07.02.2013 Views

Tetralogy of Fallot and Alterations in Vascular Endothelial Growth ...

Tetralogy of Fallot and Alterations in Vascular Endothelial Growth ...

Tetralogy of Fallot and Alterations in Vascular Endothelial Growth ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

suggest that this myocardium is a dist<strong>in</strong>ct population critically<br />

<strong>in</strong>volved <strong>in</strong> proper position<strong>in</strong>g <strong>of</strong> the large OFT vessels.<br />

46 Furthermore, <strong>in</strong>creas<strong>in</strong>g evidence is po<strong>in</strong>t<strong>in</strong>g toward a<br />

l<strong>in</strong>k between alterations <strong>in</strong> SHF development <strong>and</strong> the etiology<br />

<strong>of</strong> OFT anomalies <strong>in</strong>clud<strong>in</strong>g TOF. 15,16,44 We postulate that<br />

this SHF-derived subpulmonary myocardium is highly sensitive<br />

for VEGF <strong>and</strong> Notch signal<strong>in</strong>g. The high levels <strong>of</strong><br />

apoptosis <strong>in</strong> this myocardial population probably lead to<br />

hypoplasia <strong>of</strong> the pulmonary trunk <strong>and</strong> the <strong>of</strong>ten observed<br />

right ventricular OFT stenosis. The occurrence <strong>of</strong> this phenotype<br />

<strong>in</strong> our model is likely aggravated by the manifestation<br />

<strong>of</strong> the earlier discussed cushion hyperplasia. Furthermore,<br />

ablation <strong>of</strong> this SHF-derived myocardium, <strong>in</strong> our case by<br />

apoptosis, might lead to alterations <strong>in</strong> proper position<strong>in</strong>g <strong>of</strong><br />

the OFT vessels lead<strong>in</strong>g to dextroposition <strong>of</strong> the aorta.<br />

Abnormalities <strong>of</strong> the Pulmonary Arteries <strong>and</strong><br />

Aortic Arch<br />

The development <strong>of</strong> vascular anomalies has been l<strong>in</strong>ked to<br />

altered blood flow 47 <strong>and</strong>, as such, can develop secondary to<br />

cardiac outflow defects. The high frequencies <strong>of</strong> pulmonary<br />

vascular defects (ie, hypoplasia <strong>and</strong> atresia <strong>of</strong> the DA <strong>and</strong><br />

pulmonary arteries) <strong>in</strong> the Vegf120/120 mutant along with<br />

right ventricular OFT obstruction is <strong>in</strong> agreement with this<br />

assumption. The severe pulmonary outflow or arterial stenosis<br />

will impair blood flow to the lungs. We suggest that this<br />

leads to local hypoxia <strong>and</strong> development <strong>of</strong> collateral vessels<br />

orig<strong>in</strong>at<strong>in</strong>g from the dorsal aorta, as observed <strong>in</strong> our mouse<br />

model as well as <strong>in</strong> human neonates with severe pulmonary<br />

stenosis. 48<br />

The Vegf120/120 mouse model has been described as a<br />

model with overt cardiovascular defects found <strong>in</strong> patients<br />

with DiGeorge syndrome (ie, TOF, common arterial trunk,<br />

<strong>and</strong> aortic arch <strong>in</strong>terruption type B). However, the occurrence<br />

<strong>of</strong> aortic arch malformations <strong>in</strong> this research seems to differ<br />

slightly from earlier published data on this model. 5 This<br />

might be expla<strong>in</strong>ed by the differences <strong>in</strong> time po<strong>in</strong>ts analyzed<br />

between both studies. As <strong>in</strong> this research, embryos at several<br />

different time po<strong>in</strong>ts <strong>of</strong> development were <strong>in</strong>vestigated<br />

