04.02.2013 Views

Download this Presentation - Altair Technology Conference 2013

Download this Presentation - Altair Technology Conference 2013

Download this Presentation - Altair Technology Conference 2013

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cassidian Air Systems<br />

Integrated CAE Solutions<br />

Multidisciplinary Structure Optimisation with<br />

CASSIDIAN LAGRANGE<br />

2011 European HyperWorks <strong>Technology</strong> <strong>Conference</strong><br />

Dr. Fernass Daoud, Head of Design Automation and Optimization


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 2


Introduction<br />

Airbus<br />

Dr. Gerd Schuhmacher<br />

Introduction: EADS and Cassidian Structure<br />

Tom Enders (CEO)<br />

Fabrice Brégier (COO)<br />

Airbus Military<br />

Domingo Ureña-Raso<br />

MBDA<br />

A. Bouvier<br />

Eurocopter<br />

Lutz Bertling (CEO)<br />

Cassidian<br />

Systems<br />

H. Guillou<br />

Cassidian<br />

Stefan Zoller<br />

(CEO)<br />

Cassidian<br />

Electronics<br />

B. Wenzler<br />

© 2010 CASSIDIAN - All rights reserved Page 3<br />

EADS Astrium<br />

François Auque (CEO)<br />

Cassidian<br />

Air Systems<br />

B. Gerwert<br />

EADS<br />

Divsions<br />

Cassidian<br />

Business<br />

Units


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 5


Motivation<br />

Dr. Gerd Schuhmacher<br />

Motivation<br />

Challenges of the Multidisciplinary Airframe Design Process<br />

• The aircraft design process requires the combination of a broad spectrum of<br />

commercial as well as company specific analysis and sizing methods:<br />

– a broad spectrum of A/C (company-) specific strength and stability analysis<br />

methods<br />

– company specific aerodynamic and aero-elastic / loads analysis methods<br />

– company specific composite analysis, design and manufacturing methods.<br />

• The aircraft design is driven by a huge number of multidisciplinary design<br />

criteria (manoeuvre, gust and ground loads, aeroelastic efficiencies, flutter<br />

speeds, strength and stability criteria, manufacturing requirements etc.)<br />

resulting from different disciplines (loads, flight controls, dynamics, stress,<br />

design, etc.)<br />

• The design process needs to consider and meet all these design driving<br />

criteria simultaneously, in order to determine an optimum compromise<br />

solution, i.e. all disciplines and multidisciplinary design criteria driving the<br />

airframe structural sizes and the composite lay-up need to be combined and<br />

have to interact within an integrated airframe design process.<br />

© 2010 CASSIDIAN - All rights reserved Page 6


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 8


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Automation of the Global Airframe Development Process<br />

Dr. Gerd Schuhmacher<br />

1. Aerodynamic Analysis<br />

and Loft Optimization<br />

2. Loads Analysis<br />

and Aeroelastics<br />

Load Loops<br />

3. Structural Analysis<br />

and Sizing<br />

© 2010 CASSIDIAN - All rights reserved Page 9<br />

Aerodynamics Optimization<br />

LAGRANGE:<br />

Automation of Loads<br />

and Sizing Loop<br />

Structures + Loads (2007-11)<br />

Structural Optimization (until 2006)<br />

Aerodynamic Shape + Structural Sizes (2012+)


