08.02.2013 Views

Effects of cytochalasin and phalloidin on actin.

Effects of cytochalasin and phalloidin on actin.

Effects of cytochalasin and phalloidin on actin.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Published October 1, 1987<br />

Mini-Review<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytochalasin <str<strong>on</strong>g>and</str<strong>on</strong>g> Phalloidin <strong>on</strong> Actin<br />

John A. Cooper<br />

Departments <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Pathology, Washingt<strong>on</strong> University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, St. Louis, Missouri 63110<br />

C<br />

YTOCHALASINS <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>s are two groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

small, naturally occurring organic molecules that<br />

bind to <strong>actin</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> alter its polymerizati<strong>on</strong>. They have<br />

been widely used to study the role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> in biological<br />

processes <str<strong>on</strong>g>and</str<strong>on</strong>g> as models for <strong>actin</strong>-binding proteins. Func-<br />

ti<strong>on</strong>ally, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s resemble capping proteins, which<br />

block an end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments, nucleate polymerizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

shorten filaments. No known <strong>actin</strong>-binding protein stabilizes<br />

<strong>actin</strong> filaments as <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> does, but such proteins may<br />

have been missed. Cytochalasin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> have also<br />

helped to elucidate fundamental aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> polymeriza-<br />

ti<strong>on</strong>. This review briefly summarizes older studies <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>-<br />

centrates <strong>on</strong> recent v~rk <strong>on</strong> the mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>.<br />

Cytochalasin<br />

Cytochalasins, a group <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal metabolites, permeate cell<br />

membranes <str<strong>on</strong>g>and</str<strong>on</strong>g> cause cells to stop ruffling <str<strong>on</strong>g>and</str<strong>on</strong>g> translocating,<br />

round up (44, 54), become less stiff (12), <str<strong>on</strong>g>and</str<strong>on</strong>g> enucleate (28).<br />

In additi<strong>on</strong> to binding <strong>actin</strong>, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s A <str<strong>on</strong>g>and</str<strong>on</strong>g> B also<br />

inhibit m<strong>on</strong>osaccharide transport across the plasma mem-<br />

brane; however, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s C, D, E, H, <str<strong>on</strong>g>and</str<strong>on</strong>g> 21,22-dihydro-<br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> B do not (42).<br />

Cytochalasin Binding to Actin Filaments. Cytochalasins<br />

bind to the barbed end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments, which inhibits both<br />

the associati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subunits at that end. The<br />

stoichiometry <str<strong>on</strong>g>of</str<strong>on</strong>g> binding is about <strong>on</strong>e <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> per <strong>actin</strong><br />

filament (8, 19); in these studies the filament number could<br />

not be determined accurately. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the affinity,<br />

based <strong>on</strong> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments, are compiled in Table<br />

I. The dissociati<strong>on</strong> c<strong>on</strong>stant for binding (Kd) is determined<br />

with radiolabeled <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizes the structural<br />

interacti<strong>on</strong> between <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>actin</strong>. The inhibiti<strong>on</strong><br />

c<strong>on</strong>stant (K 0 is measured from the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s <strong>on</strong><br />

the growth or shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> the barbed end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments.<br />

CD ~ is about 10 times more effective than CB. For both<br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s, the binding <str<strong>on</strong>g>and</str<strong>on</strong>g> inhibiti<strong>on</strong> c<strong>on</strong>stants agree fairly<br />

well, which shows that binding causes inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer-<br />

izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> depolymerizati<strong>on</strong>.<br />

The inhibiti<strong>on</strong> c<strong>on</strong>stant for growth with ATP-<strong>actin</strong> is quite<br />

different from the others <str<strong>on</strong>g>and</str<strong>on</strong>g> varies with the <strong>actin</strong> m<strong>on</strong>omer<br />

c<strong>on</strong>centrati<strong>on</strong> (9). These complicati<strong>on</strong>s are probably at-<br />

tributable to the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the nucleotide in the different experi-<br />

ments. The binding studies are performed with ATP-<strong>actin</strong> at<br />

steady state, where no net growth or shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments<br />

occurs. Actin m<strong>on</strong>omers have mainly bound ATE <str<strong>on</strong>g>and</str<strong>on</strong>g> fila-<br />

1. Abbreviati<strong>on</strong>s used in thispaper: CB, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> B; CD, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D.<br />

9 The Rockefeller University Press, 0021-9525/87/10/1473/6 $2.00<br />

The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology, Volume 105, October 1987 1473-1478 1473<br />

merits have mainly ADP because the ATP hydrolyzes after<br />

the m<strong>on</strong>omer adds to the filament. In the functi<strong>on</strong>al studies<br />

in ADP all <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>actin</strong> molecules have bound ADP. In ATE<br />

free m<strong>on</strong>omers will have bound ATP but the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the fila-<br />

ments can have either ATP, ADP, or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> both, de-<br />

pending <strong>on</strong> the relative rates <str<strong>on</strong>g>of</str<strong>on</strong>g> subunit additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ATP hy-<br />

drolysis. In experiments where the c<strong>on</strong>stants agree, the<br />

filament ends probably have bound ADP. Since the plot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

apparent K~ vs. ATP-<strong>actin</strong> m<strong>on</strong>omer c<strong>on</strong>centrati<strong>on</strong> has a<br />

positive curvature, CD may not bind at all to filaments with<br />

ATP-<strong>actin</strong> ends, so that the variable effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CD may simply<br />

reflect the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ADP-<strong>actin</strong> ends (9). Alternatively,<br />

CD may induce dimerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP-<strong>actin</strong> m<strong>on</strong>omers, as dis-<br />

cussed in detail below. New experiments are needed to mea-<br />

sure the binding affinity for ATP-<strong>actin</strong> filaments, but the<br />

short lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> these filaments makes this technically dif-<br />

ficult.<br />

Electr<strong>on</strong> microscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments grown from morpholog-<br />

ically identifiable seeds has revealed that the major effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> is at the barbed, as opposed to the pointed, end<br />

(4, 36). In a recent set <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments 2 pM CB inhibited<br />

associati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissociati<strong>on</strong> events <strong>on</strong>ly by 90%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 pM<br />

CD had a similar effect (4). This interesting result should be<br />

c<strong>on</strong>firmed by showing that the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> barbed end<br />

el<strong>on</strong>gati<strong>on</strong> <strong>on</strong> CD c<strong>on</strong>centrati<strong>on</strong> exhibits a plateau at 90% in-<br />

stead <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% inhibiti<strong>on</strong>.<br />

The rate c<strong>on</strong>stants for <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> binding to barbed ends<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> interest but have not been measured. If the 90% inhibi-<br />

ti<strong>on</strong> by 2 pM CB is due to 90% binding, then the rates oT<br />

associati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CB must be at least compara-<br />

Table L Apparent Equilibrium Dissociati<strong>on</strong> C<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Binding <str<strong>on</strong>g>and</str<strong>on</strong>g> Inhibiti<strong>on</strong> for Cytochalasins <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Actin Filaments<br />

