaced<br />

by SPC-negative progenitors during lung repair after<br />

bleomycin inhalation ( Chapman et al., 2011 ). K14-CREER lineage<br />

tracing suggested that K14/K5-positive cells appear in<br />

the bronchioles a few days post-infection <strong>of</strong> H1N1 virus and<br />

give rise to migrating K5-positive clusters <strong>of</strong> cells at the sites <strong>of</strong><br />

interbronchiolar lung damage ( Kumar et al., 2011 ). However,<br />

the origin <strong>of</strong> these K5-positive cells remains unclear. Do they arise<br />

from Sgbd1a1 cells that begin to express K5/K14 upon injury<br />

or do they come from already K5-positive cells from the main<br />

bronchia? What is their long-term contribution to alveoli lineage?<br />

Further work will be needed to clarify these open questions.<br />

Perspectives<br />

Lineage-tracing experiments in different epithelia reveal the<br />

coexistence <strong>of</strong> several types <strong>of</strong> SCs in each epithelium. Epithelia<br />

such as the epidermis and the intestine contain rapidly cycling<br />

SCs, dividing asymmetrically at the level <strong>of</strong> the population but<br />

symmetrically at the SC level, which balanced renewal and<br />

differentiation stochastically. In addition, these tissues present a<br />

slower cycling population <strong>of</strong> cells that represent a reserve pool<br />

<strong>of</strong> SCs in case <strong>of</strong> sudden need. More studies will be required to<br />

precisely determine how the equilibrium between these two pools<br />

<strong>of</strong> SCs is achieved and what the molecular mechanisms are that<br />

allow the stochastic choice between renewal and differentiation.<br />

Another theme that emerges from these lineage-tracing<br />

studies is the existence <strong>of</strong> both multipotent and unipotent SCs<br />

maintaining the diversity <strong>of</strong> cell lineages found in these epithelia<br />

during postnatal life. Further studies will be necessary to better<br />

understand when the switch from multipotency to unipotency<br />

occurs during morphogenesis, how the differentiation <strong>of</strong> these<br />

epithelial SCs is controlled, and what the relative importance <strong>of</strong><br />

intrinsic versus extrinsic determinants is in regulating their fate.


New lineage-tracing studies will be required to identify<br />

new types <strong>of</strong> SCs in the different epithelial tissues. For example,<br />

how are the esophagus, pancreas, bladder, prostate, and ovary<br />

developed, maintained, and repaired? Do these tissues contain<br />

multipotent SCs or different classes <strong>of</strong> unipotent SCs? <strong>The</strong> identifi<br />

cation <strong>of</strong> the different SCs, transit-amplifying cells, and differentiated<br />

cells in these different epithelia will be instrumental<br />

to uncover the cell lineages at the origin <strong>of</strong> the different epithelial<br />

cancers ( Visvader, 2011 ). What is the respective importance<br />

<strong>of</strong> oncogenic mutations versus the cellular origin in dictating<br />

the tumor phenotypes? Also, the identifi cation <strong>of</strong> cellular origin<br />

<strong>of</strong> the different epithelial cancers will allow one to defi ne more<br />

precisely the transcriptional and genetic changes accompanying<br />

tumor initiation and to understand the molecular mechanisms<br />

that shape the fate <strong>of</strong> tumor-initiating cells. Cancer SCs have<br />

been identifi ed in several human and mouse cancers based on<br />

their ability to reform primary tumors after transplantation into<br />

immunodefi cient mice ( Lobo et al., 2007 ). Further studies will<br />

be required to demonstrate the existence <strong>of</strong> cancer SCs during<br />

in vivo tumor growth in intact tissues using lineage-tracing and<br />

clonal analysis.<br />

We thank Brigid Hogan and Ben Simons for insightful discussions. We apologize<br />

to those whose work could not be cited due to space constraints.<br />

C. Blanpain and A. Van Keymeulen are Chercheur Qualifi é <strong>of</strong> the<br />

FRS/FNRS. C. Blanpain is an investigator <strong>of</strong> Welbio. This work was supported<br />

by the FNRS, TELEVIE, and the program d’excellence CIBLES <strong>of</strong> the Wallonia<br />