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Structural<br />

Concept<br />

Material<br />

Selection<br />

Dr. Gerd Schuhmacher<br />

Key-<br />

Diagram<br />

Property Selection<br />

1. Loop: (guess / engineering judgement)<br />

Traditional Sizing Process<br />

Aerodynamic Loft,<br />

Inboard Profile<br />

Panel Model<br />

Mass Loads<br />

Loads Loop<br />

GFEM*)<br />

Property Update<br />

for follow up Loops<br />

modified for Dyn.<br />

Sizing Loop<br />

© 2010 CASSIDIAN - All rights reserved Page 10<br />

SDC Requirements,<br />

Parameter envelope<br />

Manual Sizing<br />

(global / local<br />

strength & stability checks)<br />

Check Stress<br />

*) No mass application => no correlation between stiffness & masses<br />

**) Dynamic landing and dynamic gust loads.<br />

NOT SYNCHRONISED with static loads<br />

**)<br />

FCS<br />

Dynamic<br />

Model<br />

Dynamic<br />

Loads<br />

Flutter<br />

not<br />

fulfilled<br />

Aerodynamics,<br />

Preliminary Design<br />

Design<br />

Stress<br />

Loads<br />

Dynamics<br />

Mass


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Dr. Gerd Schuhmacher<br />

Multidisciplinary Airframe Design Optimization Process<br />

Structural<br />

Concept<br />

Key-<br />

Diagram<br />

Material<br />

Selection<br />

Mass<br />

Property Selection<br />

Aerodynamic Loft,<br />

Inboard Profile<br />

Panel Model<br />

Dynamic<br />

Nodal loads<br />

GFEM**)<br />

Prelim. Dynamic<br />

Checks<br />

1. Loop : (acc. to mass breakdown)<br />

Flight Physics<br />

Loads<br />

select design<br />

driving manoeuvres<br />

*) Within Block 0 dynamic nodal loads will be<br />

provided externally. Integration into process ongoing<br />

**) stiffness & masses in correlation<br />

***) 1st Global Sizing Loop performed<br />

MDO<br />

(Loads,<br />

Stress,<br />

Dynamics)<br />

Balanced<br />

GFEM<br />

***)<br />

© 2010 CASSIDIAN - All rights reserved Page 11<br />

Dynamic<br />

Check<br />

Property Update<br />

Manual Sizing<br />

(global / local<br />

for prob. follow up Loops<br />

Check Stress<br />

strength & stability checks)<br />

Loads<br />

Check<br />

Checks with tools<br />

from traditional<br />

Sizing Process<br />

Aerodynamics<br />

Design<br />

Stress<br />

Loads<br />

Dynamics<br />

Mass


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 12


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Eurofighter<br />

Composite Wing & Fin<br />

Talarion<br />

Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

A400M Rear Fuselage<br />

& Cargo Door<br />

Dr. Gerd Schuhmacher<br />

Large Spectrum of applications in Military and Civil Aircraft Design<br />

X31 CFC Wing<br />

Multidisciplinary Analysis and Optimization Software Tool<br />

FEM<br />

Statics<br />

Aeroelasticity<br />

Steady Flutter Gust<br />

Dynamics<br />

Stability<br />

Aerodynamics<br />

Doublet<br />

Lattice<br />

Higher<br />

Order<br />

© 2010 CASSIDIAN - All rights reserved Page 13<br />

Skill Tools<br />

Strength<br />

Buckling<br />

Postbuckling<br />

Design for<br />

Manufacturing<br />

Composite Design<br />

Models & Manufact.<br />

Constraints<br />

• Developed by CASSIDIAN Air Systems since 1984<br />

• More then 140 man-years of development<br />

A380 Leading Edge Rib<br />

A350 Wing<br />

A350 Fuselage


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Multidisciplinary Analyses within the Optimization Process<br />