K~<br />

ADP-Actin ATP-Actin<br />

Filament Filament Filament Filament<br />

Binding growth shortening growth shortening<br />

nM nM nM nM nM<br />

CB 5-40 40 40 200 -<br />

CD ,,02 1-2 1-2 2-35 + 2<br />

The methods are discussed briefly in the text. The values are taken from the<br />

following references: Kd for CB, 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> 19; Kd for CD, 19; Ki for ADP-aetin<br />

for CB, 7; K~ for ADP-<strong>actin</strong> for CD, 9; K~ for ATP-<strong>actin</strong> growth for CB, 7<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 19; K~ for ATP-<strong>actin</strong> growth for CD, 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 19; K~ for ATP-<strong>actin</strong> shorten-<br />

ing for CD, 9.<br />

K,<br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013


Published October 1, 1987<br />

ble to the rates <str<strong>on</strong>g>of</str<strong>on</strong>g> associati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> m<strong>on</strong>o-<br />

mers, since filaments grow uniformly with time (4).<br />

Some (14, 30), but not all (36), studies find that cytochala-<br />

sin shortens <strong>actin</strong> filaments. The mechanism for shortening<br />

is unresolved because we lack both methods to measure fila-<br />

ment length <str<strong>on</strong>g>and</str<strong>on</strong>g> theories that combine all the factors that<br />

affect filament length. One interesting possibility is that<br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> can bind to a subunit in the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>actin</strong><br />

filament <str<strong>on</strong>g>and</str<strong>on</strong>g> break the filament in two, called "severing." An<br />

electr<strong>on</strong> microscope assay for CB does not show the dra-<br />

matic shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> severing by<br />

certain capping proteins (3, 29). Nevertheless, interrupti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g filaments are seen, which may represent capping <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transient filament breaks induced by shear during the final<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> sample preparati<strong>on</strong> (4).<br />

Cytochalasin Binding to Actin M<strong>on</strong>omers <str<strong>on</strong>g>and</str<strong>on</strong>g> Dimers.<br />

Goddette <str<strong>on</strong>g>and</str<strong>on</strong>g> Frieden recently examined the binding <str<strong>on</strong>g>of</str<strong>on</strong>g> CD<br />

to m<strong>on</strong>omeric <strong>actin</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> dimers, in-<br />

spired by the observati<strong>on</strong>s that <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> increases the rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> m<strong>on</strong>omers (45) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP hydrolysis by <strong>actin</strong> m<strong>on</strong>omers (6). The direct<br />

binding <str<strong>on</strong>g>of</str<strong>on</strong>g> CD to m<strong>on</strong>omeric <strong>actin</strong> was measured with a sen-<br />

sitive assay for free CD (24). In a n<strong>on</strong>polymerizing buffer<br />

with Ca ++, the Kd is 18 ~tM, <str<strong>on</strong>g>and</str<strong>on</strong>g> the stoichiometry is 1:1.<br />

When Mg ++ replaces Ca ++, the Kd is 2.6 IxM but the stoichi-<br />

ometry is strikingly unexpected: <strong>on</strong>e CD per two <strong>actin</strong>s,<br />

which suggests either that <strong>actin</strong> dimerizes or that half <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>actin</strong> m<strong>on</strong>omers are incapable <str<strong>on</strong>g>of</str<strong>on</strong>g> binding CD. Direct physi-<br />

cal evidence for dimer formati<strong>on</strong> was obtained by small an-<br />

gle neutr<strong>on</strong> scattering (27). Without CD a moderate amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dimers form over several hours in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg +§<br />

In CD, dimers form more rapidly (<strong>on</strong> a time scale c<strong>on</strong>sistent<br />

with the previous binding studies) <str<strong>on</strong>g>and</str<strong>on</strong>g> to a greater extent.<br />

The rapid kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> binding <str<strong>on</strong>g>and</str<strong>on</strong>g> dimer for-<br />

mati<strong>on</strong> were studied using <strong>actin</strong> labeled with fluorescent<br />

probes. AEDANS-<strong>actin</strong> was used to measure the binding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CD to m<strong>on</strong>omeric <strong>actin</strong> (25). The fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> AEDANS-<br />

<strong>actin</strong> is higher with bound Mg ++ than Ca ++, <str<strong>on</strong>g>and</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CD to Mg§ leads to a decrease in fluorescence. The<br />

time course <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluorescence decrease was m<strong>on</strong>itored with<br />

stopped-flow techniques, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CD, <strong>actin</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ca ++. Changing the <strong>actin</strong> c<strong>on</strong>centrati<strong>on</strong><br />

has no effect, <str<strong>on</strong>g>and</str<strong>on</strong>g> so the fluorescence decrease is not due to<br />

dimerizati<strong>on</strong>. Taken together, the data are c<strong>on</strong>sistent with a<br />

theoretical model in which CD binds rapidly <str<strong>on</strong>g>and</str<strong>on</strong>g> loosely to<br />

an <strong>actin</strong> m<strong>on</strong>omer, followed by a c<strong>on</strong>formati<strong>on</strong>al change <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

complex to a state where the CD is bound more tightly (25).<br />

Pyrene-<strong>actin</strong> was used to study the kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> dimer for-<br />

mati<strong>on</strong> (26). Pyrene-<strong>actin</strong> cannot bind CD directly, hence<br />

fluorescence changes represent the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimers or<br />

larger oligomers. The fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> pyrene-<strong>actin</strong> filaments<br />

is 20 times that <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omers, <str<strong>on</strong>g>and</str<strong>on</strong>g> the time course <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>ta-<br />

neous polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omers, in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> CD,<br />

has a characteristic sigmoidal shape, reflecting slow nuclea-<br />

ti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent rapid el<strong>on</strong>gati<strong>on</strong>. In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> CD,<br />

several changes occur in the time course <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorescence. The<br />

most obvious <strong>on</strong>es are that the lag phase is eliminated, inter-<br />

preted as accelerated nucleati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> that the final steady-<br />

state fluorescence is decreased, which implies a higher criti-<br />

cal m<strong>on</strong>omer c<strong>on</strong>centrati<strong>on</strong> (45).<br />

Two subtle, rapid changes in fluorescence provide infor-<br />

mati<strong>on</strong> about how <strong>actin</strong> dimers may form <str<strong>on</strong>g>and</str<strong>on</strong>g> act. Up<strong>on</strong> ad-<br />

The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology, Volume 105, 1987 1474<br />

cD<br />

/ \<br />

Figure 1. A model for the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD with <strong>actin</strong> m<strong>on</strong>omers<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dimers, described by Cmddette <str<strong>on</strong>g>and</str<strong>on</strong>g> Frieden (26). The chevr<strong>on</strong><br />

symbol represents an <strong>actin</strong> m<strong>on</strong>omer. A?P denotes uncertainty<br />

about whether the bound nucleotide is ATP or ADR The wavy line<br />

leading to filament represents nucleati<strong>on</strong>. The model does not<br />

specify whether the nucleating species is a CD-<strong>actin</strong> dimer with<br />

ATP or ADP. This uncertainty is not depicted.<br />

diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg ++, the fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> pyrene-<strong>actin</strong> in-<br />

creases rapidly <str<strong>on</strong>g>and</str<strong>on</strong>g> then partially decreases more slowly<br />

(26). The magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> these changes are relatively small,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the changes occur before the large increase in fluores-<br />

cence attributable to filament formati<strong>on</strong>. The initial fluores-<br />

cence increase is hypothesized to represent dimer formati<strong>on</strong>.<br />

The kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> this rapid initial increase are predicted by a<br />

model in which CD <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg ++ bind to <strong>actin</strong>, induce dimer<br />

formati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the dimer undergoes a c<strong>on</strong>formati<strong>on</strong> change<br />

to the high fluorescence state (26). The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

steady-state pyrene-<strong>actin</strong> fluorescence <strong>on</strong> the total <strong>actin</strong> c<strong>on</strong>-<br />

centrati<strong>on</strong> provides additi<strong>on</strong>al evidence for the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oligomers induced by CD. In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> CD, plots <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluorescence vs. <strong>actin</strong> c<strong>on</strong>centrati<strong>on</strong> are curved, in c<strong>on</strong>trast<br />

to c<strong>on</strong>trols that have a characteristic sharp transiti<strong>on</strong> at the<br />

critical c<strong>on</strong>centrati<strong>on</strong> (9).<br />

Goddette <str<strong>on</strong>g>and</str<strong>on</strong>g> Frieden (26) propose a model that qualita-<br />

tively explains these new observati<strong>on</strong>s al<strong>on</strong>g with several im-<br />

portant older pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> data (Fig. 1). When CD-<strong>actin</strong> dimers<br />

form, the <strong>actin</strong> c<strong>on</strong>tains bound ATP. The ATP is hydrolyzed<br />

to ADP, which causes the dimers to fall apart, generating a<br />

CD-<strong>actin</strong> m<strong>on</strong>omer complex <str<strong>on</strong>g>and</str<strong>on</strong>g> a free <strong>actin</strong> with ADP. The<br />

CD-<strong>actin</strong> dimers are good nucleators, but CD-<strong>actin</strong> m<strong>on</strong>o-<br />

mers are poor nucleators. A CD-<strong>actin</strong> m<strong>on</strong>omer can bind an<br />

ATP-<strong>actin</strong> m<strong>on</strong>omer to re-form a CD-<strong>actin</strong> dimer. The cycle<br />

repeats with hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP <str<strong>on</strong>g>and</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ADP-<br />

m<strong>on</strong>omer.<br />

How does this model explain the data? (a) Dimer forma-<br />

ti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissociati<strong>on</strong> explain the increase <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequent de-<br />

crease <str<strong>on</strong>g>of</str<strong>on</strong>g> pyrene-<strong>actin</strong> fluorescence (26). CD-<strong>actin</strong> dimers<br />

form in high c<strong>on</strong>centrati<strong>on</strong> transiently because the molecules<br />

proceed synchr<strong>on</strong>ously through the first turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cycle.<br />

(b) ATP is hydrolyzed by m<strong>on</strong>omers <str<strong>on</strong>g>and</str<strong>on</strong>g> dimers, without<br />

the involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments, which explains the increased<br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013


Published October 1, 1987<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP hydrolysis by <strong>actin</strong> m<strong>on</strong>omers in <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g><br />

(6). Also, the Mg ++ dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> dimer formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> po-<br />

lymerizati<strong>on</strong> predicts the Mg ++ dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the ATPase.<br />

In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg ++, CD does not cause dimer forma-<br />

ti<strong>on</strong> or increase the ATPase. 100--500 gM Mg ++ suffices to<br />

form dimers (26) <str<strong>on</strong>g>and</str<strong>on</strong>g> increase the ATPase (6, 34). Greater<br />

than 1 mM Mg ++ causes <strong>actin</strong> polymerizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> so m<strong>on</strong>o-<br />

mers incorporate into filaments rather than form dimers. The<br />

model therefore predicts a lower ATPase, as observed by<br />

Low <str<strong>on</strong>g>and</str<strong>on</strong>g> Dancker (34).<br />

(c) Cytochalasin is a poor nucleating agent, which is ex-<br />

plained in the model by some dimers dissociating instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proceeding through nucleati<strong>on</strong>. One might not need to in-<br />

voke dissociati<strong>on</strong> to explain why CD-<strong>actin</strong> dimers are poor<br />

nucleators. CD-<strong>actin</strong> dimers should be poor nucleators be-<br />

cause they nucleate growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments <strong>on</strong>ly in the<br />

pointed directi<strong>on</strong> (CD should cap the barbed end <str<strong>on</strong>g>of</str<strong>on</strong>g> the new<br />

filament). Although this c<strong>on</strong>siderati<strong>on</strong> explains why CD-<br />

<strong>actin</strong> dimers are worse nucleators than <strong>actin</strong> dimers without<br />

CD, it does not explain why a given c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma<br />

gelsolin, which also nucleates growth in the pointed direc-<br />

ti<strong>on</strong>, nucleates better than the same c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD<br />

(45). Plasma gelsolin probably binds <strong>actin</strong> m<strong>on</strong>omers more<br />

tightly than does CD (13), <str<strong>on</strong>g>and</str<strong>on</strong>g> so fewer dimers may form in<br />

CD than in gelsolin, which would account for the poor<br />

nucleating activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CD. Also, CD-<strong>actin</strong> dimers may be<br />

structurally different from other dimers <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby poor<br />

nucleators. To resolve this issue properly, <strong>on</strong>e would like<br />

quantitative measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD-<strong>actin</strong><br />

dimers <str<strong>on</strong>g>and</str<strong>on</strong>g> the fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimers that dissociate or nucleate<br />

filament formati<strong>on</strong>.<br />

(d) In CD the apparent critical c<strong>on</strong>centrati<strong>on</strong> for polymer-<br />

izati<strong>on</strong> is high. One expects a higher critical c<strong>on</strong>centrati<strong>on</strong><br />

simply because the barbed ends are capped (the pointed end<br />

has a higher critical c<strong>on</strong>centrati<strong>on</strong> than the barbed end in<br />

Mg ++ (2)). Goddette <str<strong>on</strong>g>and</str<strong>on</strong>g> Frieden (26) find that the apparent<br />

critical c<strong>on</strong>centrati<strong>on</strong> in CD is higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the pointed<br />

end. Their model explains this difference qualitatively by the<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ADP-<strong>actin</strong> m<strong>on</strong>omers, which have a high criti-<br />

cal c<strong>on</strong>centrati<strong>on</strong> (8 ~tM under these c<strong>on</strong>diti<strong>on</strong>s) (41). Al-<br />

though the ADP will exchange with free ATP in soluti<strong>on</strong>, the<br />

exchange may be slow enough that ADP-<strong>actin</strong> persists in ap-<br />

preciable c<strong>on</strong>centrati<strong>on</strong>s. Slow nucleotide exchange can the-<br />

oretically predict a relatively high ADP-<strong>actin</strong> m<strong>on</strong>omer c<strong>on</strong>-<br />

centrati<strong>on</strong> for <strong>actin</strong> filament soluti<strong>on</strong>s at steady state (39),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> can explain the increase in critical c<strong>on</strong>centrati<strong>on</strong> for<br />

s<strong>on</strong>icated <strong>actin</strong> (41). The precise values <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>f rate<br />

c<strong>on</strong>stants for nucleotides binding to <strong>actin</strong> m<strong>on</strong>omers are not<br />

yet known but would permit a quantitative test <str<strong>on</strong>g>of</str<strong>on</strong>g> the model.<br />