Region; research grants from the Fondation Contre le Cancer, the ULB foundation,<br />

and the fond Gaston Ithier; a starting grant <strong>of</strong> the European Research Council<br />

(ERC); and the EMBO Young Investigator Program.<br />

Submitted: 9 January 2012<br />

Accepted: 27 April 2012<br />

References<br />

Adamson , I.Y. , and D.H. Bowden . 1975 . Derivation <strong>of</strong> type 1 epithelium from<br />

type 2 cells in the developing rat lung . Lab. Invest. 32 : 736 – 745 .<br />

Arnold , K. , A. Sarkar , M.A. Yram , J.M. Polo , R. Bronson , S. Sengupta , M.<br />

Seandel , N. Geijsen , and K. Hochedlinger . 2011 . Sox2(+) adult stem and<br />

progenitor cells are important for tissue regeneration and survival <strong>of</strong> mice .<br />

<strong>Cell</strong> Stem <strong>Cell</strong> . 9 : 317 – 329 . http://dx.doi.org/10.1016/j.stem.2011.09.001<br />

Barker , N. , J.H. van Es , J. Kuipers , P. Kujala , M. van den Born , M. Cozijnsen ,<br />

A. Haegebarth , J. Korving , H. Begthel , P.J. Peters , and H. Clevers . 2007 .<br />

Identifi cation <strong>of</strong> stem cells in small intestine and colon by marker gene<br />

Lgr5 . Nature . 449 : 1003 – 1007 . http://dx.doi.org/10.1038/nature06196<br />

Barker , N. , S. Bartfeld , and H. Clevers . 2010a . Tissue-resident adult stem cell<br />

populations <strong>of</strong> rapidly self-renewing organs . <strong>Cell</strong> Stem <strong>Cell</strong> . 7 : 656 – 670 .<br />

http://dx.doi.org/10.1016/j.stem.2010.11.016<br />

Barker , N. , M. Huch , P. Kujala , M. van de Wetering , H.J. Snippert , J.H. van Es ,<br />

T. Sato , D.E. Stange , H. Begthel , M. van den Born , et al . 2010b . Lgr5(+ve)<br />

stem cells drive self-renewal in the stomach and build long-lived gastric<br />

units in vitro . <strong>Cell</strong> Stem <strong>Cell</strong> . 6 : 25 – 36 . http://dx.doi.org/10.1016/j<br />

.stem.2009.11.013<br />

Bjerknes , M. , and H. Cheng . 1999 . Clonal analysis <strong>of</strong> mouse intestinal epithelial<br />

progenitors . Gastroenterology . 116 : 7 – 14 . http://dx.doi.org/10.1016/<br />

S0016-5085(99)70222-2<br />

Bjerknes , M. , and H. Cheng . 2002 . Multipotential stem cells in adult mouse<br />

gastric epithelium . Am. J. Physiol. Gastrointest. Liver Physiol. 283 :<br />

G767 – G777 .<br />

Blanpain , C. , and E. Fuchs . 2006 . Epidermal stem cells <strong>of</strong> the skin . Annu. Rev.<br />

<strong>Cell</strong> Dev. Biol. 22 : 339 – 373 . http://dx.doi.org/10.1146/annurev.cellbio<br />

.22.010305.104357<br />

Blanpain , C. , W.E. Lowry , A. Geoghegan , L. Polak , and E. Fuchs . 2004 .<br />

Self-renewal, multipotency, and the existence <strong>of</strong> two cell populations<br />

within an epithelial stem cell niche . <strong>Cell</strong> . 118 : 635 – 648 . http://dx.doi<br />

.org/10.1016/j.cell.2004.08.012<br />

Blanpain , C. , V. Horsley , and E. Fuchs . 2007 . Epithelial stem cells: turning over new<br />

leaves . <strong>Cell</strong> . 128 : 445 – 458 . http://dx.doi.org/10.1016/j.cell.2007.01.014<br />