• Simultaneous consideration of aiframe design driving disciplines during<br />

analysis and optimisation:<br />

Stress<br />

Dr. Gerd Schuhmacher<br />

Optimisation<br />

Optimisation model<br />

Criteria model<br />

Optimisation runs<br />

Manufacturing<br />

Minimum & maximum<br />

thickness / dimensions<br />

Composite manuf. rules<br />

Thickness jumps, etc.<br />

Dynamics<br />

Frequency<br />

requirements<br />

Flutter speed<br />

DLM model<br />

for unsteady<br />

aeroelasticity<br />

© 2010 CASSIDIAN - All rights reserved Page 14<br />

Stressing criteria<br />

(strength & stability)<br />

On basis of GFEM<br />

(with mass data)<br />

Aeroelasticity<br />

Aeroelastic<br />

efficiencies<br />

Flutter speed<br />

Gust<br />

Aeroelastic<br />

requirements<br />

Loads<br />

Selected design<br />

driving manoeuvres<br />

including flight<br />

conditions for each<br />

manoeuvre<br />

Aerodynamic<br />

HISSS model<br />

Coupling model<br />

(Beaming)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

hh<br />

bb<br />

Shear walls & longerons<br />

• Cross-sectional dimensions<br />

• Skin thicknesses<br />

Dr. Gerd Schuhmacher<br />

Structural Components to be optimized<br />

bb<br />

ee<br />

cc<br />

DD<br />

Composite & Metallic Stringer<br />

• Cross-sectional dimensions<br />

• Ply thicknesses<br />

Stringer-stiffened panels:<br />

• Cross-sectional dimensions<br />

• Skin thicknesses<br />

© 2010 CASSIDIAN - All rights reserved Page 15<br />

bb<br />

ee<br />

11<br />

Composite & Metallic Skin:<br />

• Ply thicknesses / fibre orientation<br />

e.g. composite skin (wing, fuselage,<br />

taileron)<br />

Metallic frames:<br />

• Cross-sectional dimensions


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Multidisciplinary Analysis Types<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 16<br />

FEM<br />

Optimisation Model<br />


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 17<br />

hh<br />

bb<br />

bb<br />

ee<br />

cc<br />

DD<br />

• Omega profile<br />

• T profile<br />

• Box profile<br />

• C profile<br />

• LZ profile<br />

bb<br />

ee<br />

� Geometric Sizes +<br />

Composite-Lay-up<br />

FEM<br />

11<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 18<br />

FEM<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 19<br />

FEM<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

comp<br />

� � �xxxx�s<br />

© 2010 CASSIDIAN - All rights reserved Page 20<br />

allow<br />

tens<br />

� � �yyyy�s<br />

allow<br />

FEM<br />

Damage Tolerance & Repairability<br />

• Yamada-Sun<br />

• Puck<br />

• Tsai-Hill<br />

• ….<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 21<br />

w eff<br />

• Skin & Column Buckling<br />

for isotropic, orthotropic<br />

and anisotropic skins<br />

FEM<br />

• Post-Buckling for isotropic<br />

and composite structures<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 22<br />

FEM<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 25


Overview on past applications<br />

Eurofighter (�1985)<br />

Composite Wing & Fin<br />

Trainer Wing (2000)<br />

Composite Wing& Fin<br />

Dr. Gerd Schuhmacher<br />

Overview on past applications<br />

X-31A Wing (1990)<br />

Composite Wing<br />

A400M (2004-2006)<br />

Rear Fuselage Skin+Frames<br />

© 2010 CASSIDIAN - All rights reserved Page 26<br />

Stealth Demonstrator (1995)<br />

Full A/C Design<br />

Advanced UAV (2006 + )<br />

Composite Wing


Application of MDO at Cassidian (2)<br />

A350 XWB VTP Optimisation<br />

A30X Wing Optimisation<br />

Topology & Sizing Optimization<br />

of Sec. 19, A350<br />

• > 20 % weight reduction !<br />

Page 27<br />

Dr. Gerd Schuhmacher<br />

Overview on selected Applications<br />

Optimum Composite<br />

Sizing Layout within 2<br />

Month (MAS-<br />

Acquisition phase)<br />

• Optimum Composite Sizing<br />

of several variants with 2<br />

FTE * 12 Month (AI UK)<br />

• > 35 % weight saving<br />

(compared to AL-design)!<br />

© 2010 CASSIDIAN - All rights reserved Page 27<br />

A350 XWB Wing Optimisation<br />

ca. 3000 DV<br />

250 000 Constraints<br />

Aeroelastics<br />

• Optimum Composite<br />

Sizing of 40 Variants with<br />

3 FTE * 6 Month for AI<br />

Toulouse<br />

• ca. 20 % weight saving !<br />

A350 XWB Fuselage Optimisation Sec. 13-14<br />

ca. 15000 DV<br />

1000 000 Constraints<br />

A380 Leading Edge Rib Optimization<br />

• Optimum Composite Sizing<br />

with 2 FTE * 5 Month<br />

• Feasible Design without<br />

weight increase ! (PAG)<br />

• > 40 % weight reduction !