(E10.5 to E19.5 versus E14.5/neonates), the number <strong>of</strong><br />

anomalies encountered here might be underestimated because<br />

<strong>of</strong> ongo<strong>in</strong>g development.<br />

Conclusions<br />

We conclude that dur<strong>in</strong>g normal heart development, VEGF<br />

<strong>and</strong> subsequent Notch signal<strong>in</strong>g must be tightly controlled,<br />

especially <strong>in</strong> the SHF-derived myocardium <strong>of</strong> the right<br />

ventricular OFT. In the Vegf120/120 mice, local <strong>in</strong>crease <strong>of</strong><br />

VEGF signal<strong>in</strong>g <strong>in</strong> this region leads, likely via changes <strong>in</strong> the<br />

Notch pathway, to hyperplasia <strong>of</strong> the OFT cushions <strong>and</strong><br />

apoptosis <strong>of</strong> the SHF-derived subpulmonary myocardium.<br />

This work<strong>in</strong>g model might expla<strong>in</strong> the development <strong>of</strong> TOF<br />

<strong>in</strong> the human population as found <strong>in</strong> <strong>in</strong>dividuals with VEGF<br />

<strong>and</strong> JAGGED1 mutations <strong>and</strong> 22q11 deletions. 20–22<br />

Acknowledgments<br />

We thank Jan Lens for preparation <strong>of</strong> the figures.<br />

Van den Akker et al VEGF <strong>and</strong> Notch <strong>in</strong> TOF Development 7<br />

Sources <strong>of</strong> Fund<strong>in</strong>g<br />

N.M.S.v.d.A. was funded by The Netherl<strong>and</strong>s Heart Foundation<br />

grant 2001B057.<br />

None.<br />

Disclosures<br />

References<br />

1. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenste<strong>in</strong><br />

M, Fahrig M, V<strong>and</strong>enhoeck A, Harpal K, Eberhardt C, Declercq C,<br />

Pawl<strong>in</strong>g J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel<br />

development <strong>and</strong> lethality <strong>in</strong> embryos lack<strong>in</strong>g a s<strong>in</strong>gle VEGF allele.<br />

Nature. 1996;380:435–439.<br />

2. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L,<br />

Bernste<strong>in</strong> A, Rossant J. A requirement for Flk1 <strong>in</strong> primitive <strong>and</strong> def<strong>in</strong>itive<br />

hematopoiesis <strong>and</strong> vasculogenesis. Cell. 1997;89:981–990.<br />

3. Lambrechts D, Devriendt K, Driscoll DA, Goldmuntz E, Gewillig M,<br />

Vliet<strong>in</strong>ck R, Collen D, Carmeliet P. Low expression VEGF haplotype<br />

<strong>in</strong>creases the risk for tetralogy <strong>of</strong> <strong>Fallot</strong>: a family based association study.<br />

J Med Genet. 2005;42:519–522.<br />

4. Bartel<strong>in</strong>gs MM, Gittenberger-De Groot AC. Morphogenetic considerations<br />

on congenital malformations <strong>of</strong> the outflow tract. Part 1: Common<br />

arterial trunk <strong>and</strong> tetralogy <strong>of</strong> <strong>Fallot</strong>. Int J Cardiol. 1991;32:213–230.<br />

5. Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S,<br />

Kneer P, von der OM, Swillen A, Maes C, Gewillig M, Mol<strong>in</strong> DG,<br />

Hell<strong>in</strong>gs P, Boetel T, Haardt M, Compernolle V, Dewerch<strong>in</strong> M,<br />

Plaisance S, Vliet<strong>in</strong>ck R, Emanuel B, Gittenberger-De Groot AC,<br />

Scambler P, Morrow B, Driscol DA, Moons L, Esguerra CV, Carmeliet<br />

G, Behn-Krappa A, Devriendt K, Collen D, Conway SJ, Carmeliet P.<br />

VEGF: a modifier <strong>of</strong> the del22q11 (DiGeorge) syndrome? Nat Med.<br />