JCB Highlights 2012 37<br />

Buckingham , M.E. , and S.M. Meilhac . 2011 . Tracing cells for tracking cell lineage<br />

and clonal behavior . Dev. <strong>Cell</strong> . 21 : 394 – 409 . http://dx.doi.org/10<br />

.1016/j.devcel.2011.07.019<br />

Chapman , H.A. , X. Li , J.P. Alexander , A. Brumwell , W. Lorizio , K. Tan , A.<br />

Sonnenberg , Y. Wei , and T.H. Vu . 2011 . Integrin � 6 � 4 identifi es an adult<br />

distal lung epithelial population with regenerative potential in mice . J. Clin.<br />

Invest. 121 : 2855 – 2862 . http://dx.doi.org/10.1172/JCI57673<br />

Claudinot , S. , M. Nicolas , H. Oshima , A. Rochat , and Y. Barrandon . 2005 .<br />

Long-term renewal <strong>of</strong> hair follicles from clonogenic multipotent stem<br />

cells . Proc. Natl. Acad. Sci. USA . 102 : 14677 – 14682 . http://dx.doi.org/<br />

10.1073/pnas.0507250102<br />

Clayton , E. , D.P. Doupé , A.M. Klein , D.J. Winton , B.D. Simons , and P.H.<br />

Jones . 2007 . A single type <strong>of</strong> progenitor cell maintains normal epidermis .<br />

Nature . 446 : 185 – 189 . http://dx.doi.org/10.1038/nature05574<br />

Doupé , D.P. , A.M. Klein , B.D. Simons , and P.H. Jones . 2010 . <strong>The</strong> ordered architecture<br />

<strong>of</strong> murine ear epidermis is maintained by progenitor cells with random<br />

fate . Dev. <strong>Cell</strong> . 18 : 317 – 323 . http://dx.doi.org/10.1016/j.devcel.2009.12.016<br />

Ghazizadeh , S. , and L.B. Taichman . 2001 . Multiple classes <strong>of</strong> stem cells in<br />

cutaneous epithelium: a lineage analysis <strong>of</strong> adult mouse skin . EMBO J.<br />

20 : 1215 – 1222 . http://dx.doi.org/10.1093/emboj/20.6.1215<br />

Haeberle , H. , M. Fujiwara , J. Chuang , M.M. Medina , M.V. Panditrao , S.<br />

Bechstedt , J. Howard , and E.A. Lumpkin . 2004 . Molecular pr<strong>of</strong>i ling<br />

reveals synaptic release machinery in Merkel cells . Proc. Natl. Acad. Sci.<br />

USA . 101 : 14503 – 14508 . http://dx.doi.org/10.1073/pnas.0406308101<br />

Hong , K.U. , S.D. Reynolds , S. Watkins , E. Fuchs , and B.R. Stripp . 2004a .<br />

Basal cells are a multipotent progenitor capable <strong>of</strong> renewing the bronchial<br />

epithelium . Am. J. Pathol. 164 : 577 – 588 . http://dx.doi.org/10.1016/<br />

S0002-9440(10)63147-1<br />

Hong , K.U. , S.D. Reynolds , S. Watkins , E. Fuchs , and B.R. Stripp . 2004b . In vivo<br />

differentiation potential <strong>of</strong> tracheal basal cells: evidence for multipotent<br />

and unipotent subpopulations . Am. J. Physiol. Lung <strong>Cell</strong>. Mol. Physiol.<br />

286 : L643 – L649 . http://dx.doi.org/10.1152/ajplung.00155.2003<br />

Horsley , V. , D. O’Carroll , R. Tooze , Y. Ohinata , M. Saitou , T. Obukhanych ,<br />

M. Nussenzweig , A. Tarakhovsky , and E. Fuchs . 2006 . Blimp1 defi nes a<br />

progenitor population that governs cellular input to the sebaceous gland .<br />

<strong>Cell</strong> . 126 : 597 – 609 . http://dx.doi.org/10.1016/j.cell.2006.06.048<br />