The literature, however, disagrees as to whether the appar-<br />

ent critical c<strong>on</strong>centrati<strong>on</strong> in CD really is higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the pointed end (measured as the apparent critical c<strong>on</strong>centra-<br />

ti<strong>on</strong> in plasma gelsolin). Results from Korn's laboratory<br />

show the same apparent critical c<strong>on</strong>centrati<strong>on</strong> (4 IxM) in CD<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> plasma gelsolin (9, 13), but results from Frieden's labo-<br />

ratory show a difference (26, 45). The experimental pro-<br />

tocols <str<strong>on</strong>g>of</str<strong>on</strong>g> the two laboratories differ in two major respects:<br />

(a) the <strong>actin</strong> is either m<strong>on</strong>omeric or is prepolymerized to fila-<br />

ments at time zero, <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) the time <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> varies from<br />

4 to 24 h. To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> this difference, we performed an ex-<br />

periment that compared the different c<strong>on</strong>diti<strong>on</strong>s (Table II)<br />

(K. Patane, J. A. Cooper, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden, unpublished re-<br />

Cooper <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytochalasin <str<strong>on</strong>g>and</str<strong>on</strong>g> Phalloidin <strong>on</strong> Actin 1475<br />

Table II. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Apparent Critical<br />

C<strong>on</strong>centrati<strong>on</strong> for Actin Polymerizati<strong>on</strong> in CD<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Plasma Gelsolin<br />

Physical State <str<strong>on</strong>g>of</str<strong>on</strong>g> Actin at Time Zero<br />

M<strong>on</strong>omer Filament<br />

4 h 24 h 4 h 24 h<br />

i.tM #M #M #M<br />

CD 5.9 5.1 4.3 5.1<br />

Plasma Gelsolin 2, t 2.1 3.8 2.6<br />

Actin was incubated with CD at 0-5 ~tM or plasma gelsolin at 0-1 tiM, The<br />

apparent critical c<strong>on</strong>centrati<strong>on</strong> was calculated from the pyrenc-<strong>actin</strong> fluores-<br />

cence at each c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD <str<strong>on</strong>g>and</str<strong>on</strong>g> plasma gelsolin. The values in the table<br />

are from the plateau porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the curve, which was at 5 gM CD <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5 gM<br />

plasma gelsolin. Based <strong>on</strong> previous results, we assume that <strong>actin</strong> al<strong>on</strong>e poly-<br />

merizes to steady state in 4 h with a critical c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 ~tM. C<strong>on</strong>di-<br />

ti<strong>on</strong>s: 12 I~M rabbit skeletal muscle <strong>actin</strong> (2% pyrene-labeled), 1 mM<br />

MgSO4, 2 mM TrislHC1, pH 8.0, 0.2 mM CaClz, 0.2 mM ATP, 20~<br />

When an additi<strong>on</strong>al 0.2 mM ATP was added after the measurements at 24 h,<br />

the fluorescence did not change.<br />

suits). At 24 h the data for filament <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>omers are the<br />

same <str<strong>on</strong>g>and</str<strong>on</strong>g> the difference between CD <str<strong>on</strong>g>and</str<strong>on</strong>g> plasma gelsolin<br />

exists.<br />

Alternatively, the high apparent critical c<strong>on</strong>centrati<strong>on</strong> in<br />

CD could be due to CD-<strong>actin</strong> m<strong>on</strong>omers that do not poly-<br />

merize. An experiment that includes a range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> c<strong>on</strong>-<br />

centrati<strong>on</strong>s, however, would reflect this c<strong>on</strong>tributi<strong>on</strong> with a<br />

characteristic shape in the plot <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorescence vs. <strong>actin</strong> c<strong>on</strong>-<br />

centrati<strong>on</strong>, as described for Acanthamoeba pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilin (33).<br />

This shape is not seen with CD (9).<br />

In the future, the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> <strong>on</strong><br />

<strong>actin</strong> can be tested <str<strong>on</strong>g>and</str<strong>on</strong>g> elucidated with new experiments <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

complex modeling. New experiments are needed to address<br />

issues such as the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotide exchange in Mg ++ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

CD because the slow release <str<strong>on</strong>g>of</str<strong>on</strong>g> ADP from m<strong>on</strong>omers is a<br />

key feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the model. Also, other measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

physical state <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>actin</strong> would be important to c<strong>on</strong>firm that<br />

the fluorescent probes accurately report the state <str<strong>on</strong>g>of</str<strong>on</strong>g> assem-<br />

bly. Testing the internal c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete mecha-<br />

nism with computer-assisted simulati<strong>on</strong> will eventually be<br />

desirable when there is a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> data for <strong>on</strong>e c<strong>on</strong>-<br />

diti<strong>on</strong>.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytochalasin <strong>on</strong> Cells. To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> in cell motility, <strong>on</strong>e would like probes that are<br />

specific for <strong>actin</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> affect <strong>on</strong>ly <strong>on</strong>e aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong>'s poly-<br />

merizati<strong>on</strong> or interacti<strong>on</strong> with other proteins. Although<br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s are the best available probes, they do not<br />

satisfy these criteria fully.<br />

Cytochalasin D is probably specific for <strong>actin</strong>. Although<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> CD having targets other than <strong>actin</strong> cannot<br />

be totally excluded, three kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence argue for speci-<br />

ficity. First, CD does not bind to the glucose transporter, as<br />

do some <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s, including CB (42), which should<br />

never be used to study cell motility. Binding <str<strong>on</strong>g>of</str<strong>on</strong>g> CD to other<br />

targets has not been reported. Of c<strong>on</strong>cern, however, are the<br />

observati<strong>on</strong>s that CD inhibits protein synthesis (40) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

alters the impedance <str<strong>on</strong>g>of</str<strong>on</strong>g> membranes (43). Sec<strong>on</strong>d, the af-<br />

finity <str<strong>on</strong>g>of</str<strong>on</strong>g> CD for barbed ends is high (Kd 2 nM), so it can be<br />

used in low c<strong>on</strong>centrati<strong>on</strong>s to minimize n<strong>on</strong>specific interac-<br />

ti<strong>on</strong>s. Despite this fact most experiments have used high c<strong>on</strong>-<br />

centrati<strong>on</strong>s (2 gM). Third, other probes that interact with ac-<br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013


Published October 1, 1987<br />

tin have similar effects <strong>on</strong> cells. Microinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

unrelated capping proteins causes the same morphologic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

functi<strong>on</strong>al effects <strong>on</strong> cells as CD (12, 22). The chance that<br />

all these probes have a mechanism other than <strong>actin</strong> must be<br />

quite low.<br />

If <strong>on</strong>e grants that CD is specific, then an experiment where<br />

CD alters a cellular process implies that <strong>actin</strong> has some role<br />

in that process. This c<strong>on</strong>clusi<strong>on</strong>, although valuable, is lim-<br />

ited because <str<strong>on</strong>g>of</str<strong>on</strong>g> the multiple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> CD <strong>on</strong> <strong>actin</strong>. The de-<br />

pendence <str<strong>on</strong>g>of</str<strong>on</strong>g> a cellular process <strong>on</strong> the CD c<strong>on</strong>centrati<strong>on</strong> may<br />

distinguish its effects <strong>on</strong> barbed ends <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>omers. The<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> permeati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CD across the plasma membrane <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the cellular resp<strong>on</strong>se must be rapid if such an ex-<br />

periment is to yield c<strong>on</strong>clusive results.<br />

This approach has been used in some experiments. Low<br />

c<strong>on</strong>centrati<strong>on</strong>s (0.2 ~tM) <str<strong>on</strong>g>of</str<strong>on</strong>g> CD inhibit membrane ruffling,<br />

which implicates growth or shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> barbed ends (54).<br />

