07.02.2013 Views

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Session</strong> WedGT3 <strong>Pegaso</strong> B <strong>Wednesday</strong>, <strong>October</strong> <strong>10</strong>, <strong>2012</strong>, 17:30–18:30<br />

Home Automation and Personal Robots<br />

Chair Stefano Mazzoleni, Scuola Superiore Sant'Anna<br />

Co-Chair<br />

17:30–17:45 WedGT3.1<br />

Acquisition and Use of Transferable,<br />

Spatio-Temporal Plan Representations for<br />

Human-Robot Interaction<br />

Michael Karg<br />

Institute for Advanced Study, Technische Universität München, Germany<br />

Alexandra Kirsch<br />

Department of Computer Science, University of Tübingen, Germany<br />

• Generation of semantically<br />

annototated spatial model by<br />

combining motion tracking data<br />

with information from semantic<br />

maps<br />

• Automatic segmentation of<br />

motion tracking data using<br />

spatial model<br />

• Generation of transferable,<br />

general, spatio-temporal plan<br />

representations for different<br />

tasks<br />

• Application: Passive plan<br />

supervision in different<br />

environments based on plan<br />

patterns and durations at<br />

semantically annotated locations<br />

18:00–18:15 WedGT3.3<br />

Context-aware Home Energy Saving based on<br />

Energy-Prone Context<br />

Mao-Yung Weng, Chao-Lin Wu, Ching-Hu Lu, Hui-Wen Yeh<br />

and Li-Chen Fu<br />

Department of Computer Science & Information Engineering,<br />

National Taiwan University, Taiwan, R.O.C.<br />

• Energy-prone context (EPC) is an<br />

activity with associated energy<br />

consumption.<br />

• EPC contains information about the<br />

necessity of an energy consumption to<br />

an activity.<br />

• We propose a systematic method to<br />

determine energy saving (ES) service<br />

based on EPC.<br />

• The potential of EPC-based ES system<br />

is 25% more effective than a locationbased<br />

one.<br />

An Energy-Prone Context<br />

using WatchTV as an example<br />

Activity: Watch TV<br />

Location: Livingroom<br />

Explicit:<br />

TV_livingroom|on|120watt|1.0<br />

Implicit:<br />

AC_livingroom|on|3000watt|0.75<br />

waterheater_bathroom|on|4000watt|<br />

0.56<br />

xbox_livingroom|standby|2watt|0.98<br />

lamp_livingroom|off|0watt|0.96<br />

light_hallway|off|0watt|0.88<br />

light_kitchen|off|0watt|1.0<br />

lamp_bedroom|off|0watt|0.86<br />

light_bedroom|off|0watt|0.9<br />

…..<br />

Living Room Light:<br />

on, 60w, 0.82<br />

TV:<br />

on, 120w, 1.0<br />

A/C:<br />

on, 3kw, 0.75<br />

Watch<br />

TV<br />

Water Heater:<br />

on, 4kw, 0.56<br />

Explicit power consumption<br />

Implicit power consumption<br />

xBox:<br />

standby, 2w, 0.98<br />

17:45–18:00 WedGT3.2<br />

Hierarchical Generalized Context Inference<br />

for Context-aware Smart Homes<br />

Chao-Lin Wu, Mao-Yuan Weng, Ching-Hu Lu and Li-Chen Fu<br />

Department of Computer Science & Information Engineering,<br />

National Taiwan University, Taiwan, R.O.C.<br />

• Hierarchical generalized context<br />

inference helps improve the<br />

performance of multi-user<br />

activity recognition.<br />

• A generalized context (GC) is an<br />

abstracted context composed of<br />

several contexts with common<br />

features.<br />

• This mechanism treats multiple<br />

users as an aggregated entity<br />

and hierarchically group<br />

contexts as GC.<br />

• Context-aware smart homes<br />

based on this method can<br />

provide appropriate services as<br />

much as possible.<br />

Context Labels<br />

Model Construction<br />

<strong>2012</strong> IEEE/RSJ International Conference on Intelligent Robots and Systems<br />

–186–<br />

GC(1)<br />

C (1,<br />

1)<br />

C (i,<br />

1)<br />

Training<br />

Phase<br />

Hierarchical Context<br />

Generalization<br />

GC(0)<br />

C (0, C (0, C (0, C(0, C (0,<br />

1) 2) 3) 4)<br />

…<br />

j)<br />

GC(i)<br />

…<br />

C (1,<br />

2)<br />

C(i,<br />

2)<br />

…<br />

DBN DBN DBN<br />

GC(0) GC(1)<br />

C (1,<br />

3)<br />

…<br />

…<br />

…<br />

GC(i)<br />

C (1,<br />

k)<br />

…<br />

C(i,<br />

m)<br />

Testing<br />

Phase<br />

Features<br />

Generalized<br />

Context<br />

Inference<br />

C(i,1) C(i,2) C(i,3) …<br />

…<br />

C(1,1<br />

)<br />

C(0,1<br />

)<br />

…<br />

C(1,2<br />

)<br />

C(0,2<br />

)<br />

…<br />

C(1,3<br />

)<br />

C(0,3<br />

)<br />

…<br />

…<br />

Generalized Contexts<br />

Hierarchical Generalized Context Inference Engine<br />

18:15–18:30 WedGT3.4<br />

Complex Task Learning from<br />

Unstructured Demonstrations<br />

Unstructured Demonstrations<br />

Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G. Barto<br />

• We present a novel method for segmenting<br />

demonstrations, recognizing repeated skills,<br />

and generalizing complex tasks from<br />

unstructured demonstrations.<br />

• This method combines many of the<br />

advantages of recent automatic segmentation<br />

methods for learning from demonstration into<br />

a single principled, integrated framework.<br />

• Specifically, we use the Beta Process<br />

Autoregressive Hidden Markov Model and<br />

Dynamic Movement Primitives to learn and<br />

generalize a multi-step task on the PR2<br />

mobile manipulator and to demonstrate the<br />

potential of our framework to learn a large<br />

library of skills over time.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!