Ito , M. , Y. Liu , Z. Yang , J. Nguyen , F. Liang , R.J. Morris , and G. Cotsarelis .<br />

2005 . Stem cells in the hair follicle bulge contribute to wound repair but<br />

not to homeostasis <strong>of</strong> the epidermis . Nat. Med. 11 : 1351 – 1354 . http://<br />

dx.doi.org/10.1038/nm1328<br />

Jaks , V. , N. Barker , M. Kasper , J.H. van Es , H.J. Snippert , H. Clevers , and<br />

R. T<strong>of</strong>tgård . 2008 . Lgr5 marks cycling, yet long-lived, hair follicle stem<br />

cells . Nat. Genet. 40 : 1291 – 1299 . http://dx.doi.org/10.1038/ng.239<br />

Kim , C.F. , E.L. Jackson , A.E. Woolfenden , S. Lawrence , I. Babar , S. Vogel , D.<br />

Crowley , R.T. Bronson , and T. Jacks . 2005 . Identifi cation <strong>of</strong> bronchioalveolar<br />

stem cells in normal lung and lung cancer . <strong>Cell</strong> . 121 : 823 – 835 .<br />

http://dx.doi.org/10.1016/j.cell.2005.03.032<br />

Kretzschmar , K. , and F.M. Watt . 2012 . Lineage tracing . <strong>Cell</strong> . 148 : 33 – 45 . http://<br />

dx.doi.org/10.1016/j.cell.2012.01.002<br />

Kumar , P.A. , Y. Hu , Y. Yamamoto , N.B. Hoe , T.S. Wei , D. Mu , Y. Sun , L.S. Joo ,<br />

R. Dagher , E.M. Zielonka , et al . 2011 . Distal airway stem cells yield alveoli<br />

in vitro and during lung regeneration following H1N1 infl uenza infection .<br />

<strong>Cell</strong> . 147 : 525 – 538 . http://dx.doi.org/10.1016/j.cell.2011.10.001<br />

Legué , E. , and J.F. Nicolas . 2005 . Hair follicle renewal: organization <strong>of</strong> stem<br />

cells in the matrix and the role <strong>of</strong> stereotyped lineages and behaviors .<br />

Development . 132 : 4143 – 4154 . http://dx.doi.org/10.1242/dev.01975<br />

Legué , E. , I. Sequeira , and J.F. Nicolas . 2010 . Hair follicle renewal: authentic morphogenesis<br />

that depends on a complex progression <strong>of</strong> stem cell lineages .<br />

Development . 137 : 569 – 577 . http://dx.doi.org/10.1242/dev.044123<br />

Levy , V. , C. Lindon , B.D. Harfe , and B.A. Morgan . 2005 . Distinct stem cell<br />

populations regenerate the follicle and interfollicular epidermis . Dev.<br />

<strong>Cell</strong> . 9 : 855 – 861 . http://dx.doi.org/10.1016/j.devcel.2005.11.003<br />

Levy , V. , C. Lindon , Y. Zheng , B.D. Harfe , and B.A. Morgan . 2007 . Epidermal<br />

stem cells arise from the hair follicle after wounding . FASEB J. 21 : 1358 –<br />

1366 . http://dx.doi.org/10.1096/fj.06-6926com<br />

Lobo , N.A. , Y. Shimono , D. Qian , and M.F. Clarke . 2007 . <strong>The</strong> biology <strong>of</strong> cancer<br />

stem cells . Annu. Rev. <strong>Cell</strong> Dev. Biol. 23 : 675 – 699 . http://dx.doi.org/<br />

10.1146/annurev.cellbio.22.010305.104154<br />

Lopez-Garcia , C. , A.M. Klein , B.D. Simons , and D.J. Winton . 2010 . Intestinal<br />

stem cell replacement follows a pattern <strong>of</strong> neutral drift . Science . 330 : 822 –<br />

825 . http://dx.doi.org/10.1126/science.1196236<br />

Lumpkin , E.A. , K.L. Marshall , and A.M. Nelson . 2010 . <strong>The</strong> cell biology <strong>of</strong> touch .<br />

