BAIL 2006 Book of Abstracts - Institut für Numerische und ...

BAIL 2006 Book of Abstracts - Institut für Numerische und ... BAIL 2006 Book of Abstracts - Institut für Numerische und ...

num.math.uni.goettingen.de
from num.math.uni.goettingen.de More from this publisher
04.02.2013 Views

M. HÖLLING, H. HERWIG: Computation of turbulent natural convection at vertical walls using new wall functions ✬ ✫ T in K 380 370 360 350 340 330 8×200 4×200 DNS 320 0 0.05 y in m 0.1 u in m/s 0.25 0.2 0.15 0.1 0.05 0 −0.05 −0.1 −0.15 −0.2 8×200 4×200 DNS −0.25 0 0.05 y in m 0.1 Figure 1: Temperature and velocity profile of Versteegh and Nieuwstadt [3] for Ra = 5.0 · 10 6 compared to results of the modified CAFFA code using two grid sizes. that it is inadequate for natural convection. Instead of trying to find another modification of an existing turbulence model, the deficiences could be compensated by modifying the boundary conditions for k and ω. The results are again compared to the DNS data of Versteegh and Nieuwstadt [3] and good agreement is found. Figure 1 shows the temperature and velocity profile for Ra = 5.0 · 10 6 together with the results of the modified CAFFA code. Two different grid sizes were used and despite the very few control volumes (8 and 4 CVs) across the channel width the profiles are matched very well. Also the wall gradients, i.e. the Nusselt number and the shear stress, are correct within 4 %. References [1] T. Tsuji and Y. Nagano, “Characteristics of a turbulent natural convection boundary layer along a vertical flat plate”, Int. J. Heat Mass Transfer 31, 1723–1734 (1989). [2] W.K. George and S.P. Capp, “A theory for natural convection turbulent boundary layers next to heated vertical surfaces”, Int. J. Heat Mass Transfer 22, 813–826 (1979). [3] T.A.M. Versteegh and F.T.M. Nieuwstadt, “A direct numerical simulation of natural convection between two infinite vertical differentially heated walls: scaling laws and wall functions”, Int. J. Heat Mass Transfer 42, 3673–3693 (1999). [4] R.A.W.M. Henkes and C.J. Hoogendoorn, “Numerical determination of wall functions for the turbulent natural convection boundary layer”, Int. J. Heat Mass Transfer 33, 1087– 1097 (1990). [5] M. Hölling and H. Herwig, “Asymptotic analysis of the near wall region of turbulent natural convection flows”, J. Fluid Mech. 541, 383–397 (2005). [6] J.H. Ferziger and M. Peric, “Computational methods for fluid dynamics”, 2nd ed., Springer, Berlin (1999). Speaker: HÖLLING, M. 92 BAIL 2006 2 ✩ ✪

A.-M. IL’IN, B.I. SULEIMANOV: The coefficients of inner asymptotic expansions for solutions of some singular boundary value problems ✬ ✫ ���������� �������������� ��� ���������� �� ����� ���������� ���������� ��� ��������� �� ���� �������� �������� ����� �������� ��� ������� ��������� �� �������� ����������� ��������� ux + u 3 − tu − x = 0, (1) uxx = u 3 − tu − x (2) ��� ����������� ��� ������� ��������� ��� ���������� ���� ��� ��������� �� � ���� ����� �� ��������� �� ������� ����������� ��������� ���� ����� ��������� �� ��� ���� ��� ����� ��������� ���� ������ �� ������ ��� ������� �������� �� �������� ε 2 (Ux1x1 + Ux2x2) + εbUx1 + f(x1, x2, U) = 0, ����� ����� �������� f(x1, x2, U) = 0 ��� ���� ����� Uj(x1, x2). �� ��� ������� ���� ���� �������� ��� ����� ������ ��� ������ �� ��� ���� ������ U0(0, 0) = 0 ��� f(x1, x2, U) = x1 + x2U − U 3 + · · · . ����� �� ��� ������ ���� �� x2 < 0 ��� ����� ��� ��� ������ ����� ��� ��� �������� ���� �� x2 > 0. �� ��� ������������ �� ������ �� ������ ���������� �� b �= 0 ���� z = x1 , ε3/5 x2 t = , ε2/5 U w = . ε1/5 �� ���� ���� ��� �������� ��� ��� ��������� ���� ��� ��� ���� bwz = w3 − tw − z ���������� �� �������� ���� ����� �� �� b = 0 ���� z = x1 x2 U , t = , v = ε3/4 ε1/2 ε1/4 ��� ��� �������� ��� ��� ��������� ���� ��� ��� ���� wzz = w3 − tw − z ����� �� ���������� �� �������� ���� ��� ���� ��� �� �� ��������� ��� ����������� ����������� �� ��� ��������� �� ��������� ��� ��� ��� �� ��� ������ ����� ������ �� �� ������� �� ������ ���� ��������� ���� �� ������ �� ������� ���� �������� H(x, t) H 3 − tH − x = 0 (3) �� x 2 + t 2 → ∞. �� �� ������ ������ ��� ����� ����� ���� ����� ����� ����������� �� ��������� ���� ��������� �������� ������������ ����������� ��� ������� t ��� ���������� ������� ������� �� ��� ����� ���� t ����� ����� ������ �������� ���������� �������� �� ��� ����������� �������� ��� ��� u(x, t) − H(x, t) → 0 �� x → ∞. u(x, t) = as x 1/3 (1 + ∞� cj(t)x −j/3 ), x → ∞. j=2 ���� ���������� ��������� �� ������� �� |t| < T ��� �� �� ��� ������� �� ����� ����� (x, t). ������� �� ��� t → −∞ ��� �������� u(x, t) ��� ��� ��������� ������� ���������� ���������� u(x, t) = |t| 1/2 � f(s) + � ∞� j=1 vj(s) t4j � , Speaker: IL’IN, A.M. 93 BAIL 2006 ✩ ✪