The peripheral area <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, where ruffles begin, c<strong>on</strong>tains<br />

<strong>actin</strong> filaments that are rapidly growing <str<strong>on</strong>g>and</str<strong>on</strong>g> shortening in a<br />

"treadmilling" fashi<strong>on</strong> (48). The treadmilling is c<strong>on</strong>stitutive,<br />

but ruffles <strong>on</strong>ly occur at certain places <str<strong>on</strong>g>and</str<strong>on</strong>g> times. Regulatory<br />

elements may c<strong>on</strong>trol where <str<strong>on</strong>g>and</str<strong>on</strong>g> when treadmilling causes<br />

a ruffle to form. Higher c<strong>on</strong>centrati<strong>on</strong>s (2-20 tiM) are neces-<br />

sary to remove stress fibers (54), which implicates CD as<br />

binding to m<strong>on</strong>omers. Perhaps nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new filaments<br />

removes <strong>actin</strong> subunits from stress fibers by mass acti<strong>on</strong>. The<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic inhibitors prevents this effect (44). Since<br />

CD binding to <strong>actin</strong> m<strong>on</strong>omers <str<strong>on</strong>g>and</str<strong>on</strong>g> nucleating filament for-<br />

mari<strong>on</strong> probably depends <strong>on</strong> ATP (21, 24), the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> meta-<br />

bolic inhibitors may be to lower the ATP c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

prevent those processes, Alternatively, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP may put<br />

the actomyosin in stress fibers into rigor, which decreases the<br />

rate at which <strong>actin</strong> subunits or filaments leave.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, several uncertainties about the in vitro<br />

mechanism limit the interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments with cells.<br />

First, CD may not bind at all to barbed ends with ATP caps<br />

(9). While ATP caps might not exist at steady state, they may<br />

exist when a filament grows rapidly, which can occur in cells<br />

(46, 48). Sec<strong>on</strong>d, the Kd for m<strong>on</strong>omer binding was deter-<br />

mined in low i<strong>on</strong>ic strength <str<strong>on</strong>g>and</str<strong>on</strong>g> low Mg § c<strong>on</strong>centrati<strong>on</strong>s,<br />

so the/G in ceils may be different. Third, cells have high c<strong>on</strong>-<br />

centrati<strong>on</strong>s (100 liM) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>fllamentous <strong>actin</strong> (5), most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which is probably bound to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilin or other proteins. Inter-<br />

acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CD with this <strong>actin</strong> pool are unknown.<br />

Even if m<strong>on</strong>omer <str<strong>on</strong>g>and</str<strong>on</strong>g> filament binding can be distin-<br />

guished by <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> dependence, each<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> binding has several inseparable effects <strong>on</strong> <strong>actin</strong> poly-<br />

merizati<strong>on</strong>. Capping barbed ends will inhibit both growth<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments, <str<strong>on</strong>g>and</str<strong>on</strong>g> it will also increase the criti-<br />

cal c<strong>on</strong>centrati<strong>on</strong> since barbed <str<strong>on</strong>g>and</str<strong>on</strong>g> pointed ends probably<br />

have different critical c<strong>on</strong>centrati<strong>on</strong>s in cells. M<strong>on</strong>omer<br />

binding leads to nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> filament formati<strong>on</strong> as well as<br />

a higher critical c<strong>on</strong>centrati<strong>on</strong> (Fig. 1). Another complicat-<br />

ing factor is that <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> may compete with cellular cap-<br />

ping proteins for barbed ends. One can argue that the barbed<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>actin</strong> filaments in cells must be capped, otherwise<br />

the ends will c<strong>on</strong>stantly depolymerize (32). Since CD would<br />

competitively inhibit the binding <str<strong>on</strong>g>of</str<strong>on</strong>g> capping proteins to<br />

barbed ends, its effects may represent the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a capping<br />

protein that specifies the locati<strong>on</strong> or functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the filament.<br />

In the face <str<strong>on</strong>g>of</str<strong>on</strong>g> all this uncertainty, what can <strong>on</strong>e say about<br />

what <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> does to <strong>actin</strong> in cells? The surest c<strong>on</strong>clu-<br />

The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology, Volume 105, 1987 1476<br />

si<strong>on</strong> is that CD caps barbed ends. Cytochalasin inhibits<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> acrin filaments in two model systems (16, 46). In<br />

these systems, the pointed ends are probably capped, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

barbed ends grow, although this point is not proven. The<br />

widely held idea that <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> depolymerizes <strong>actin</strong> illa-<br />

ments is certainly not true in general. One expects a slight<br />

increase in critical c<strong>on</strong>centrati<strong>on</strong> due to capping barbed ends<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dimer formati<strong>on</strong> (Fig. 1), but the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> this increase<br />

is <strong>on</strong>ly a few percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>actin</strong> filaments.<br />

In fibroblasts, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> causes no change in the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

filamentous to n<strong>on</strong>filamentous <strong>actin</strong> (38). Cytochalasin does<br />

prevent or reverse the increase in filamentous <strong>actin</strong> that ac-<br />

companies platelet activati<strong>on</strong>, but it does not decrease the<br />

filamentous <strong>actin</strong> in resting platelets (10, 20). Cytochalasin<br />

disrupts the supramolecular organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments,<br />

but the relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> to the in vitro mecha-<br />

nism is unclear. Electr<strong>on</strong> microscopy shows that <strong>actin</strong> fila-<br />

ments persist in <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>; their organizati<strong>on</strong> changes<br />

from an isotropic network to focal accumulati<strong>on</strong>s (44). Sev-<br />

ering <strong>actin</strong> filaments might explain this transiti<strong>on</strong>, but the<br />

severing activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> is weak (4). Alternatively,<br />

competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> with capping proteins for barbed<br />

ends may cause this change. If <strong>actin</strong> filaments are normally<br />

held in place by capping proteins that bind to their barbed<br />

ends, <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> may release the filaments <str<strong>on</strong>g>and</str<strong>on</strong>g> allow them<br />

to be c<strong>on</strong>tracted into foci. The observati<strong>on</strong> that stress fibers<br />

sometimes c<strong>on</strong>tract in <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>, as though their mem-<br />

brane attachments were lost (54), also supports this hy-<br />

pothesis.<br />

Phalloidin<br />

Phallotoxins are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> bicyclic heptapeptides from poi-<br />

s<strong>on</strong>ous mushrooms (51). The major representative <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

group, <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>, binds to <strong>actin</strong> filaments much more tightly<br />

than to <strong>actin</strong> m<strong>on</strong>omers (17) <str<strong>on</strong>g>and</str<strong>on</strong>g> shifts the equilibrium be-<br />

tween filaments <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>omers toward filaments, lowering<br />

the critical c<strong>on</strong>centrati<strong>on</strong> for polymerizati<strong>on</strong> by 10- to 30-<br />

fold under various c<strong>on</strong>diti<strong>on</strong>s (17, 18). The lower critical c<strong>on</strong>-<br />

centrati<strong>on</strong> is due to a decrease in the rate c<strong>on</strong>stant for the dis-<br />

sociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> subunits from filament ends (11, 17). The<br />

dissociati<strong>on</strong> rate c<strong>on</strong>stants at both the barbed <str<strong>on</strong>g>and</str<strong>on</strong>g> pointed<br />

ends are lower than the error in the measurement (0.01 s-t),<br />

so the actual magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the change is uncertain but c<strong>on</strong>sis-<br />

tent with the effect <strong>on</strong> the critical c<strong>on</strong>centrati<strong>on</strong>. The associa-<br />

ti<strong>on</strong> rate c<strong>on</strong>stant at the pointed end does not change, but at<br />

the barbed end it decreases (the opposite <str<strong>on</strong>g>of</str<strong>on</strong>g> what is expected<br />

for a critical c<strong>on</strong>centrati<strong>on</strong> decrease) by 20% (11).<br />