J. <strong>Cell</strong> Biol. 191 : 237 – 248 . http://dx.doi.org/10.1083/jcb.201006074<br />

Maricich , S.M. , S.A. Wellnitz , A.M. Nelson , D.R. Lesniak , G.J. Gerling , E.A.<br />

Lumpkin , and H.Y. Zoghbi . 2009 . Merkel cells are essential for lighttouch<br />

responses . Science . 324 : 1580 – 1582 . http://dx.doi.org/10.1126/<br />

science.1172890<br />

Lineage tracing <strong>of</strong> epithelial cells • Van Keymeulen and Blanpain<br />

583


38<br />

584<br />

Montgomery , R.K. , D.L. Carlone , C.A. Richmond , L. Farilla , M.E. Kranendonk ,<br />

D.E. Henderson , N.Y. Baffour-Awuah , D.M. Ambruzs , L.K. Fogli , S.<br />

Algra , and D.T. Breault . 2011 . Mouse telomerase reverse transcriptase<br />

(mTert) expression marks slowly cycling intestinal stem cells . Proc.<br />

Natl. Acad. Sci. USA . 108 : 179 – 184 . http://dx.doi.org/10.1073/pnas<br />

.1013004108<br />

Morris , R.J. , Y. Liu , L. Marles , Z. Yang , C. Trempus , S. Li , J.S. Lin , J.A. Sawicki ,<br />

and G. Cotsarelis . 2004 . Capturing and pr<strong>of</strong>i ling adult hair follicle stem<br />

cells . Nat. Biotechnol. 22 : 411 – 417 . http://dx.doi.org/10.1038/nbt950<br />

Morrison , K.M. , G.R. Miesegaes , E.A. Lumpkin , and S.M. Maricich . 2009 .<br />

Mammalian Merkel cells are descended from the epidermal lineage . Dev.<br />

Biol. 336 : 76 – 83 . http://dx.doi.org/10.1016/j.ydbio.2009.09.032<br />

Nowak , J.A. , L. Polak , H.A. Pasolli , and E. Fuchs . 2008 . Hair follicle stem cells<br />

are specifi ed and function in early skin morphogenesis . <strong>Cell</strong> Stem <strong>Cell</strong> .<br />

3 : 33 – 43 . http://dx.doi.org/10.1016/j.stem.2008.05.009<br />

Oshima , H. , A. Rochat , C. Kedzia , K. Kobayashi , and Y. Barrandon . 2001 .<br />

Morphogenesis and renewal <strong>of</strong> hair follicles from adult multipotent<br />

stem cells . <strong>Cell</strong> . 104 : 233 – 245 . http://dx.doi.org/10.1016/S0092-8674(01)<br />

00208-2<br />

Petersson , M. , H. Brylka , A. Kraus , S. John , G. Rappl , P. Schettina , and C.<br />

Niemann . 2011 . TCF/Lef1 activity controls establishment <strong>of</strong> diverse<br />

stem and progenitor cell compartments in mouse epidermis . EMBO J.<br />

30 : 3004 – 3018 . http://dx.doi.org/10.1038/emboj.2011.199<br />

Potten , C.S. 1974 . <strong>The</strong> epidermal proliferative unit: the possible role <strong>of</strong> the central<br />

basal cell . <strong>Cell</strong> Tissue Kinet. 7 : 77 – 88 .<br />

Potten , C.S. 1981 . <strong>Cell</strong> replacement in epidermis (keratopoiesis) via discrete<br />

units <strong>of</strong> proliferation . Int. Rev. Cytol. 69 : 271 – 318 . http://dx.doi.org/10<br />

.1016/S0074-7696(08)62326-8<br />

Potten , C.S. , W.J. Hume , P. Reid , and J. Cairns . 1978 . <strong>The</strong> segregation <strong>of</strong> DNA<br />

in epithelial stem cells . <strong>Cell</strong> . 15 : 899 – 906 . http://dx.doi.org/10.1016/<br />