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 34


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Application to the Unmanned Aerial Vehicle Talarion<br />

Unmanned surveillance and reconnaissance aircraft<br />

Appr. Dimensions: Length: 14 m; Height: 4,5 m ; Span 26 m<br />

Take-off weight : 8000 kg class<br />

Performance<br />

Loiter Speed: >200 ktas<br />

Ceiling: > 43 kft<br />

Endurance: > 20 h class<br />

© 2010 CASSIDIAN - All rights reserved Page 35


Application to the Unmanned Aerial Vehicle Talarion<br />

• Objective:<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

– Mass estimation<br />

• In consideration of<br />

– Flight-Physical constraints<br />

– Strength<br />

– Stability<br />

– Manufacturing<br />

FE Model<br />

Analysis Model:<br />

Fully coupled<br />

structure-aerodynamic<br />

(Aeroelastic)<br />

© 2010 CASSIDIAN - All rights reserved Page 36<br />

Automation of both loops:<br />

Loads & Sizing Loop<br />

Aerodynamic Model


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Phase 1: Manoeuvre load simulation<br />

• Requirements:<br />

– (full aircraft) finite element model<br />

– (full aircraft) aerodynamic model<br />

HISSS (Higher Order Sub- and<br />

Supersonic Singularity Method) or<br />

DLM (Doublet Lattice) panel model<br />

– Coupling model:<br />

Beaming & Splining Methods used in order to<br />

transfer aerodynamic loads to the FE-Model<br />

and structural deflections to the Aero-Model<br />

i.e. fully coupled analysis models, without<br />

condensation<br />

© 2010 CASSIDIAN - All rights reserved Page 37<br />

FE model<br />

aerodynamic<br />

model


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Manoeuvre Load Simulation<br />

• Based on the Mission and Structural Design Criteria the flight envelope is<br />

established and scanned (10 3 - 10 5 manoeuvres) in order to determine the<br />

design driving, steady manoeuvres with maximum loads<br />

� Down selection of design driving steady manoeuvres (~10 2 manoeuvres).<br />

© 2010 CASSIDIAN - All rights reserved Page 38


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Manoeuvre Load Simulation<br />

• Each design driving, steady manoeuvre can be described by the<br />

– Mass configuration and CoG position<br />

– Altitude<br />

– Mach number<br />

– Accelerations and rotational speeds (up to 9 values)<br />

• Global Equilibrium of Forces and Moments has to be achieved for these<br />

pre-scribed manoeuvres of the elastic aircraft:<br />

Flight Parameter<br />

© 2010 CASSIDIAN - All rights reserved Page 39<br />

F y(inertia) + F y(aerodynamic) = 0<br />

F z(inertia) + F z(aerodynamic) = 0<br />

M x(inertia) + M x(aerodynamic) = 0<br />

M y(inertia) + M y(aerodynamic) = 0<br />

M z(inertia) + M z(aerodynamic) = 0


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Trimming Process<br />

• For each steady manoeuvre (Mass, CoG, Altitude, Mach, Accelerations)<br />

the angles of attack (pitch angle, yaw angle and the AoA of the control<br />

surfaces are determined by minimizing the residual forces.<br />

β:<br />

mainly trim sideslip<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

β<br />

α<br />

α:<br />

mainly trim lift<br />

Flight Parameter<br />

sym. elevators:<br />

mainly trim pitch axis<br />

rudder:<br />

mainly trim yaw axis<br />

sym. elevators:<br />

mainly trim pitch axis<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

© 2010 CASSIDIAN - All rights reserved Page 40<br />

F y(inertia) + F y(aerodynamic) = 0<br />

F z(inertia) + F z(aerodynamic) = 0<br />

M x(inertia) + M x(aerodynamic) = 0<br />

M y(inertia) + M y(aerodynamic) = 0<br />

M z(inertia) + M z(aerodynamic) = 0<br />

alfa = - xx °<br />

beta = - yy °<br />

delta aileron = zz °<br />

delta elevator = hh °<br />

delta rudder = kk °


Application to the Unmanned Aerial Vehicle Talarion<br />

Under Development<br />

Dr. Gerd Schuhmacher<br />

Integration of Transient Gust into Optimisation<br />

A “gust case” is defined as a combination of:<br />

a) steady manoeuvre: flight condition and mass configuration (c.o.g. position !)<br />