For filaments the stoichiometry <str<strong>on</strong>g>of</str<strong>on</strong>g> binding is <strong>on</strong>e phal-<br />

loidin for either <strong>on</strong>e or two <strong>actin</strong> protomers. A 1:1 value was<br />

inferred from the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phaUoidin needed to protect<br />

<strong>actin</strong> filaments against depolymerizati<strong>on</strong> (15) <str<strong>on</strong>g>and</str<strong>on</strong>g> binding<br />

measured by difference spectroscopy (52). Another group<br />

found that a 1:2 ratio was sufficient to provide maximal pro-<br />

tecti<strong>on</strong> against depolymerizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> in a pelleting assay<br />

with Scatchard analysis the stoichiometry was 1:1.7 with a<br />

Kd <str<strong>on</strong>g>of</str<strong>on</strong>g> 85 nM (37). This difference is difficult to resolve; the<br />

designs <str<strong>on</strong>g>of</str<strong>on</strong>g> the two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments are different, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

extincti<strong>on</strong> coefficients <str<strong>on</strong>g>and</str<strong>on</strong>g> purity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>actin</strong><br />

may be different. In experiments measuring the binding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radioactive <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> to liver plasma membranes, which<br />

probably reflects binding to <strong>actin</strong> filaments, a high affinity<br />

site <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 nM was found. By displacement, the dissociati<strong>on</strong><br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013


Published October 1, 1987<br />

rate c<strong>on</strong>stant was 3.8 10 -3 s -I, <str<strong>on</strong>g>and</str<strong>on</strong>g> the associati<strong>on</strong> rate<br />

c<strong>on</strong>stant was calculated to be 0.17 gM -~ s -t (35). Photoac-<br />

tivatable derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>, bound to <strong>actin</strong> filaments,<br />

react covalently with amino acids Glu-llT, Met-ll9, <str<strong>on</strong>g>and</str<strong>on</strong>g> Met-<br />

355 (47), which are very close to the nucleotide binding<br />

site (1).<br />

Fluorescent derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> have been extremely<br />

useful for localizing <strong>actin</strong> filaments in living <str<strong>on</strong>g>and</str<strong>on</strong>g> fixed cells<br />

(50, 53) <str<strong>on</strong>g>and</str<strong>on</strong>g> visualizing individual <strong>actin</strong> filaments in vitro<br />

(55). If saturating quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorescent <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> are<br />

used, then the fluorescence is a quantitative measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> filamentous <strong>actin</strong> in cells. In this approach, the<br />

fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells is measured with a fluorescence-<br />

activated cell sorter, or the fluorescence <str<strong>on</strong>g>of</str<strong>on</strong>g> a methanol extract<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a group <str<strong>on</strong>g>of</str<strong>on</strong>g> cells is measured with a fluorometer (31).<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> <strong>on</strong> <strong>actin</strong> are easy to interpret: it<br />

should prevent filament depolymerizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> shift the equi-<br />

librium from m<strong>on</strong>omer toward filament. Phalloidins, how-<br />

ever, do not permeate cell membranes <str<strong>on</strong>g>and</str<strong>on</strong>g> have therefore not<br />

been very useful in experiments with living cells. They are<br />

taken up by many cells, probably by pinocytosis, <str<strong>on</strong>g>and</str<strong>on</strong>g> are<br />

avidly taken up by hepatocytes by an unknown mechanism<br />

(51). Cells treated with <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>s show a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic<br />

effects <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten die. While this toxicity could be mediated<br />

by <strong>actin</strong>, it raises the questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whether <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> has<br />

other targets, since cells treated with CD do not die. Phal-<br />

loidin-treated cells have increased amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> asso-<br />

ciated with their plasma membranes (23), <str<strong>on</strong>g>and</str<strong>on</strong>g> the microin-<br />

jecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> into living cells alters <strong>actin</strong> distributi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cell motility (49).<br />

The author is grateful to E. B<strong>on</strong>der, S. Cooper, E. Els<strong>on</strong>, C. Frieden,<br />

D. Goddette, T. Pollard, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Korn for reading the manuscript, <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

K. Patane for performing the experiment in Table II. The author is grateful<br />

for the c<strong>on</strong>tinued support <str<strong>on</strong>g>of</str<strong>on</strong>g> his advisor, E. Els<strong>on</strong>.<br />

This work was supported by the Dam<strong>on</strong> Runy<strong>on</strong>-Walter Winchell Cancer<br />

Fund.<br />

Received for publicati<strong>on</strong> t May 1987.<br />

References<br />

1, Barden, J. A., M. Miki, B, D, Hambly, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. G. DosRemedios. 1987.<br />

Localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> nucleotide binding sites <strong>on</strong> <strong>actin</strong>. Eur.<br />

J. Biochem. 162:583-588.<br />

2. B<strong>on</strong>der, E. M., D. J. Fishkind, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. S. Mooseker. 1983. Direct mea-<br />

surement <str<strong>on</strong>g>of</str<strong>on</strong>g> critical c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> assembly rate c<strong>on</strong>stants at the two<br />

ends <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>actin</strong> filament. Cell. 34:491-501.<br />

3. B<strong>on</strong>der, E. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> M. S. Mooseker. 1983. Direct electr<strong>on</strong> microscopic<br />

visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> barbed end capping <str<strong>on</strong>g>and</str<strong>on</strong>g> filament cutting by intestinal<br />

microvillar 95-Kdalt<strong>on</strong> protein (villin): A new <strong>actin</strong> assembly assay using<br />

the limulus acrosomal process. J. Cell Biol. 96:1097-1107.<br />

4. B<strong>on</strong>der, E. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> M. S. Mooseker. 1986. Cytochalasin B slows but does<br />

not prevent m<strong>on</strong>omer additi<strong>on</strong> at the barbed end <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>actin</strong> filament. J.<br />

Celt BioL 102:282-288.<br />

5. Bray, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Thomas. 1976. Unpolymerized <strong>actin</strong> in fibroblasts <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

brain. J. Idol. Biol. 105:527-544.<br />

6. Brenner, S. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> E. D. Korn. 1981. Stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>actin</strong> ATPase activity<br />

by <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s provides evidence for a new species <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omeric <strong>actin</strong>.<br />

J. Biol. Chem. 256:8663-8670.<br />

7. Brown, S. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> J. A. Spudich. 1979. Cytochalasin inhibits the rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filament fragments. J. Cell Biol. 83:657-662.<br />

