01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 Indoxacarb <strong>and</strong> the Sodium Channel Blocker<br />

<strong>Insect</strong>icides: Chemistry, Physiology, <strong>and</strong> Biology<br />

in <strong>Insect</strong>s<br />

K D Wing, J T Andaloro, <strong>and</strong> S F McCann,<br />

E. I. Du Pont de Nemours <strong>and</strong> Co., StineHaskell<br />

Research Laboratories, Newark, DE, USA<br />

V L Salgado, Bayer CropScience AG, Monheim am<br />

Rhein, Germany<br />

ß 2010, 2005 Elsevier B.V. All Rights Reserved<br />

2.1. Introduction 35<br />

2.2. Chemistry <strong>of</strong> the Na + Channel Blockers 36<br />

2.2.1. Chemical Evolution <strong>and</strong> Structure–Activity <strong>of</strong> the Na + Channel Blocker <strong>Insect</strong>icides 36<br />

2.2.2. Chemistry <strong>and</strong> Properties <strong>of</strong> Indoxacarb 36<br />

2.3. Metabolism <strong>and</strong> Bioavailability <strong>of</strong> Indoxacarb 37<br />

2.3.1. Bioactivation <strong>of</strong> Indoxacarb 37<br />

2.3.2. Catabolism <strong>of</strong> Indoxacarb <strong>and</strong> Other Na + Channel Blocker <strong>Insect</strong>icides 39<br />

2.4. Physiology <strong>and</strong> Biochemistry <strong>of</strong> the Na + Channel Blockers 39<br />

2.4.1. Symptoms <strong>of</strong> SCBI Poisoning in <strong>Insect</strong>s: Pseudoparalysis 39<br />

2.4.2. Block <strong>of</strong> Spontaneous Activity in the Nervous System 40<br />

2.4.3. Block <strong>of</strong> Na + Channels in Sensory Neurons 41<br />

2.4.4. Mechanism <strong>of</strong> Na + Channel Block 42<br />

2.4.5. SCBIs Act at Site 10 on the Na + Channel 45<br />

2.4.6. The Molecular Nature <strong>of</strong> Site 10 in <strong>Insect</strong>s 46<br />

2.4.7. Biochemical Measurements <strong>of</strong> the Effects <strong>of</strong> SCBIs 47<br />

2.4.8. Intrinsic Activity <strong>of</strong> Indoxacarb on Na + Channels 48<br />

2.4.9. Effects <strong>of</strong> SCBIs on Alternative Target Sites 49<br />

2.5. <strong>Biological</strong> Potency <strong>of</strong> Indoxacarb 50<br />

2.5.1. Spectrum <strong>and</strong> Potency <strong>of</strong> Indoxacarb in the Laboratory 50<br />

2.5.2. Safety <strong>of</strong> Indoxacarb to Beneficial <strong>Insect</strong>s 51<br />

2.5.3. Sublethal Effects <strong>of</strong> Indoxacarb 51<br />

2.5.4. Spectrum <strong>and</strong> <strong>Insect</strong>icidal Potency <strong>of</strong> Indoxacarb in the Field 51<br />

2.5.5. Indoxacarb <strong>and</strong> <strong>Insect</strong>icide Resistance 52<br />

2.6. Conclusions 53<br />

2.1. Introduction<br />

There is an increasing need to discover novel chemical<br />

insecticides which act on unique biochemical<br />

target sites. This is necessary for insecticide resistance<br />

management, to maintain agricultural food<br />

<strong>and</strong> fiber production at reasonable economic levels,<br />

<strong>and</strong> also to retain the effectiveness <strong>of</strong> older <strong>and</strong> new<br />

classes <strong>of</strong> chemistry as useful tools.<br />

The modes <strong>of</strong> action <strong>of</strong> the major insecticide classes<br />

are reviewed in Ishaaya (2001) <strong>and</strong> in this Encyclopedia.<br />

These insecticidal compounds are required<br />

not only for economic pest control, but also as<br />

critical probes to elucidate their respective biochemical<br />

target sites, allowing insights into their<br />

fundamental biological function.<br />

While there is an increasing need for new agrochemicals,<br />

regulatory requirements for the registration<br />

<strong>of</strong> new insecticides continue to escalate, <strong>and</strong> society’s<br />

requirements for safety to nontarget organisms<br />

<strong>and</strong> the environment <strong>and</strong> compatibility with ongoing<br />

agricultural practice, pose increasing challenges.<br />

The voltage-gated sodium (Na þ ) channel is a primary<br />

insecticide target for the synthetic <strong>and</strong> natural<br />

pyrethroids, DDT, N-alkylamides, <strong>and</strong> a host <strong>of</strong><br />

natural product <strong>and</strong> peptide toxins (Zlotkin, 2001).<br />

At least ten independent target sites exist for<br />

these compounds, based on functional studies, <strong>and</strong><br />

the compounds can exert allosteric effects on one<br />

another via these independent sites. In addition, it<br />

has been definitively shown that specific genetic mutations<br />

in the Na þ channel in both laboratory <strong>and</strong><br />

field insects can confer resistance to pyrethroids <strong>and</strong><br />

DDT (see Chapter 1). The discovery <strong>of</strong> additional<br />

new Na þ channel toxins acting at novel sites thus

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!