(altitude & aircraft speed; usually 1g cruise)<br />

b) gust condition: wave-length and up- or down wind gust velocity and<br />

incidence angle (usually sinusoidal shaped)<br />

� leading to huge amount of different gust cases<br />

(up to ~10000), which have to be considered !<br />

example:<br />

© 2010 CASSIDIAN - All rights reserved Page 43<br />

~<br />

evaluated<br />

time steps<br />

(approx. 1000)<br />

flight condition<br />

(incl. mass configuration)<br />

gust wave<br />

length<br />

gust up-<br />

wind profile


Application to the Unmanned Aerial Vehicle Talarion<br />

Under Development<br />

Dr. Gerd Schuhmacher<br />

Many gust blocks<br />

gust block for selected mass configuration<br />

Many gust cases<br />

gust case =<br />

Gust Process<br />

incremental gust analysis<br />

• specific mass configuration,<br />

• specific incidence angle,<br />

• specific wave length,<br />

• specific speed,<br />

• specific altitude<br />

+<br />

basic flight attitude<br />

• trimmed aeroelastic steady manoeuvre<br />

• for specific mass configuration,<br />

• specific altitude,<br />

• specific speed<br />

• to be superimposed to an incremental gust<br />

© 2010 CASSIDIAN - All rights reserved Page 44<br />

Database<br />

(HDF5)<br />

evaluation of all<br />

gust cases for<br />

selected mass<br />

configuration<br />

• Implementation of the Incremental Gust Response and the Sensitivities is completed.<br />

• Implementation process for the fully automated determination of the design driving<br />

time steps and the superposition to manoeuvre load cases is ongoing.


Application to the Unmanned Aerial Vehicle Talarion<br />

Currently under<br />

development<br />

Dr. Gerd Schuhmacher<br />

Application to the Unmanned Aerial Vehicle Talarion<br />

Summary for Phase 1: Manoeuvre, Gust and Landing Loads Analysis<br />

• The manoeuvre load simulation of elastic aircraft (fully coupled aerodynamicstructure<br />

model) is combined with a trimming process (optimisation task) in<br />

order to provide the distributed, elastic aircraft manoeuvre loads.<br />

• The distributed aerodynamic and inertia loads are directly applied to the global,<br />

non-condensed FE model, providing the stresses and displacements for the<br />

subsequent strength and stability analysis.<br />

• Gust loads are determined as incremental dynamic response. The time steps<br />

resulting in maximum local stresses are determined and the resulting<br />

deflections are superimposed to the corresponding steady manoeuvres.<br />

• Landing Gear Loads are determined by an external Multi-Body-Analysis and<br />

then applied to the global full aircraft model in order consider them in the sizing<br />

process.<br />

• By incorporating the loads analysis into the optimisation platform LAGRANGE<br />

both very time consuming loops (loads & sizing) are automated.<br />

© 2010 CASSIDIAN - All rights reserved Page 45


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

Phase 2: Multidisciplinary Sizing optimisation<br />

Criteria Model<br />

• Strength analysis:<br />

• Damage tolerance<br />

• Von Mises<br />

• Skin buckling (for composite skin and<br />

metallic shear walls)<br />

• Column buckling<br />

• Flight-Physics:<br />

• Force equilibrium in Y, Z<br />

• Moment equilibrium around X, Y, Z<br />

Analysis Model<br />

© 2010 CASSIDIAN - All rights reserved Page 46<br />

Aeroelastic analysis<br />

Manoeuvre Simulation<br />

trimming Process Optimisation Model<br />

• Ply thickness of composite skin<br />

• Thickness of metallic shear walls<br />

• Cross-sectional areas of stringers<br />

• Trimming variables


Application to the Unmanned Aerial Vehicle Talarion<br />

• Optimisation Model:<br />

Dr. Gerd Schuhmacher<br />

Stacking sequence:<br />

Talarion Rapid Fuselage Design Study<br />

2312 elements linked to 43 patches<br />

45°<br />

-45°<br />

90°<br />

0°<br />

45°<br />

-45°<br />

90°<br />

0°<br />

0°<br />

90°<br />

-45°<br />

45°<br />

0°<br />

90°<br />

-45°<br />

45°<br />

Composite skin Composite/Metallic Stringer<br />

16 layers<br />

linked to 3 design variables<br />

129 design variables<br />

(3 * 43 patches)<br />

4212 elements linked to 174 patches<br />

174 design variables<br />

(1 * 174 patches)<br />

Total: 1015 design variables<br />

© 2010 CASSIDIAN - All rights reserved Page 47<br />

Metallic Shear Walls<br />

8087 elements linked to 712<br />

patches<br />

712 design variables<br />

(1 * 712 patches)