M. HÖLLING, H. HERWIG: Computation <strong>of</strong> turbulent natural convection at vertical<br />

walls using new wall functions<br />

✬<br />

✫<br />

T in K<br />

380<br />

370<br />

360<br />

350<br />

340<br />

330<br />

8×200<br />

4×200<br />

DNS<br />

320<br />

0 0.05<br />

y in m<br />

0.1<br />

u in m/s<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

−0.15<br />

−0.2<br />

8×200<br />

4×200<br />

DNS<br />

−0.25<br />

0 0.05<br />

y in m<br />

0.1<br />

Figure 1: Temperature and velocity pr<strong>of</strong>ile <strong>of</strong> Versteegh and Nieuwstadt [3] for Ra = 5.0 · 10 6<br />

compared to results <strong>of</strong> the modified CAFFA code using two grid sizes.<br />

that it is inadequate for natural convection. Instead <strong>of</strong> trying to find another modification <strong>of</strong><br />

an existing turbulence model, the deficiences could be compensated by modifying the bo<strong>und</strong>ary<br />

conditions for k and ω.<br />

The results are again compared to the DNS data <strong>of</strong> Versteegh and Nieuwstadt [3] and good<br />

agreement is fo<strong>und</strong>. Figure 1 shows the temperature and velocity pr<strong>of</strong>ile for Ra = 5.0 · 10 6<br />

together with the results <strong>of</strong> the modified CAFFA code. Two different grid sizes were used and<br />

despite the very few control volumes (8 and 4 CVs) across the channel width the pr<strong>of</strong>iles are<br />

matched very well. Also the wall gradients, i.e. the Nusselt number and the shear stress, are<br />

correct within 4 %.<br />

References<br />

[1] T. Tsuji and Y. Nagano, “Characteristics <strong>of</strong> a turbulent natural convection bo<strong>und</strong>ary layer<br />

along a vertical flat plate”, Int. J. Heat Mass Transfer 31, 1723–1734 (1989).<br />

[2] W.K. George and S.P. Capp, “A theory for natural convection turbulent bo<strong>und</strong>ary layers<br />

next to heated vertical surfaces”, Int. J. Heat Mass Transfer 22, 813–826 (1979).<br />

[3] T.A.M. Versteegh and F.T.M. Nieuwstadt, “A direct numerical simulation <strong>of</strong> natural convection<br />

between two infinite vertical differentially heated walls: scaling laws and wall functions”,<br />

Int. J. Heat Mass Transfer 42, 3673–3693 (1999).<br />

[4] R.A.W.M. Henkes and C.J. Hoogendoorn, “Numerical determination <strong>of</strong> wall functions for<br />

the turbulent natural convection bo<strong>und</strong>ary layer”, Int. J. Heat Mass Transfer 33, 1087–<br />

1097 (1990).<br />

[5] M. Hölling and H. Herwig, “Asymptotic analysis <strong>of</strong> the near wall region <strong>of</strong> turbulent natural<br />

convection flows”, J. Fluid Mech. 541, 383–397 (2005).<br />

[6] J.H. Ferziger and M. Peric, “Computational methods for fluid dynamics”, 2nd ed., Springer,<br />

Berlin (1999).<br />

Speaker: HÖLLING, M. 92 <strong>BAIL</strong> <strong>2006</strong><br />

2<br />

✩<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!