05.02.2013 Views

Bootstrapping the interest-rate term structure - Marco Marchioro

Bootstrapping the interest-rate term structure - Marco Marchioro

Bootstrapping the interest-rate term structure - Marco Marchioro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong><br />

<strong>Marco</strong> <strong>Marchioro</strong><br />

www.marchioro.org<br />

October 20 th , 2012<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 1<br />

Summary (1/2)<br />

• Market quotes of deposit <strong>rate</strong>s, IR futures, and swaps<br />

• Need for a consistent <strong>interest</strong>-<strong>rate</strong> curve<br />

• Instantaneous forward <strong>rate</strong><br />

• Parametric form of discount curves<br />

• Choice of curve nodes<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 2<br />

Summary (2/2)<br />

• <strong>Bootstrapping</strong> quoted deposit <strong>rate</strong>s<br />

• <strong>Bootstrapping</strong> using quoted <strong>interest</strong>-<strong>rate</strong> futures<br />

• <strong>Bootstrapping</strong> using quoted swap <strong>rate</strong>s<br />

• QuantLib, bootstrapping, and <strong>rate</strong> helpers<br />

• Derivatives on foreign-exchange <strong>rate</strong>s<br />

• Sensitivities of <strong>interest</strong>-<strong>rate</strong> portfolios (DV01)<br />

• Hedging portfolio with <strong>interest</strong>-<strong>rate</strong> risk<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 3<br />

Major liquid quoted <strong>interest</strong>-<strong>rate</strong> derivatives<br />

For any given major currency (EUR, USD, GBP, JPY, ...)<br />

• Deposit <strong>rate</strong>s<br />

• Interest-<strong>rate</strong> futures (FRA not reliable!)<br />

• Interest-<strong>rate</strong> swaps<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 4<br />

Quotes from Financial Times<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 5<br />

Consistent <strong>interest</strong>-<strong>rate</strong> curve<br />

We need a consistent <strong>interest</strong>-<strong>rate</strong> curve in order to<br />

• Understand <strong>the</strong> current market conditions (e.g. forward <strong>rate</strong>s)<br />

• Compute <strong>the</strong> at-<strong>the</strong>-money strikes for Caps, Floor, and Swaptions<br />

• Compute <strong>the</strong> NPV of exotic derivatives<br />

• De<strong>term</strong>ine <strong>the</strong> “fair” forward currency-exchange <strong>rate</strong><br />

• Hedge portfolio exposure to <strong>interest</strong> <strong>rate</strong>s<br />

• ... (many more reasons) ...<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 6<br />

One forward <strong>rate</strong> does not fit all (1/2)<br />

Assume a continuously compounded discount <strong>rate</strong> from a flat <strong>rate</strong> r<br />

D(t) = e<br />

−r t<br />

Matching exactly <strong>the</strong> implied discount for <strong>the</strong> first deposit <strong>rate</strong><br />

1<br />

1 + T1 r fix(1)<br />

and for <strong>the</strong> second deposit <strong>rate</strong><br />

1<br />

1 + T1 r fix(2)<br />

(1)<br />

= D(T1) = e −r T1 (2)<br />

= D(T2) = e −r T2 (3)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


Yielding<br />

and<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 7<br />

One forward <strong>rate</strong> does not fit all (2/2)<br />

r = 1<br />

T1<br />

r = 1<br />

T2<br />

log �<br />

�<br />

1 + T1 rfix(1) log �<br />

�<br />

1 + T2 rfix(2) which would imply two values for <strong>the</strong> same r. Hence,<br />

a single constant <strong>rate</strong> is not consistent with all market quotes!<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />

(4)<br />

(5)


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 8<br />

Instantaneous forward <strong>rate</strong> (1/2)<br />

Given two future dates d1 and d2, <strong>the</strong> forward <strong>rate</strong> was defined as,<br />

rfwd(d1, d2) =<br />

� �<br />

1 D (d1) − D (d2)<br />

T (d1, d2) D (d2)<br />

(6)<br />

We define <strong>the</strong> instantaneous forward <strong>rate</strong> f(d1) as <strong>the</strong> limit,<br />

f(d1) = lim rfwd(d1, d2) (7)<br />

d2→d1<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 9<br />

Instantaneous forward <strong>rate</strong> (2/2)<br />

Given certain day-conventions, set T = T (d0, d) <strong>the</strong>n after preforming<br />

a change of variable from d to T we have,<br />

� �<br />

1 D(T ) − D(T + ∆t)<br />

f(T ) = lim<br />

(8)<br />

∆t→0 ∆t D(T + ∆t)<br />

It can be shown that<br />

f(T ) = − 1 ∂D(T )<br />

D(T ) ∂T<br />

= −∂ log [D(T )]<br />

∂T<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />

(9)