Analysis Model: Steady Aeroelasticity<br />

• Optimisation Model:<br />

Dr. Gerd Schuhmacher<br />

β:<br />

mainly trim sideslip<br />

Talarion Rapid Fuselage Design Study<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

β<br />

α<br />

sym. elevators:<br />

mainly trim pitch axis<br />

α:<br />

mainly trim lift<br />

5 design variables for each load case<br />

~ 50 Load cases<br />

________________________________<br />

~250 Design variables<br />

rudder:<br />

mainly trim yaw axis<br />

sym. elevators:<br />

mainly trim pitch axis<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

© 2010 CASSIDIAN - All rights reserved Page 48


Application to the Unmanned Aerial Vehicle Talarion<br />

• Criteria Model:<br />

Composites:<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

Maximum strain (Damage Tolerance)<br />

36992 constraints * 34 load cases<br />

Metallic:<br />

Von Mises stress<br />

Strength Stability<br />

12299 constraints * 34 load cases<br />

1.675.894 strength constraints<br />

Skin & shear wall buckling:<br />

© 2010 CASSIDIAN - All rights reserved Page 49<br />

1080 constr. * 34 load cases<br />

Total: 1.726.860 constraints<br />

Stringer Column Buckling:<br />

419 constr. * 34 load cases<br />

50966 buckling constraints


Optimisation at Cassidian Air Systems<br />

• Criteria Model:<br />

�<br />

�<br />

�<br />

Dr. Gerd Schuhmacher<br />

Flight-Physics<br />

M<br />

M<br />

M<br />

x<br />

y<br />

z<br />

� 0<br />

� 0<br />

� 0<br />

�<br />

�<br />

5 constraints / load case<br />

~ 50 load cases<br />

_________________<br />

~ 250 constraints<br />

Talarion Rapid Fuselage Design Study<br />

Y � 0<br />

Z � 0<br />

© 2010 CASSIDIAN - All rights reserved Page 50<br />

Flutter Displacement<br />

Manufacturing<br />

_________________<br />

1 flutter constraint /<br />

mass configuration<br />

U<br />

�<br />

max<br />

max<br />

~ 5 Displacement<br />

constraints / load case<br />

50 load cases<br />

________________<br />

~ 250 constraints<br />

hh<br />

bb<br />

�ttot �ttot<br />

ttot1 ttot1<br />

bb<br />

ee<br />

Layer thickness fitting:<br />

8layer * 47 steps = 376<br />

Minimum relative group<br />

thickness: 147<br />

Minimum absolute stack<br />

thickness: 49<br />

______________<br />

572 constraints<br />

ttot2 ttot2<br />

cc<br />

DD<br />

bb<br />

ee<br />

11


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

• Skin Thickness & overall Reserve Factor:<br />

Total Thickness<br />

Composite Skin<br />

© 2010 CASSIDIAN - All rights reserved Page 51<br />

Overall R f


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

• Thickness of Metallic Shear Walls, Frames, Floors & overall Reserve<br />

Factor:<br />

Total Thickness<br />

Metallic Shear Walls, Frames, Floor<br />

© 2010 CASSIDIAN - All rights reserved Page 52<br />

Overall R f<br />

All Results are available in different formats (colour<br />

plots, Excel Tables, Database etc.)


