07.02.2013 Views

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

Session WedAT1 Pegaso A Wednesday, October 10, 2012 ... - Lirmm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Session</strong> WedBT4 Fenix 3 <strong>Wednesday</strong>, <strong>October</strong> <strong>10</strong>, <strong>2012</strong>, 09:30–<strong>10</strong>:30<br />

Humanoid Robots III<br />

Chair Paul Y. Oh, Drexel Univ.<br />

Co-Chair<br />

09:30–09:45 WedBT4.1<br />

Design Methodology for the Thorax and Shoulder of<br />

Human Mimetic Musculoskeletal Humanoid Kenshiro<br />

-A Thorax structure with Rib like Surface -<br />

Toyotaka Kozuki,Hironori Mizoguchi,Yuki Asano,Masahiko Osada,<br />

Takuma Shirai,Urata Junichi,Yuto Nakanishi,Kei Okada,Masayuki Inaba<br />

Univ.of Tokyo, Japan<br />

• Design concept of Detailed<br />

Musculoskeletal Humanoid<br />

Kenshiro’s Upper limb<br />

• Joint Structure<br />

• Muscle Arrangement<br />

• Range of Motion<br />

• Mechanical Key Points<br />

of the Upper Limb<br />

• Rib like Thorax<br />

• Planar muscle<br />

• Muscle Cushion<br />

• Open Sphere Joint<br />

Prototype of Human Mimetic<br />

Musculoskeletal Humanoid<br />

“Kenshiro” Upper Limbs<br />

<strong>10</strong>:00–<strong>10</strong>:15 WedBT4.3<br />

Dynamic motion imitation of two articulated systems<br />

using nonlinear time scaling of joint trajectories<br />

Karthick Munirathinam, Sophie Sakka, Christine Chevallereau<br />

IRCCyN, Robotics Team, Ecole centrale de nantes,<br />

Nantes, France<br />

• An approach for motion imitation of<br />

articulated systems with balance and<br />

physical constraints using optimization.<br />

• We modify the temporal evolution of joint<br />

motion rather than the traditional way of<br />

formulating on geometric evolution of joint<br />

motion of the imitating system.<br />

• Time scaling based imitation has an<br />

immanent advantage of tracking the joint<br />

trajectory of the reference system by<br />

compromising on joint velocity and<br />

acceleration.<br />

• Simulations are carried out to validate our<br />

proposed method.<br />

Model: Foot connected to n-serial<br />

links(n=4)<br />

09:45–<strong>10</strong>:00 WedBT4.2<br />

State Estimation of a Walking<br />

Humanoid Robot<br />

Xinjilefu and Christopher G. Atkeson<br />

Robotics Institute, Carnegie Mellon University, USA<br />

• We compare two approaches to designing<br />

Kalman filters for walking systems.<br />

• One design uses LIPM dynamics, the<br />

other uses more complete Planar<br />

dynamics.<br />

• LIPM design is more robust to modeling<br />

error<br />

• Planar design estimates COM height and<br />

joint velocities, and tracks horizontal COM<br />

translation more accurately.<br />

• We also investigate different ways of<br />

handling contact states and force sensing<br />

in state estimation.<br />

<strong>2012</strong> IEEE/RSJ International Conference on Intelligent Robots and Systems<br />

–132–<br />

The Sarcos Humanoid Robot<br />

<strong>10</strong>:15–<strong>10</strong>:30 WedBT4.4<br />

The Anatomy of a Fall: Automated Real-time<br />

Analysis of Raw Force Sensor Data from<br />

Bipedal Walking Robots and Humans<br />

Petar Kormushev, Luca Colasanto,<br />

Nikolaos G. Tsagarakis, and Darwin G. Caldwell<br />

Advanced Robotics, Istituto Italiano di Tecnologia, Italy<br />

Barkan Ugurlu<br />

Control Systems, Toyota Technological Institute, Japan<br />

• Algorithms for automated analysis<br />

of ground reaction force data<br />

• Automatically detect single, double<br />

support, and swing phases, heel<br />

strikes, phase transitions, etc.<br />

• Detect early indications of<br />

instability that could lead to a fall.<br />

• Approach: generic, model-free,<br />

parameter-free, robust, efficient<br />

• Three experiments on: compliant<br />

humanoid robot COMAN, stiff robot<br />

HOAP-2, and a human subject

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!