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 10<br />

Instantaneous forward <strong>rate</strong> for flat curve<br />

Consider a continuously-compounded flat-forward curve<br />

D(d) = e −z T (d0,d) ⇐⇒ D(T ) = e −z T<br />

with a given zero <strong>rate</strong> z, <strong>the</strong>n<br />

∂ log [D(T )]<br />

f(T ) = −<br />

∂T<br />

∂ [−z T ]<br />

= −<br />

∂T<br />

is <strong>the</strong> instantaneous forward <strong>rate</strong><br />

= z<br />

� �<br />

∂ log e−z T<br />

= −<br />

∂T<br />

(10)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 11<br />

Discount from instantaneous forward <strong>rate</strong><br />

Integrating <strong>the</strong> expression for <strong>the</strong> instantaneous forward <strong>rate</strong><br />

� �<br />

∂ log [D(t)]<br />

dt = −<br />

∂T<br />

f(t)dt ⇐⇒<br />

� T<br />

log [D(T )] = −<br />

and taking <strong>the</strong> exponential we obtain<br />

D(T ) = exp<br />

�<br />

−<br />

� T<br />

0 f(t)dt<br />

so that choosing f(t) results in a discount factor<br />

�<br />

0 f(t)dt<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


Recall<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 12<br />

Forward expectations<br />

D(T ) = E<br />

�<br />

e − � T<br />

0 r(t)dt�<br />

= e − � T<br />

0 f(t)dt<br />

Similarly in <strong>the</strong> forward measure (see Brigo Mercurio)<br />

rfwd(t, T ) = E T<br />

� �<br />

1 T<br />

T − t t r(t′ )dt ′<br />

�<br />

and<br />

(11)<br />

(12)<br />

f(T ) = E T [r(t)dt] (13)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 13<br />

Piecewise-flat forward curve (1/2)<br />

Given a number of nodes, T1 < T2 < T3, define <strong>the</strong> instantaneous<br />

forward <strong>rate</strong> as<br />

until <strong>the</strong> last node<br />

f(t) = f1 for t ≤ T1 (14)<br />

f(t) = f2 for T1 < t ≤ T2 (15)<br />

f(t) = f3 for T2 < t ≤ T3 (16)<br />

f(t) = . . .<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 14<br />

Piecewise-flat forward curve (2/2)<br />

We de<strong>term</strong>ine <strong>the</strong> discount factor D(T ) using equation<br />

It can be shown that<br />

Recall that T0 = 0<br />

D(T ) = exp<br />

�<br />

−<br />

� T<br />

0 f(t)dt<br />

D(T ) = 1 · e −f1(T −T0)<br />

for T ≤ T1 (17)<br />

D(T ) = D(T1) e −f2(T −T1)<br />

for T1 < T ≤ T2 (18)<br />

. . . = . . . (19)<br />

D(T ) = D(Ti) e −fi+1(T −Ti)<br />

for Ti < T ≤ Ti+1 (20)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 15<br />

Questions?<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 16<br />

(The art of) choosing <strong>the</strong> curve nodes<br />

• Choose d0 <strong>the</strong> earliest settlement date<br />

• First few nodes to fit deposit <strong>rate</strong>s (until 1st futures?)<br />

• Some nodes to fit futures until about 2 years<br />

• Final nodes to fit swap <strong>rate</strong>s<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 17<br />

Why discard long-maturity deposit <strong>rate</strong>s?<br />

Compare cash flows of a deposit and a one-year payer swap for a<br />

notional of 100,000$<br />

Date Deposit IRS Fixed Leg IRS Ibor Leg<br />

Today - 100,000$ 0$ 0$<br />

Today + 6m 0$ 0$ 1,200$<br />

Today + 12m 102,400$ -2,500$ 1,280 ∗ $<br />

For maturities longer than 6 months credit risk is not negligible<br />

*Estimated by <strong>the</strong> forward <strong>rate</strong><br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 18<br />