2003;9:173–182.<br />

6. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T,<br />

Fujisawa H. A requirement for neuropil<strong>in</strong>-1 <strong>in</strong> embryonic vessel formation.<br />

Development. 1999;126:4895–4902.<br />

7. Wash<strong>in</strong>gton SI, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R,<br />

Morris J, Yamamura K, Kl<strong>in</strong>gensmith J, Meyers EN. Sonic hedgehog is<br />

required for cardiac outflow tract <strong>and</strong> neural crest cell development. Dev<br />

Biol. 2005;283:357–372.<br />

8. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression<br />

<strong>of</strong> a membrane prote<strong>in</strong>, neuropil<strong>in</strong>, <strong>in</strong> chimeric mice causes<br />

anomalies <strong>in</strong> the cardiovascular system, nervous system <strong>and</strong> limbs. Development.<br />

1995;121:4309–4318.<br />

9. Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted<br />

by modest <strong>in</strong>creases <strong>in</strong> vascular endothelial growth factor gene<br />

expression. Development. 2000;127:3941–3946.<br />

10. Enciso JM, Gratz<strong>in</strong>ger D, Camenisch TD, Canosa S, P<strong>in</strong>ter E, Madri JA.<br />

Elevated glucose <strong>in</strong>hibits VEGF-A-mediated endocardial cushion formation:<br />

modulation by PECAM-1 <strong>and</strong> MMP-2. J Cell Biol. 2003;160:<br />

605–615.<br />

11. Lee YM, Cope JJ, Ackermann GE, Goishi K, Armstrong EJ, Paw BH,<br />

Bisch<strong>of</strong>f J. <strong>Vascular</strong> endothelial growth factor receptor signal<strong>in</strong>g is<br />

required for cardiac valve formation <strong>in</strong> zebrafish. Dev Dyn. 2006;235:<br />

29–37.<br />

12. Dor Y, Camenisch TD, It<strong>in</strong> A, Fishman GI, McDonald JA, Carmeliet P,<br />

Keshet E. A novel role for VEGF <strong>in</strong> endocardial cushion formation <strong>and</strong><br />

its potential contribution to congenital heart defects. Development. 2001;<br />

128:1531–1538.<br />

13. Armstrong EJ, Bisch<strong>of</strong>f J. Heart valve development: endothelial cell<br />

signal<strong>in</strong>g <strong>and</strong> differentiation. Circ Res. 2004;95:459–470.<br />

14. Kelly RG. Molecular <strong>in</strong>roads <strong>in</strong>to the anterior heart field. Trends Cardiovasc<br />

Med. 2005;15:51–56.<br />

15. Ward C, Stadt H, Hutson M, Kirby ML. Ablation <strong>of</strong> the secondary heart<br />

field leads to tetralogy <strong>of</strong> <strong>Fallot</strong> <strong>and</strong> pulmonary atresia. Dev Biol. 2005;<br />

284:72–83.<br />

16. Yelbuz TM, Waldo KL, Kumiski DH, Stadt HA, Wolfe RR, Leatherbury<br />

L, Kirby ML. Shortened outflow tract leads to altered cardiac loop<strong>in</strong>g<br />

after neural crest ablation. Circulation. 2002;106:504–510.<br />

17. Sugishita Y, Watanabe M, Fisher SA. Role <strong>of</strong> myocardial hypoxia <strong>in</strong> the<br />

remodel<strong>in</strong>g <strong>of</strong> the embryonic avian cardiac outflow tract. Dev Biol.<br />

2004;267:294–308.<br />

18. Lawson ND, Vogel AM, We<strong>in</strong>ste<strong>in</strong> BM. Sonic hedgehog <strong>and</strong> vascular<br />

endothelial growth factor act upstream <strong>of</strong> the Notch pathway dur<strong>in</strong>g<br />

arterial endothelial differentiation. Dev Cell. 2002;3:127–136.<br />

Downloaded from<br />

http://circres.ahajournals.org/ by guest on February 7, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!