01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

propoxur against Culex quinquefasciatus mosquito larvae.<br />

Med. Vet. Entomol. 17, 158–164.<br />

Crampton, A.L., Green, P., Baxter, G.D., Barker, S.C.,<br />

1999. Monooxygenases play only a minor role in<br />

resistance to synthetic pyrethroids in the cattle tick,<br />

Boophilus microplus. Exp. Appl. Acarol. 23, 897–905.<br />

Crawford, M.J., Hutson, D.H., 1977. Metabolism <strong>of</strong> pyrethroid<br />

insecticide (þ/–)-alpha-cyano-3-phenoxybenzyl<br />

2,2,3,3-tetramethylcyclopropanecarboxylate, WL 41706,<br />

in rat. Pestici. Sci. 8, 579–599.<br />

Davies, J.H., 1985. The pyrethroids: an historical introduction.<br />

In: Leahey, J.P. (Ed.), The Pyrethroid <strong>Insect</strong>icides.<br />

Taylor & Francis, London, pp. 1–41.<br />

Delorme, R., Fournier, D., Chaufaux, J., Cuany, A., Bride,<br />

J.M., et al., 1988. Esterase metabolism <strong>and</strong> reduced<br />

penetration are causes <strong>of</strong> resistance to deltamethrin<br />

in Spodoptera exigua Hub (Noctuidae, Lepidoptera).<br />

Pestici. Biochem. Physiol. 32, 240–246.<br />

Denholm, I., Cahill, M., Dennehy, T.J., Horowitz, A.R.,<br />

1998. Challenges with managing insecticide resistance<br />

in agricultural pests, exemplified by the whitefly Bemisia<br />

tabaci. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353,<br />

1757–1767.<br />

Dennehy, T.J., Williams, L., 1997. Management <strong>of</strong> resistance<br />

in Bemisia in Arizona cotton. Pestici. Sci. 51,<br />

398–406.<br />

Devonshire, A.L., Field, L.M., Foster, S.P., Moores, G.D.,<br />

Williamson, M.S., et al., 1998. The evolution <strong>of</strong> insecticide<br />

resistance in the peach-potato aphid, Myzus<br />

persicae. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353,<br />

1677–1684.<br />

Devonshire, A.L., Moores, G.D., 1989. Detoxication<br />

<strong>of</strong> insecticides by esterases from Myzus persicae –is<br />

hydrolysis important? In: Reiner, E., Aldridge, W.N.<br />

(Eds.), Enzymes Hydrolysing Organophosphorus<br />

Compounds. Ellis Horwood, Chichester, UK, pp.<br />

180–192.<br />

Dong, K., 1997. A single amino acid change in the para<br />

sodium channel protein is associated with knockdownresistance<br />

(kdr) to pyrethroid insecticides in German<br />

cockroach. <strong>Insect</strong> Biochem. Mol. Biol. 27, 93–100.<br />

Elliott, M., 1977. <strong>Synthetic</strong> pyrethroids. In: Gould, R.F.<br />

(Ed.), <strong>Synthetic</strong> Pyrethroids. American Chemical<br />

Society, San Francisco, pp. 1–28.<br />

Elliott, M., 1995. Chemicals in insect control. In: Casida,<br />

J.E., Quinstad, G.B. (Eds.), Pyrethrum Flowers: Production,<br />

Chemistry, Toxicology, <strong>and</strong> Uses. Oxford<br />

University Press, New York, pp. 3–31.<br />

Elliott, M., 1996. <strong>Synthetic</strong> insecticides related to natural<br />

pyrethrins. In: Copping, L.G. (Ed.), Crop Protection<br />

<strong>Agents</strong> from Nature: Natural Products <strong>and</strong> Analogues.<br />