Talking to <strong>the</strong> trader: bootstrap<br />

• Deposit <strong>rate</strong>s are unreliable: quoted <strong>rate</strong>s may not be tradable<br />

• Libor fixings are better but fixed once a day (great for riskmanagement<br />

purposes!)<br />

• FRA quotes are even more unreliable than deposit <strong>rate</strong>s<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


Zero <strong>rate</strong>s (%)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 19<br />

Boostrap of <strong>the</strong> USD curve using different helper lists<br />

Depo2m + Futs + Swaps<br />

0.1<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

time to maturity<br />

Depo1Y + Swaps<br />

Depo6m + Swaps<br />

Depo3m + Swaps<br />

Depo3m + Futs + Swaps<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


Spread over risk free (%)<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 20<br />

Boostrap of <strong>the</strong> USD curve using different helper lists<br />

-0.05<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

time to maturity<br />

Depo1Y + Swaps<br />

Depo6m + Swaps<br />

Depo3m + Swaps<br />

Depo3m + Futs + Swaps<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 21<br />

Discount interpolation<br />

Taking <strong>the</strong> logarithm in <strong>the</strong> piecewise-flat forward curve<br />

log [D(T )] = log � D(Ti−1) � − (T − Ti)f i+1<br />

discount factors are interpolated log linearly<br />

(21)<br />

• O<strong>the</strong>r interpolations are possible and give slightly different results<br />

between nodes (see QuantLib for a list)<br />

• Important: use <strong>the</strong> same type of interpolation for all curves!<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 22<br />

<strong>Bootstrapping</strong> <strong>the</strong> first node (1/2)<br />

Set <strong>the</strong> first node to <strong>the</strong> maturity of <strong>the</strong> first depo <strong>rate</strong>.<br />

Recalling equation (2) for f1 = r,<br />

D(T1) = e −f1 T1 =<br />

This equation can be solved for f1 to give,<br />

f1 = 1<br />

we obtain <strong>the</strong> value of f1.<br />

T1<br />

1<br />

1 + T1 r fix(1)<br />

log �<br />

�<br />

1 + T1 rfix(1) (22)<br />

(23)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

✻<br />

•<br />

f1<br />

•<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 23<br />

<strong>Bootstrapping</strong> <strong>the</strong> first node (2/2)<br />

3m 6m 1y 2y 3y 4y 5y 7y 10y<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 24<br />

<strong>Bootstrapping</strong> <strong>the</strong> second node (1/2)<br />

Set <strong>the</strong> second node to <strong>the</strong> maturity of <strong>the</strong> second depo <strong>rate</strong>.<br />

The equivalent equation for <strong>the</strong> second node gives,<br />

from which we obtain<br />

D(T2) = e −f1 T1 e −f2 (T2−T1) =<br />

f2 =<br />

�<br />

�<br />

log 1 + T2 rfix(2) T2 − T1<br />

1<br />

1 + T2 r fix(2)<br />

− f1 T1<br />

Continue for all deposit <strong>rate</strong>s to be included in <strong>the</strong> <strong>term</strong> <strong>structure</strong><br />

(24)<br />

(25)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

✻<br />

•<br />

f1<br />

•<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 25<br />

<strong>Bootstrapping</strong> <strong>the</strong> second node (2/2)<br />

f2<br />

•<br />

3m 6m 1y 2y 3y 4y 5y 7y 10y<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 26<br />

<strong>Bootstrapping</strong> from quoted futures (1/2)<br />

For each futures included in <strong>the</strong> <strong>term</strong> <strong>structure</strong><br />

• Add <strong>the</strong> futures maturity + tenor date to <strong>the</strong> node list<br />

• Solve for <strong>the</strong> appropriate forward <strong>rate</strong>s that reprice <strong>the</strong> futures<br />

Note: futures are great hedging tools<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

✻<br />

•<br />

f1<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 27<br />

<strong>Bootstrapping</strong> from quoted futures (2/2)<br />

•<br />

f2<br />

•<br />

f3<br />

•<br />

f4<br />

•<br />

3m 6m 1y 2y 3y 4y 5y 7y 10y<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 28<br />

<strong>Bootstrapping</strong> from quoted swap <strong>rate</strong>s<br />

For each <strong>interest</strong>-<strong>rate</strong> swap to be included in <strong>the</strong> <strong>term</strong> <strong>structure</strong><br />

• Add <strong>the</strong> swap maturity date to <strong>the</strong> node list<br />