0092-8674(78)90274-X<br />

Rawlins , E.L. , L.E. Ostrowski , S.H. Randell , and B.L. Hogan . 2007 . Lung development<br />

and repair: contribution <strong>of</strong> the ciliated lineage . Proc. Natl. Acad.<br />

Sci. USA . 104 : 410 – 417 . http://dx.doi.org/10.1073/pnas.0610770104<br />

Rawlins , E.L. , T. Okubo , Y. Xue , D.M. Brass , R.L. Auten , H. Hasegawa , F. Wang ,<br />

and B.L. Hogan . 2009 . <strong>The</strong> role <strong>of</strong> Scgb1a1+ Clara cells in the long-term<br />

maintenance and repair <strong>of</strong> lung airway, but not alveolar, epithelium . <strong>Cell</strong><br />

Stem <strong>Cell</strong> . 4 : 525 – 534 . http://dx.doi.org/10.1016/j.stem.2009.04.002<br />

Ro , S. , and B. Rannala . 2004 . A stop-EGFP transgenic mouse to detect clonal<br />

cell lineages generated by mutation . EMBO Rep. 5 : 914 – 920 . http://dx.doi<br />

.org/10.1038/sj.embor.7400218<br />

Ro , S. , and B. Rannala . 2005 . Evidence from the stop-EGFP mouse supports<br />

a niche-sharing model <strong>of</strong> epidermal proliferative units . Exp. Dermatol.<br />

14 : 838 – 843 . http://dx.doi.org/10.1111/j.1600-0625.2005.00366.x<br />

Rochat , A. , K. Kobayashi , and Y. Barrandon . 1994 . Location <strong>of</strong> stem cells <strong>of</strong><br />

human hair follicles by clonal analysis . <strong>Cell</strong> . 76 : 1063 – 1073 . http://dx.doi<br />

.org/10.1016/0092-8674(94)90383-2<br />

Rock , J.R. , and B.L. Hogan . 2011 . Epithelial progenitor cells in lung development,<br />

maintenance, repair, and disease . Annu. Rev. <strong>Cell</strong> Dev. Biol. 27 : 493 – 512 .<br />

http://dx.doi.org/10.1146/annurev-cellbio-100109-104040<br />

Rock , J.R. , M.W. Onaitis , E.L. Rawlins , Y. Lu , C.P. Clark , Y. Xue , S.H. Randell ,<br />

and B.L. Hogan . 2009 . Basal cells as stem cells <strong>of</strong> the mouse trachea and<br />

human airway epithelium . Proc. Natl. Acad. Sci. USA . 106 : 12771 – 12775 .<br />

http://dx.doi.org/10.1073/pnas.0906850106<br />

Rock , J.R. , C.E. Barkauskas , M.J. Cronce , Y. Xue , J.R. Harris , J. Liang , P.W.<br />

Noble , and B.L. Hogan . 2011 . Multiple stromal populations contribute<br />

to pulmonary fi brosis without evidence for epithelial to mesenchymal transition<br />

. Proc. Natl. Acad. Sci. USA . 108 : E1475 – E1483 . http://dx.doi.org/<br />

10.1073/pnas.1117988108<br />

Sangiorgi , E. , and M.R. Capecchi . 2008 . Bmi1 is expressed in vivo in intestinal<br />

stem cells . Nat. Genet. 40 : 915 – 920 . http://dx.doi.org/10.1038/ng.165<br />

Shackleton , M. , F. Vaillant , K.J. Simpson , J. Stingl , G.K. Smyth , M.L. Asselin-<br />

Labat , L. Wu , G.J. Lindeman , and J.E. Visvader . 2006 . Generation <strong>of</strong> a<br />

functional mammary gland from a single stem cell . Nature . 439 : 84 – 88 .<br />

http://dx.doi.org/10.1038/nature04372<br />

Snippert , H.J. , A. Haegebarth , M. Kasper , V. Jaks , J.H. van Es , N. Barker , M. van<br />

de Wetering , M. van den Born , H. Begthel , R.G. Vries , et al . 2010a . Lgr6<br />

marks stem cells in the hair follicle that generate all cell lineages <strong>of</strong> the skin .<br />