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 53


Under Development<br />

Four distinct decks of the Lagrange input file to be considered<br />

Dr. Gerd Schuhmacher<br />

LAGRANGE Input deck<br />

LAGRANGE Profile in HyperMesh<br />

Design Control Deck<br />

(control commands)<br />

NASTRAN-<br />

Deck<br />

Case Control<br />

Deck<br />

Optimization Data Deck<br />

(optimization data)<br />

LAGRANGE Profile I/O<br />

Bulk Data Deck<br />

� loads reduced NASTRAN template<br />

...<br />

...<br />

...<br />

ENDCONTROL<br />

...<br />

...<br />

...<br />

BEGIN BULK<br />

...<br />

...<br />

...<br />

ENDDATA<br />

...<br />

...<br />

...<br />

ENDE<br />

� uses standard NASTRAN I/O- procedures (CCD & BDD)<br />

� provides extended I/O- features (DCD and ODD)<br />

© 2010 CASSIDIAN - All rights reserved Page 54<br />

Chap. 3<br />

Chap. 4<br />

Chap. 5<br />

to<br />

Chap. 8<br />

HM user-page


Under Development<br />

Dr. Gerd Schuhmacher<br />

Automatic Generation of DVs and BFs (defopt)<br />

External defopt- usage fully supported<br />

© 2010 CASSIDIAN - All rights reserved Page 55<br />

manage config-files<br />

execution of external binary<br />

� defopt writes files to disk<br />

� data to be imported<br />

� generic process extendible for further external executables


Under Development<br />

Dr. Gerd Schuhmacher<br />

Manual Generation / Editing of DVs and BFs<br />

=> Analysis => ODD<br />

=> Model browser => OutputBlocks<br />

© 2010 CASSIDIAN - All rights reserved Page 56


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 57


Summary<br />

Dr. Gerd Schuhmacher<br />

Benefits of the Automated Airframe Design Process<br />

• The optimization assisted airframe design process has been established and<br />

applied within all design phases of a broad range of A/C projects (civil and military<br />

applications; components, large assemblies & full A/C).<br />

• The multidisciplinary design optimisation with LAGRANGE leads to a feasible<br />

airframe design which satisfies the requirements of all relevant disciplines with<br />

minimum weight.<br />

• The automation of both loops: structural sizing and loads loop results in an<br />

drastic reduction of development time and effort.<br />

• The strategic decision for an continued development the in-house MDO tool<br />

LAGRANGE is due to the specific aerospace design criteria on one hand (no<br />

Commercial Of The Shelf tool available) and the tremendous benefits and<br />

competitive advantages on the other hand.<br />

• The in-house software availability allows the fast adaption to advanced analysis<br />

methods as well as to new technological product and customer requirements.<br />

• Further Applications and Co-Operations are welcome !<br />

© 2010 CASSIDIAN - All rights reserved Page 59


Thank you for your attention!<br />

The reproduction, distribution and utilization of <strong>this</strong> document as well as<br />

the communication of its contents to others without express authorization<br />

is prohibited. Offenders will be held liable for the payment of damages.<br />

All rights reserved in the event of the grant of a patent, utility model or design.<br />

Dr. Gerd Schuhmacher<br />

© 2010 CASSIDIAN - All rights reserved Page 60


Optimisation at Cassidian Air Systems<br />

Dr. Gerd Schuhmacher<br />

Benefits of Design Automation<br />

• Multidisciplinary optimisation with LAGRANGE provides a structural<br />

design which satisfies the requirements of all relevant disciplines with<br />

minimum weight<br />

• Automation of both loops: structural sizing and load analysis (through full<br />

coupling to aerodynamic analysis tools)<br />

• Huge multidisciplinary criteria model covering requirements of all structure<br />

design driving disciplines<br />

• Drastic reduction of development time and effort (>50%)<br />

• Reduced cost due to automation of the design process<br />

– Estimated Saving for Talarion Development Process:<br />

• Traditional Manual Process:<br />

e.g. 6 Load Loops (LL) * 1 J / LL * 40 FTE (Stress, Loads, Dynamics, Mass, Design,<br />

etc.) = 240 Man-Years<br />

• With MDO Process: 2 Load Loops * 0,65 J / LL * 40 FTE = 52 Man-Years<br />

• Estimated Saving: 188 Man-Years (37,6 Mill. €) !!!<br />

• Product/project specific requirements can be integrated (if required) in the<br />

platform easily (Property of CASSIDIAN Air Systems)<br />

– Over 3 Million lines of code, 140 Man-Yeas development<br />

© 2010 CASSIDIAN - All rights reserved Page 61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!