• Solve for <strong>the</strong> appropriate forward <strong>rate</strong> that give null NPV to <strong>the</strong><br />

given swap<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


6.0%<br />

5.0%<br />

4.0%<br />

3.0%<br />

2.0%<br />

1.0%<br />

✻<br />

•<br />

f1<br />

•<br />

<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 29<br />

Final piecewise-flat forward curve<br />

f2<br />

•<br />

f3<br />

•<br />

f4<br />

f5<br />

f6<br />

f7<br />

f8<br />

f9<br />

•<br />

• • • •<br />

•<br />

3m 6m 1y 2y 3y 4y 5y 7y 10y<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong><br />


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 30<br />

Extrapolation<br />

Sometimes we need to compute <strong>the</strong> discount factor beyond <strong>the</strong> last<br />

quoted node<br />

We assume <strong>the</strong> last forward <strong>rate</strong> to extend beyond <strong>the</strong> last maturity<br />

D(T ) = D(Tn) e −fn(T −Tn)<br />

for T > Tn<br />

(26)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 31<br />

Questions?<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 32<br />

QuantLib: forward curve<br />

The curve defined in equations (17)-(20) is available in QuantLib as<br />

qlForwardCurve<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 33<br />

QuantLib: <strong>rate</strong> helpers<br />

Containers with <strong>the</strong> logic and data needed for bootstrapping<br />

• Function qlDepositRateHelper for deposit <strong>rate</strong>s<br />

• Function qlFuturesRateHelper for futures quotes<br />

• Function qlSwapRateHelper2 for swap fair <strong>rate</strong>s<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 34<br />

QuantLib: bootstrapped curve<br />

• qlPiecewiseYieldCurve: a curve that fits a series of market quotes<br />

• qlRateHelperSelection: a helper-class useful to pick <strong>rate</strong> helpers<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 35<br />

Questions?<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 36<br />

Foreign-exchange <strong>rate</strong>s<br />

Very often derivatives are used in order to hedge against future changes<br />

in foreign exchange <strong>rate</strong>s.<br />

We extend <strong>the</strong> approach of <strong>the</strong> previous sections to contracts that<br />

involve two different currencies.<br />

Consider a home currency (e.g. e), a foreign currency (e.g. $), and<br />

<strong>the</strong>ir current currency-exchange <strong>rate</strong> so that X e$ ,<br />

1 $ = 1e<br />

X e$<br />

(27)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 37<br />

Foreign-exchange forward contract<br />

Given a certain notional amount N e in <strong>the</strong> home currency and a<br />

notional amount N $ in <strong>the</strong> foreign currency, consider <strong>the</strong> contract<br />

that allows, at a certain future date d, to pay N $ and to receive N e .<br />

Pay/Receive (at d) = N e − N $<br />

(28)<br />

Bootstrap <strong>the</strong> risk-free discount curve D e (d) using <strong>the</strong> appropriate<br />

quoted instruments in <strong>the</strong> e currency, and <strong>the</strong> risk-free discount curve<br />

D $ (d) similarly.<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 38<br />

Present value of notionals<br />

The present value of N e in <strong>the</strong> home currency is given by<br />

PV e = D e (d) N e<br />

<strong>the</strong> present value of N $ in <strong>the</strong> foreign currency can be written as<br />

PV $ = D $ (d) N $<br />

Dividing <strong>the</strong> first expression by X e$<br />

PV e<br />

X e$<br />

(29)<br />

(30)<br />

= D e N e<br />

(d) . (31)<br />

Xe$ Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 39<br />

NPV of an FX forward<br />

The net present value of <strong>the</strong> forward contract in <strong>the</strong> $ currency is<br />

NPV $ fx−fwd<br />

PVe<br />

= − PV<br />

Xe$ $<br />

= D e N e<br />

(d) − D<br />

Xe$ $ (d) N $<br />

The same amount can be expressed in <strong>the</strong> foreign currency as,<br />

NPV e fx−fwd = De (d)N e − X e$ D $ (d) N $<br />

(32)<br />

(33)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 40<br />

Arbitrage-free forward FX <strong>rate</strong><br />

The contract is usually struck so <strong>the</strong> its NPV=0, from equation (32)<br />

N $ = De (d)<br />

X e$ D $ (d) N e .<br />

Comparing with (27), we define <strong>the</strong> forward exchange <strong>rate</strong> X e$ (d)<br />