Science . 327 : 1385 – 1389 . http://dx.doi.org/10.1126/science.1184733<br />

Snippert , H.J. , L.G. van der Flier , T. Sato , J.H. van Es , M. van den Born , C.<br />

Kroon-Veenboer , N. Barker , A.M. Klein , J. van Rheenen , B.D. Simons ,<br />

and H. Clevers . 2010b . Intestinal crypt homeostasis results from neutral<br />

competition between symmetrically dividing Lgr5 stem cells . <strong>Cell</strong> .<br />

143 : 134 – 144 . http://dx.doi.org/10.1016/j.cell.2010.09.016<br />

Stingl , J. , P. Eirew , I. Ricketson , M. Shackleton , F. Vaillant , D. Choi , H.I. Li ,<br />

and C.J. Eaves . 2006 . Purifi cation and unique properties <strong>of</strong> mammary<br />

epithelial stem cells . Nature . 439 : 993 – 997 .<br />

JCB • VOLUME 197 • NUMBER 5 • 2012<br />

Takeda , N. , R. Jain , M.R. LeBoeuf , Q. Wang , M.M. Lu , and J.A. Epstein . 2011 .<br />

Interconversion between intestinal stem cell populations in distinct niches .<br />

Science . 334 : 1420 – 1424 . http://dx.doi.org/10.1126/science.1213214<br />

Tian , H. , B. Biehs , S. Warming , K.G. Leong , L. Rangell , O.D. Klein , and F.J.<br />

de Sauvage . 2011 . A reserve stem cell population in small intestine renders<br />

Lgr5-positive cells dispensable . Nature . 478 : 255 – 259 . http://dx.doi<br />

.org/10.1038/nature10408<br />

Tumbar , T. , G. Guasch , V. Greco , C. Blanpain , W.E. Lowry , M. Rendl , and<br />

E. Fuchs . 2004 . Defi ning the epithelial stem cell niche in skin . Science .<br />

303 : 359 – 363 . http://dx.doi.org/10.1126/science.1092436<br />

Van Keymeulen , A. , G. Mascre , K.K. Youseff , I. Harel , C. Michaux , N. De<br />

Geest , C. Szpalski , Y. Achouri , W. Bloch , B.A. Hassan , and C. Blanpain .<br />

2009 . Epidermal progenitors give rise to Merkel cells during embryonic<br />

development and adult homeostasis . J. <strong>Cell</strong> Biol. 187 : 91 – 100 . http://<br />

dx.doi.org/10.1083/jcb.200907080<br />

Van Keymeulen , A. , A.S. Rocha , M. Ousset , B. Beck , G. Bouvencourt , J. Rock ,<br />

N. Sharma , S. Dekoninck , and C. Blanpain . 2011 . Distinct stem cells<br />

contribute to mammary gland development and maintenance . Nature .<br />

479 : 189 – 193 . http://dx.doi.org/10.1038/nature10573<br />

Visvader , J.E. 2009 . Keeping abreast <strong>of</strong> the mammary epithelial hierarchy and<br />

breast tumorigenesis . Genes Dev. 23 : 2563 – 2577 . http://dx.doi.org/10.1101/<br />

gad.1849509<br />

Visvader , J.E. 2011 . <strong>Cell</strong>s <strong>of</strong> origin in cancer . Nature . 469 : 314 – 322 . http://dx<br />

.doi.org/10.1038/nature09781<br />

Wagner , K.U. , C.A. Boulanger , M.D. Henry , M. Sgagias , L. Hennighausen ,<br />

and G.H. Smith . 2002 . An adjunct mammary epithelial cell population<br />

in parous females: its role in functional adaptation and tissue renewal .<br />

Development . 129 : 1377 – 1386 .<br />

Watson , C.J. , and W.T. Khaled . 2008 . Mammary development in the embryo<br />

and adult: a journey <strong>of</strong> morphogenesis and commitment . Development .<br />