Royal Society <strong>of</strong> Chemistry, Cambridge, UK, pp.<br />

254–300.<br />

Elliott, M., Farnham, A.W., Janes, N.F., Johnson, D.M.,<br />

Pulman, D.A., et al., 1986. <strong>Insect</strong>icidal amides with<br />

selective potency against a resistant (Super-Kdr) strain<br />

<strong>of</strong> houseflies (Musca domestica L). Agric. Biol. Chem.<br />

50, 1347–1349.<br />

Elliott, M., Janes, N., 1978. <strong>Synthetic</strong> pyrethroids – a<br />

new class <strong>of</strong> insecticide. Chem. Soc. Rev. 7, 473–505.<br />

1: Pyrethroids 25<br />

Farnham, A.W., Khambay, B.P.S., 1995a. The pyrethrins<br />

<strong>and</strong> related compounds. 39. Structure-activity relationships<br />

<strong>of</strong> pyrethroidal esters with cyclic side-chains in the<br />

alcohol component against resistant strains <strong>of</strong> housefly<br />

(Musca domestica). Pestici. Sci. 44, 269–275.<br />

Farnham, A.W., Khambay, B.P.S., 1995b. The pyrethrins<br />

<strong>and</strong> related-compounds. 40. Structure-activity relationships<br />

<strong>of</strong> pyrethroidal esters with acyclic side-chains in<br />

the alcohol component against resistant strains <strong>of</strong><br />

housefly (Musca domestica). Pestici. Sci. 44, 277–281.<br />

Feyereisen, R., 1999. <strong>Insect</strong> P450 enzymes. Ann. Rev.<br />

Entomol. 44, 507–533.<br />

Ford, M.G., Greenwood, R., Turner, C.H., Hudson, B.,<br />

Livingstone, D.J., 1989. The structure–activity relationships<br />

<strong>of</strong> pyrethroid insecticides. 1. A novel approach<br />

based upon the use <strong>of</strong> multivariate QSAR <strong>and</strong> computational<br />

chemistry. Pestici. Sci. 27, 305–326.<br />

Ford, M.G., Hoare, N.E., Hudson, B.D., Nevell, T.G.,<br />

Banting, L., 2002. QSAR studies <strong>of</strong> the pyrethroid<br />

insecticides Part 3. A putative pharmacophore derived<br />

using methodology based on molecular dynamics<br />

<strong>and</strong> hierarchical cluster analysis. J. Mol. Graphics<br />

Modelling 21, 29–36.<br />

Ford, M.G., Livingstone, D.J., 1990. Multivariate techniques<br />

for parameter selection <strong>and</strong> data analysis exemplified<br />

by a study <strong>of</strong> pyrethroid neurotoxicity. Quant.<br />

Struct.-Activ. Relationships 9, 107–114.<br />

Forrester, N.W., Cahill, M., Bird, L.J., Layl<strong>and</strong>, J.K.,<br />

1993. Management <strong>of</strong> pyrethroid <strong>and</strong> endosulfan resistance<br />

in Helicoverpa armigera. Bull. Ent. Res (Lepidoptera:<br />

Noctuidae) in Australia.<br />

Funaki, E., Dauterman, W.C., Motoyama, N., 1994.<br />

In-vitro <strong>and</strong> in-vivo metabolism <strong>of</strong> fenvalerate in<br />

pyrethroid-resistant houseflies. J. Pest. Sci. 19, 43–52.<br />

Grant, D.F., Matsumura, F., 1989. Glutathione S-transferase<br />

1 <strong>and</strong> 2 in susceptible <strong>and</strong> insecticide resistant Aedes<br />

aegypti. Pestici. Biochem. Physiol. 33, 132–143.<br />

Guerrero, F.D., Jamroz, R.C., Kammlah, D., Kunz, S.E.,<br />

1997. Toxicological <strong>and</strong> molecular characterization <strong>of</strong><br />

pyrethroid-resistant horn flies, Haematobia irritans:<br />

Identification <strong>of</strong> kdr <strong>and</strong> super-kdr point mutations.<br />

<strong>Insect</strong> Biochem. Mol. Biol. 27, 745–755.<br />

Gunning, R.V., Devonshire, A.L., 2003. Negative crossresistance<br />

between indoxacarb <strong>and</strong> pyrethroids in the<br />

cotton bollworm, