07.02.2013 Views

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Session</strong> WedDT4 Fenix 3 <strong>Wednesday</strong>, <strong>October</strong> <strong>10</strong>, <strong>2012</strong>, 14:00–15:00<br />

Humanoid Robots V<br />

Chair<br />

Co-Chair<br />

14:00–14:15 WedDT4.1<br />

Humanoid Push Recovery<br />

with Robust Convex Synthesis<br />

Jiuguang Wang<br />

Robotics Institute, Carnegie Mellon University<br />

robot@cmu.edu<br />

• Humanoid full-body push recovery<br />

• Robust control design – model bounded<br />

external disturbances<br />

• Simultaneously search for a controller and<br />

the associated domain of attraction using<br />

convex optimization<br />

• The controller guarantees stabilization<br />

under bounded disturbances as well as<br />

physical constraints on the robot<br />

14:30–14:45 WedDT4.3<br />

Lower Thigh Design of<br />

Detailed Musculoskeletal Humanoid “Kenshiro”<br />

Yuki Asano*, Hironori Mizoguchi**, Toyotaka Kozuki**,<br />

Yotaro Motegi**, Masahiko Osada**, Junichi Urata**,<br />

Yuto Nakanishi**, Kei Okada** and Masayuki Inaba**<br />

*Graduate School of Interdisciplinary Information Studies, Univ.of Tokyo, Japan<br />

**Dept. of Mechano-Informatics, Univ.of Tokyo, Japan<br />

• Design concept of Detailed<br />

Musculoskeletal Humanoid “Kenshiro”<br />

• Body Configuration<br />

• Joint Structure<br />

• Muscle Arrangement<br />

• Biomimetic Design of the Knee Joint<br />

• Kneecap<br />

• Cruciate Ligament<br />

• Screw-Home Mechanism<br />

• Detailed Muscle Arrangement Imitating<br />

Human<br />

• Experiment of Knee Rotation on the<br />

Ground<br />

Detailed musculoskeletal humanoid<br />

“Kenshiro”. Knee rotation experiment<br />

and muscle arrangemant of leg<br />

14:15–14:30 WedDT4.2<br />

Appearance-Based Traversability<br />

Classification in Monocular Images Using<br />

Iterative Ground Plane Estimation<br />

Daniel Maier and Maren Bennewitz<br />

Department of Computer Science, University of Freiburg, Germany<br />

• Traversability estimation from monocular<br />

camera images for robot navigation<br />

• Learning appearance-based classifiers for<br />

fast and dense classification of images<br />

• Classifiers are updated online in a selfsupervised<br />

fashion<br />

• Iterative detection and matching of sparse<br />

features on the ground plane under the<br />

homography constraint<br />

• Classified images are integrated into an<br />

occupancy grid map<br />

• Experiments with a real humanoid robot<br />

show high classification rates and robust<br />

obstacle detection<br />

<strong>2012</strong> IEEE/RSJ International Conference on Intelligent Robots and Systems<br />

–154–<br />

Top: Sparse Floor Features<br />

Bottom: Dense Classification<br />

14:45–15:00 WedDT4.4<br />

Optimization-based generation and experimental<br />

validation of walking trajectories for biped robots<br />

Alexander Werner, Roberto Lampariello and Christian Ott<br />

Institute of Robotics and Mechatronics, Deutsches Zentrum für Luft- und<br />

Raumfahrt (DLR), Germany<br />

• Generation of energy-optimal step<br />

trajectories through non-linear<br />

programming with full rigid-body robot<br />

model<br />

• Stability(ZMP), collisions and joint limits<br />

are respected<br />

• Efficient fixed-based calculation of the<br />

constraints and the cost function<br />

• Analysis and avoidance of global minima<br />

• Experimental testing and evaluation of the<br />

trajectories<br />

• Significant gain (55%) in the cost function<br />

with respect to capture-point based<br />

controller<br />

Optimal Walking Trajectories

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!