135 : 995 – 1003 . http://dx.doi.org/10.1242/dev.005439<br />

Youssef , K.K. , A. Van Keymeulen , G. Lapouge , B. Beck , C. Michaux , Y. Achouri ,<br />

P.A. Sotiropoulou , and C. Blanpain . 2010 . Identifi cation <strong>of</strong> the cell lineage at<br />

the origin <strong>of</strong> basal cell carcinoma . Nat. <strong>Cell</strong> Biol. 12 : 299 – 305 .<br />

Zhang , Y.V. , B.S. White , D.I. Shalloway , and T. Tumbar . 2010 . Stem cell<br />

dynamics in mouse hair follicles: a story from cell division counting<br />

and single cell lineage tracing . <strong>Cell</strong> Cycle . 9 : 1504 – 1510 . http://dx.doi<br />

.org/10.4161/cc.9.8.11252


See what happens...<br />

Outside <strong>The</strong> Lab<br />

iBioMagazine.org’s Latest Videos<br />

Tom Kornberg<br />

In Concert with Emanuel Ax<br />

Chris Garcia<br />

Ultramarathoner<br />

iBioMagazine<br />

Sue McConnell<br />

Wildlife Photographer<br />

Lou Reichardt<br />

Climbing K2 and Everest<br />

See the interesting, fun, and creative activities scientists do in their spare time<br />

and how it makes them better scientists and well-rounded individuals.<br />

Erich Jarvis<br />

From Dancer to Scientist<br />

Katjuša Brejc<br />

Rescuing Marine Mammals<br />

Peter Walter<br />

Wood and Metal Artist<br />

Jim Ferrell<br />

Rock and Folk Musician<br />

David Morgan<br />

Rare Book Collector<br />

Anita Sil<br />

Taekwondo Black Belt<br />

Hal McGee<br />

<strong>The</strong> Science <strong>of</strong> Cooking<br />

Dan Barry<br />

Surviving the Survivor Show<br />

<strong>The</strong>se videos and more, all free at iBioMagazine.org<br />

Bringing You the Human Side <strong>of</strong> Science #iBioMagazine


Precision Instrumentation<br />

for the Sciences<br />

MICROPIPETTE FABRICATION<br />

Sutter Instrument, the recognized leader in micropipette<br />

fabrication technology, <strong>of</strong>fers leading edge technology in<br />

the P-1000 micropipette puller with an intuitive, full-featured<br />

interface. An extensive library <strong>of</strong> built-in programs is available<br />

through the color touch-screen display, taking the guesswork<br />

out <strong>of</strong> pipette pulling.<br />

OPTICAL PRODUCTS<br />

<strong>The</strong> latest in our expanding line <strong>of</strong> optical products is the<br />

Lambda VF-5 tunable filter changer that allows access<br />

to any center wavelength from 330 to 800nm in nanometer<br />

increments. In addition to a full line <strong>of</strong> filter wheels and<br />

controllers, we design and build plasma and xenon light<br />

sources, and the MOM 2-photon microscope.<br />

MICROMANIPULATION<br />

Rock-solid precision and sub-micron accuracy. Whether your<br />

application requires the MPC-200 for single-handed access to<br />

multiple manipulators, the programmable capabilities <strong>of</strong> the<br />

MP-285, the simplicity <strong>of</strong> the MP-225, or one <strong>of</strong> our traditional,<br />

manual style instruments, we have a manipulator to meet<br />

your needs.<br />

MICROINJECTION<br />

<strong>The</strong> XenoWorks microinjection system has been designed<br />

to meet the needs <strong>of</strong> a wide variety <strong>of</strong> applications that require<br />

the manipulation <strong>of</strong> cells and embryonic tissues including ICSI,<br />

ES <strong>Cell</strong> Microinjection, and Adherent <strong>Cell</strong> Microinjection.<br />

Highly-responsive movement and excellent ergonomics<br />

intuitively link the user with the micropipette, improving<br />

yield – saving time and resources.<br />

ONE DIGITAL DRIVE, NOVATO, CA. 94949 PHONE: 415.883.0128 | FAX: 415.883.0572<br />

EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!