X e$ (d) = X e$<br />

D $ (d)<br />

D e (d)<br />

. (34)<br />

• The exchange <strong>rate</strong> X e$ (d) is <strong>the</strong> fair value of an FX <strong>rate</strong> at d.<br />

• According to (34) <strong>the</strong> forward FX <strong>rate</strong> is highly dependent on <strong>the</strong><br />

discount curves in each respective currency.<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 41<br />

Questions?<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 42<br />

Interest-<strong>rate</strong> sensitivities<br />

In order to hedge our <strong>interest</strong>-<strong>rate</strong> portfolio we compute <strong>the</strong> <strong>interest</strong><br />

<strong>rate</strong> sensitivities<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 43<br />

Dollar Value of 1 basis point<br />

The Dollar Value of 1 basis point, or DV01, of an <strong>interest</strong>-<strong>rate</strong> portfolio<br />

P is <strong>the</strong> variation incurred in <strong>the</strong> portfolio when <strong>interest</strong> <strong>rate</strong>s<br />

move up one basis point:<br />

with ∆r=0.01%<br />

DV01 P = P (r1 + ∆r, r2 + ∆r, . . .) − P (r1, r2, . . .) (35)<br />

Using a Taylor approximation<br />

DV01 P � ∂P<br />

∂r<br />

∆r (36)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 44<br />

Managing <strong>interest</strong>-<strong>rate</strong> risk (1/2)<br />

• Consider an <strong>interest</strong>-<strong>rate</strong> portfolio P with a certain maturity T<br />

• Look for a swap S with <strong>the</strong> same maturity<br />

• Compute DV01 for both portfolio (DV01 P ) and Swap (DV01 S)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 45<br />

Managing <strong>interest</strong>-<strong>rate</strong> risk (2/2)<br />

Buy an amount H, <strong>the</strong> hedge ratio, of <strong>the</strong> given swap,<br />

H = − DV01 P<br />

DV01 S<br />

The book composed by <strong>the</strong> portfolio and <strong>the</strong> swap is delta hedged<br />

where r is <strong>the</strong> vector of all <strong>interest</strong> <strong>rate</strong>s<br />

(37)<br />

B(r) = P (r) + H S(r) (38)<br />

B(r + ∆r) − B(r) � DV01 P ∆r + H DV01 S ∆r � 0 (39)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 46<br />

Advanced <strong>interest</strong>-<strong>rate</strong> risk management (1/2)<br />

For highly volatile <strong>interest</strong> <strong>rate</strong>s use higher-order derivatives (gamma<br />

hedging)<br />

CVP � ∂2P ∆r (40)<br />

∂r2 For portfolio with highly varying cash flows compute as many DV 01<br />

as <strong>the</strong> number of maturities. E.g. DV01 2Y , DV01 3Y , . . .<br />

DV01 1Y<br />

P = P (r1, . . . , r 2Y + ∆r, r 3Y , . . .) − P (r) (41)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 47<br />

Advanced <strong>interest</strong>-<strong>rate</strong> risk management (2/2)<br />

Build <strong>the</strong> hedging book as<br />

with<br />

B = P + H 2Y S 2Y + H 3Y S 3Y + . . . (42)<br />

H 2Y = − DV012Y P<br />

DV012Y S<br />

, H 3Y = − DV013Y P<br />

DV013Y S<br />

The book is delta hedge with respect to all swap <strong>rate</strong>s:<br />

B(r + ∆r) − B(r) � DV01 2Y<br />

P ∆r + H2Y DV01 2Y<br />

S<br />

+DV01 3Y<br />

P ∆r + H2Y DV01 3Y<br />

S<br />

, . . . (43)<br />

∆r + . . . � 0<br />

∆r + (44)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 48<br />

Questions?<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>


<strong>Bootstrapping</strong> <strong>the</strong> <strong>interest</strong>-<strong>rate</strong> <strong>term</strong> <strong>structure</strong> 49<br />

References<br />

• Options, future, & o<strong>the</strong>r derivatives, John C. Hull, Prentice Hall<br />

(from fourth edition)<br />

• Interest <strong>rate</strong> models: <strong>the</strong>ory and practice, D. Brigo and F. Mercurio,<br />

Springer Finance (from first edition)<br />

Advanced Derivatives, Interest Rate Models 2010-2012 c○ <strong>Marco</strong> <strong>Marchioro</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!