8. Brown, S. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> J. A. Spudich. 1981. Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> by cytochala-<br />

sin: evidence that it binds to <strong>actin</strong> filament ends. J. Cell Biol. 88:487-491.<br />

9. Carlier, M.-F., P. Criquet, D. Pantal<strong>on</strong>i, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. D. Korn. 1986. Interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D with <strong>actin</strong> filaments in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ADP <str<strong>on</strong>g>and</str<strong>on</strong>g> ATP.<br />

J. Biol. Chem. 261:2041-2050.<br />

10. Casella, J. F., M. D. Flanagan, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Lin. 1981. Cytochalasin D inhibits<br />

<strong>actin</strong> polymerizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> induces depolymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments<br />

formed during platelet shape change. Nature (L<strong>on</strong>d.). 293:302-305.<br />

11. Coluccio, L. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> L. G. Tflney. 1984. Phalloidin enhances <strong>actin</strong> assem-<br />

bly by preventing m<strong>on</strong>omer dissociati<strong>on</strong>. J. Cell Biol. 99:529-535.<br />

Cooper <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytochalasin <str<strong>on</strong>g>and</str<strong>on</strong>g> Phalloidin <strong>on</strong> Actin 1477<br />

12. Cooper, J. A., J. Bryan, B. Schwab llI, C. Frieden, D. J. L<str<strong>on</strong>g>of</str<strong>on</strong>g>tus, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. L.<br />

Els<strong>on</strong>. 1987. Microinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gelsolin into living cells..L Cell Biol.<br />

491-501.<br />

13. C<strong>on</strong>e, M., <str<strong>on</strong>g>and</str<strong>on</strong>g> E. D. Korn. 1985. Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma gelsolin with G-ac-<br />

tin <str<strong>on</strong>g>and</str<strong>on</strong>g> F-<strong>actin</strong> in the presence <str<strong>on</strong>g>and</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium i<strong>on</strong>s. J. BioL<br />

Chem. 260:15033-15041.<br />

14. Dancker, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> I. Low. 1979. Complex influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> B <strong>on</strong><br />

<strong>actin</strong> polymerizati<strong>on</strong>. Z. Naturforsch. Sect. C Biosci. 34c:555-557.<br />

15. Dancker, P., I. Low, W. l-Iasselbach, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Wiel<str<strong>on</strong>g>and</str<strong>on</strong>g>. 1975. Interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> with <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>: polymerizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F-<strong>actin</strong>. Bio-<br />

chim. Biophys. Acta. 400:407-414.<br />

16. Detmers, P. A., U. W. Goodenough, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. C<strong>on</strong>deelis. 1983. El<strong>on</strong>gati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fertilizati<strong>on</strong> tubule in Chlamydom<strong>on</strong>as: new observati<strong>on</strong>s <strong>on</strong> the<br />

core micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments <str<strong>on</strong>g>and</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> transient intracellular signals <strong>on</strong><br />

their structural integrity. J. Cell Biol. 97:522-532.<br />

17. Estes, J. E., L. A. Selden, <str<strong>on</strong>g>and</str<strong>on</strong>g> L. C. Gershman. 1981. Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> <strong>on</strong> the polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle <strong>actin</strong>. Biochemistry. 20:<br />

708-712.<br />

18. Fantstich, H., A. J. Schafer, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Weckauf. 1977. The dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g>-<strong>actin</strong> complex. Hoppe-Seyler's Z. Physiol. Chem. 358:<br />

181-184.<br />

19. Flanagan, M. D., <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Lin. 1980. Cytochalasins block <strong>actin</strong> filament<br />

el<strong>on</strong>gati<strong>on</strong> by binding to high affinity sites associated with F-<strong>actin</strong>. J.<br />

BioL Chem. 255:835-838.<br />

20. Fox, J. E. B., <str<strong>on</strong>g>and</str<strong>on</strong>g> D. R. Phillips. 1981. Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> polymerizati<strong>on</strong><br />

in blood platelets by <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s. Nature (L<strong>on</strong>d.). 292:650--652.<br />

21. Frieden, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Patane. 1985. Differences in G-<strong>actin</strong> c<strong>on</strong>taining bound<br />

ATP or ADP: the Mg2+-induced c<strong>on</strong>formati<strong>on</strong>al change requires ATP.<br />

Biochemistry. 24:4192-4196.<br />

22. Fuchtbauer, A., B. M. Jockusch, H. Maruta, M. W. Kilimann, <str<strong>on</strong>g>and</str<strong>on</strong>g>G. Isen-<br />

berg. 1983. Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilament organizati<strong>on</strong> after injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F-<strong>actin</strong> capping proteins into living tissue culture cells. Nature (L<strong>on</strong>d.).<br />

304:361-364.<br />

23. Gabbiani, G., R. M<strong>on</strong>tesano, B. Tuchweber, M. Salas, <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Orci. 1975.<br />

Phaltoidin-induced hyperplasia <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>actin</strong> filaments in hepatocytes. Lab. In-<br />

vest. 33:562.<br />

24. Goddette, D. W., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden. 1985. The binding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D to<br />

m<strong>on</strong>omeric <strong>actin</strong>. Biochem. Biophys. Res. Commun. 128:1087-1092.<br />

25. Goddette, D. W., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden. 1986. The kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D<br />

binding to m<strong>on</strong>omeric <strong>actin</strong>. Z BioL Chem. 261:15970-15973.<br />

26. Goddette, D. W., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden. 1986. Actin polymerizati<strong>on</strong>. The mecha-<br />

nism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D. J. Biol. Chem. 261:15974-15980.<br />

27. Goddette, D. W., E. C. Uberbacher, G. J. Bunick, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden. 1986.<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> dimers as studied by small angle neutr<strong>on</strong> scattering.<br />

J. Biol. Chem. 261:2605-2609.<br />

28. Godman, G., <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Mir<str<strong>on</strong>g>and</str<strong>on</strong>g>a. 1978. Cellular c<strong>on</strong>tractility <str<strong>on</strong>g>and</str<strong>on</strong>g> the visible<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>. In Cytochalasins- Biochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> Cell Biologi-<br />

cal Aspects. S. Tannenbaum, editor. Elsevier, Amsterdam. 277-429.<br />

29. Harris, H. E., <str<strong>on</strong>g>and</str<strong>on</strong>g> A. G. Weeds. 1984. Plasma gelsolin caps <str<strong>on</strong>g>and</str<strong>on</strong>g> severs<br />

<strong>actin</strong> filaments. FEBS (Fed~ Fur. Biochem. Soc.) Lett. 177:184-188.<br />

30. Hartwig, J. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> T. P. Stossel. 1979. Cytochalasin B <str<strong>on</strong>g>and</str<strong>on</strong>g> the structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> gels. J. Mol. BioL 134:539-553.<br />

31. Howard, T. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. O. Oresajo. 1985. The kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotactic<br />

peptide-induced change in F-<strong>actin</strong> c<strong>on</strong>tent. F-<strong>actin</strong> distributi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrophils. J. Celt Biol. 101:1078-1085.<br />

32. Kirscbner, M. W. 1980. Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> treadmilling for the stability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> tubulin polymers in vivo. J. Cell Biol. 86:330-334.<br />

33. Lal, A. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> E. D. Korn. 1985. Reinvestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>actin</strong><br />

polymerizati<strong>on</strong> by pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilin. J. Biol. Chem. 260:10132-10138.<br />

