01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R1<br />

N N<br />

O N H<br />

indoxacarb. Thus, while providing important pielectron<br />

interactions for local anesthetics, the aromatic<br />

residue at Y20 in D4S6 might hinder access <strong>of</strong><br />

SCBIs to their binding site. In the German cockroach<br />

sodium channel variant BgNav1-1A, alanine<br />

substitution at positions F13 <strong>and</strong> Y20 <strong>of</strong> D4S6 had<br />

somewhat different effects on the action <strong>of</strong> SCBIs<br />

(Silver et al., 2009a). F13A substitution in the cockroach<br />

channel did not change its sensitivity to<br />

indoxacarb or DCJW, <strong>and</strong> made it hypersensitive<br />

to metaflumizone. Furthermore, this mutation<br />

greatly accelerated recovery <strong>of</strong> the channels from<br />

block by metaflumizone. Therefore, in contrast to<br />

its role in the rat Nav1.4 channel in the binding <strong>of</strong><br />

LAs <strong>and</strong> SCBIs, the phenyl functional group at position<br />

F13 in D4S6 does not appear to participate in<br />

the binding <strong>of</strong> SCBIs in BgNav1-1A channels, <strong>and</strong><br />

may in fact hinder the access <strong>of</strong> metaflumizone (but<br />

not DCJW) to its binding site. As mentioned above,<br />

alanine substitution <strong>of</strong> Y20 in D4S6 <strong>of</strong> rat Nav1.4<br />

sodium channels increased sensitivity to DCJW 58fold<br />

(Silver <strong>and</strong> Soderlund, 2007). The<br />

corresponding mutation increased the sensitivity <strong>of</strong><br />

BgNa v1-1A channels 13-fold to DCJW <strong>and</strong> 11-fold<br />

to metaflumizone. Thus, the aromatic side chain at<br />

position 20 <strong>of</strong> D4S6, while crucial for local anesthetic<br />

binding, does not appear to participate in<br />

binding interactions with SCBIs, <strong>and</strong> in fact seems<br />

to hinder access <strong>of</strong> SCBIs to their binding site in both<br />

insect <strong>and</strong> mammalian sodium channels.<br />

In conclusion, while F13 <strong>of</strong> D4S6 is important for<br />

binding <strong>of</strong> both LAs <strong>and</strong> SCBIs in the rat Na v1.4<br />

channel, it does not affect binding <strong>of</strong> DCJW in the<br />

BgNav1-1A channel, <strong>and</strong> in fact hinders access <strong>of</strong><br />

metaflumizone to the binding site. Y20 in D4S6,<br />

while crucial for LA binding, hinders access <strong>of</strong><br />

SCBIs to their site in both insect <strong>and</strong> mammalian<br />

channels. The fact that residues involved in local<br />

anesthetic binding sometimes antagonize binding<br />

<strong>of</strong> SCBIs suggests that the SCBI <strong>and</strong> LA binding<br />

R2<br />

3-phenyl 1-phenylcarbamoyl-<br />

2-pyrazolines<br />

R1<br />

N N<br />

O N H<br />

R3<br />

R2<br />

3,4-diphenyl 1-phenylcarbamoyl-<br />

2-pyrazolines<br />

Figure A1 Chemical evolution <strong>of</strong> the semicarbazone metaflumizone from pyrazolines.<br />

sites overlap, but that the binding energy <strong>of</strong> SCBIs<br />

comes in part from different residues, which have<br />

yet to be identified.<br />

References<br />

CF 3<br />

N NH<br />

O N H<br />

metaflumizone<br />

A2: Addendum 59<br />

CN<br />

OCF 3<br />

BASF Agricultural Products, 2007. Metaflumizone Worldwide<br />

Technical Brochure.<br />

Li, H.-L., Galue, A., Meadows, L., Ragsdale, D.S., 1999.<br />

A molecular basis for the different local anesthetic affinities<br />

<strong>of</strong> resting versus open <strong>and</strong> inactivated states <strong>of</strong> the<br />

sodium channel. Mol. Pharmacol. 55, 134–141.<br />

Rugg, D., Hair, J.A., 2007. Dose determination <strong>of</strong> a novel<br />

formulation <strong>of</strong> metaflumizone plus amitraz for the<br />

treatment <strong>and</strong> control <strong>of</strong> fleas (Ctenocephalides felis)<br />

<strong>and</strong> ticks (Rhipicephalus sanguineus) on dogs. Vet.<br />

Parasitol. 150, 203–208.<br />

Salgado, V.L., Hayashi, J.H., 2007. Metaflumizone is a<br />

novel sodium channel blocker insecticide. Vet. Parasitol.<br />

150, 182–189.<br />

Silver, K.S., Soderlund, D.M., 2005. State-dependent<br />

block <strong>of</strong> rat Nav1.4 sodium channels expressed in<br />

Xenopus oocytes by pyrazoline-type insecticides. Neurotoxicology<br />

26, 397–406.<br />

Silver, K.S., Soderlund, D.M., 2007. Point mutations at<br />

the local anesthetic receptor site modulate the statedependent<br />

block <strong>of</strong> rat Na v1.4 sodium channels by<br />

pyrazoline-type insecticides. Neurotoxicology 28,<br />

655–663.<br />

Silver, K.S., Nomura, Y., Salgado, V.L., Dong, K., 2009a.<br />

Role <strong>of</strong> the sixth transmembrane segment <strong>of</strong> domain IV<br />

<strong>of</strong> the cockroach sodium channel in the action <strong>of</strong> sodium<br />

channel blocker insecticides. Neurotoxicology 30,<br />

613–621.<br />

Silver, K.S., Song, W., Nomura, Y., Salgado, V.L., Dong,<br />

K., 2009b. Mechanism <strong>of</strong> action <strong>of</strong> sodium channel<br />

blocker insecticides (SCBIs) on insect sodium channels.<br />

Pestic. Biochem. Physiol. in press, doi:10.1016/<br />

j.pestbp.2009.09.001.<br />

Song, W., Liu, Z., Dong, K., 2006. Molecular basis <strong>of</strong><br />

differential sensitivity <strong>of</strong> insect sodium channels to<br />

DCJW, a bioactive metabolite <strong>of</strong> the oxadiazine insecticide<br />

indoxacarb. Neutotoxicol 27, 237–244.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!