07.02.2013 Views

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Session</strong> WedAT8 Gemini 1 <strong>Wednesday</strong>, <strong>October</strong> <strong>10</strong>, <strong>2012</strong>, 08:30–09:30<br />

Dynamics and Control I<br />

Chair<br />

Co-Chair<br />

08:30–08:45 WedAT8.1<br />

Contribution to the modeling of Cablesuspended<br />

Parallel Robot hanged on the four<br />

points<br />

Mirjana Filipovic,Mihajlo Pupin Institute, University of Belgrade, Serbia,<br />

Ana Djuric,Wayne State University , Detroit, MI 48202, U.S.A.,<br />

Ljubinko Kevac,School of Electrical Engineering, The University of Belgrade,<br />

Serbia<br />

• The kinematic and dynamic model of the<br />

Cable-suspended Parallel Robot - CPR<br />

system is generated via Jacobi matrix.<br />

• The dynamical model is calculated by<br />

mapping the resultant forces which are<br />

acting on the shaft of each motor and<br />

forces acting on a camera carrier by the<br />

Jacobi matrix.<br />

• The software packages AIRCAMA has<br />

been used to verify the selection of motors<br />

for any size of workspace, any weight or<br />

desired velocity of a camera carrier, and<br />

so on.<br />

z<br />

y<br />

O<br />

wall anchor<br />

contour of the workspace<br />

y<br />

x<br />

. O<br />

z x<br />

A<br />

motorized winch 4<br />

of fiber-optic kablae<br />

fiber-optic cable<br />

camera platform<br />

winch 4<br />

motor 4<br />

winch 3<br />

motor 3<br />

motorized<br />

winch-1<br />

CPR, a) in 3D b) top view<br />

winch 1<br />

camera platform<br />

motor 1<br />

contour of the workspace<br />

motor 2<br />

winch 2<br />

s<br />

pulleys<br />

v<br />

motorized<br />

winch-2<br />

θ 2<br />

θ 3<br />

θ 1 motorized<br />

winch-3<br />

09:00–09:15 WedAT8.3<br />

Planning Trajectories on Uneven Terrain using<br />

Optimization and Non-Linear Time Scaling<br />

Techniques<br />

Arun. K. Singh + , K. Madhava Krishna + and Srikanth Saripalli ++<br />

+ Robotics Research Centre IIIT-Hyderabad, India<br />

++ ASTRIL Arizona State University, U.S.A<br />

• A path is computed in terms of some<br />

parametric functions in terms of some<br />

variable u<br />

• A transformation from the variable u to<br />

time t is done through a scaling function<br />

h(u)<br />

• A novel scaling function in the form h(u) =<br />

a*exp(b*u) is proposed.<br />

• Framework for choosing appropriate a and<br />

b is proposed.<br />

• The resulting velocity and acceleration<br />

through scaling function satisfy stability<br />

constraints.<br />

pulleys<br />

k<br />

n<br />

k<br />

wall anchor<br />

n<br />

d<br />

a)<br />

b)<br />

h<br />

m<br />

θ 4<br />

h<br />

Vehicle evolving on Uneven<br />

terrain along a stable path<br />

m<br />

08:45–09:00 WedAT8.2<br />

Modeling and Control of a Flying Robot<br />

for Contact Inspection<br />

Matteo Fumagalli and Raffaella Carloni and Stefano Stramigioli<br />

Robotics And Mechatronics, University of Twente, The Netherlands<br />

Roberto Naldi and Alessandro Macchelli and Lorenzo Marconi<br />

CASY, University of Bologna, Italy<br />

Analysis of the Interaction<br />

of<br />

Quadrotor UAV enhanced<br />

with<br />

a multi-DoF Manipulator,<br />

with<br />

a R emote Environment<br />

• Modeling of the Flying Robot<br />

• Control of a floating base<br />

manipulation system for<br />

physical interaction<br />

• E xperimental Validation<br />

09:15–09:30 WedAT8.4<br />

Distributed Voronoi partitioning for multi-robot<br />

systems with limited range sensors<br />

K.R. Guruprasad<br />

Department of Mechanical Engineering, National Institute of Technology<br />

Karnataka, Surathkal, India<br />

Prithviraj Dasgupta<br />

Department of Computer Science, University of Nebraska, Omaha, USA<br />

• Each robot constructs the<br />

corresponding range constrained<br />

Voronoi cell in a distributed<br />

manner.<br />

• Only the positional information<br />

about the robots within<br />

communication range is used.<br />

• Communication range should be at<br />

least twice that of the sensor<br />

range.<br />

• Relative position in polar<br />

coordinate system is used.<br />

• Structured and efficient<br />

computation of Voronoi cells.<br />

<strong>2012</strong> IEEE/RSJ International Conference on Intelligent Robots and Systems<br />

–126–<br />

Range constrained Voronoi cell<br />

constructed using the proposed algorithm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!