34. Low, 1., <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Dancker. 1976. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> B <strong>on</strong> formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle F-<strong>actin</strong>. Biochim. Biophys~ Acta. 430:366-374.<br />

35. Lutz, B., H. Glossmann, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Frimmer. 1972. Binding <str<strong>on</strong>g>of</str<strong>on</strong>g> 3H-desmethyl -<br />

phalloin to isolated plasma membranes from rat liver. Naunyn-Schmiede-<br />

berg's Arch. Pharmacol. 273:341-351.<br />

36. MacLean-Fletcher, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> T. D. Pollard. 1980. Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> B <strong>on</strong> <strong>actin</strong>. Cell. 20:329-341.<br />

37. Miyamoto, Y., M. Kuroda, E. Munekata, <str<strong>on</strong>g>and</str<strong>on</strong>g>T. Masaki. 1986. Stoichiom-<br />

etry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> binding: <strong>on</strong>e molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxin dominates<br />

two <strong>actin</strong> subunits. J. Bioehem. (Tok3~o). 100:1677-1680.<br />

38. Morris, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Tannenbaum. 1980. Cytochalasin D does not produce<br />

net depolymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> filaments in HEp-2 ceils. Nature (L<strong>on</strong>d.).<br />

287:637-639.<br />

39. Neidl, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Engel. 1979. Exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> ADP, ATP <str<strong>on</strong>g>and</str<strong>on</strong>g> l:Nr-etheno -<br />

adenosine 5'-triphosphate at G-<strong>actin</strong>. Fur. J. Biochem. 101 : 163-169.<br />

40. Ornelles, D. A., E. G. Fey, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Penman, 1986. Cytochalasin releases<br />

mRNA from the cytoskeletal framework <str<strong>on</strong>g>and</str<strong>on</strong>g> inhibits protein synthesis.<br />

Mol. Cell. Biol. 6:1650-1662.<br />

41. Pantal<strong>on</strong>i, D., M.-F. Carlier, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. D. Korn. 1984. The critical c<strong>on</strong>centra-<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP increases with the number c<strong>on</strong>centra-<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> filaments <str<strong>on</strong>g>and</str<strong>on</strong>g> approaches the critical c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong>-ADP.<br />

J. Biol. Chem. 259:6274-6283.<br />

42. Rampal, A. L., H. B. Pinok<str<strong>on</strong>g>of</str<strong>on</strong>g>sky, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Y. Jung. 1980. Structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> cytochatasin B binding site in human erythrocyte mem-<br />

branes. Biochemistry. 19:679-683.<br />

43. Ravdin, J. I., R. L. Guerrant, <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Sperelakis. 1985. Entamoeba histoty-<br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013


Published October 1, 1987<br />

tica: impedance measurements <str<strong>on</strong>g>and</str<strong>on</strong>g> cytotoxicity in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> bepri-<br />

dil, verapamil, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D. Exp. Parasitol. 60:63-72.<br />

44. Schliwa, M. 1982. Acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g> D <strong>on</strong> cytoskeletal networks. J.<br />

Cell Biol. 92:79-91.<br />

45. Tellam, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Frieden. 1982. Cytochalasin D <str<strong>on</strong>g>and</str<strong>on</strong>g> platelet gelsolin ac-<br />

celerate <strong>actin</strong> polymer formati<strong>on</strong>. A model for regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the extent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> polymer formati<strong>on</strong> in vivo. Biochemistry. 21:3207-3214.<br />

46. Tilney, L. G., <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Inoue. 1982. Acrosomal reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thy<strong>on</strong>e sperm.<br />

II. The kinetics <str<strong>on</strong>g>and</str<strong>on</strong>g> possible mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acrosomal process el<strong>on</strong>gati<strong>on</strong>.<br />

J. Cell Biol. 93:820-827.<br />

47. V<str<strong>on</strong>g>and</str<strong>on</strong>g>ekerckhove, J., A. Deboben, M. Nassal, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Wiel<str<strong>on</strong>g>and</str<strong>on</strong>g>. 1986. The<br />

<str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> binding site <str<strong>on</strong>g>of</str<strong>on</strong>g> F-<strong>actin</strong> EMBO (Eur. Mol. Biol. Organ.) J.<br />

4:22815-22818.<br />

48. Wang, Y.-L. 1985. Exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>actin</strong> subunits at the leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> living<br />

fibroblasts: possible role <str<strong>on</strong>g>of</str<strong>on</strong>g> treadmilling. J. Cell Biol. 101:597-602.<br />

49. Wehl<str<strong>on</strong>g>and</str<strong>on</strong>g>, J., M. Osborn, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Weber. 1977. Phalloidin-induced <strong>actin</strong> po-<br />

lymerizati<strong>on</strong> in the cytoplasm <str<strong>on</strong>g>of</str<strong>on</strong>g> cultured ceils interferes with cell loco-<br />

moti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth. Proc. Natl. Acad. Sci. USA. 74:5613-5617.<br />

The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Piology, Volume 105, 1987 1478<br />

50. Wehl<str<strong>on</strong>g>and</str<strong>on</strong>g>, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Weber. 1981. Actin rearrangement in living cells re-<br />

vealed by microinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluorescent <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> derivative. Eur. J.<br />

Cell Biol. 24:176-183.<br />

51. Wiel<str<strong>on</strong>g>and</str<strong>on</strong>g>, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Faulstich. 1978. Amatoxins, phallotoxins, phalloly-<br />

sin, <str<strong>on</strong>g>and</str<strong>on</strong>g> antamanide: the biologically active comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> pois<strong>on</strong>ous<br />

Amanita mushrooms. CRC Crit. Rev. Biochem. 5:185-260.<br />

52. Wiel<str<strong>on</strong>g>and</str<strong>on</strong>g>, T., J. X. de Vries, A. Schafer, <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Fanlstich. 1975. Spec-<br />

troscopic evidence for the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phalloidin</str<strong>on</strong>g> with <strong>actin</strong>. FEBS (Fed.<br />

Eur. Biochem Soc.) Lett. 54:73-75.<br />

53. Wulf, E., A. Deboben, F. A. Bautz, H. Faulstich, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Wiel<str<strong>on</strong>g>and</str<strong>on</strong>g>. 1979.<br />

Fluorescent pballotoxin, a tool for the visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular <strong>actin</strong>.<br />

Proc. Natl. Acad. Sci. USA. 76:4498-4502.<br />

54. Yahara, 1., F. Harada, S. Sekita, K. Yoshihira, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Natori. 1982. Corre-<br />

lati<strong>on</strong> between effects <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 different <str<strong>on</strong>g>cytochalasin</str<strong>on</strong>g>s <strong>on</strong> cellular structures<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cellular events <str<strong>on</strong>g>and</str<strong>on</strong>g> those <strong>on</strong> <strong>actin</strong> in vitro. J. Cell Biol. 92:69-78.<br />

55. Yanagida, T., M. Jakase, K. Nishiyama, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Oosawa. 1984. Direct ob-<br />

servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single F-<strong>actin</strong> filaments in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> myosin.<br />

Nature (L<strong>on</strong>d.). 307:58-60.<br />

Downloaded from<br />

jcb.rupress.org<br />

<strong>on</strong> February 8, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!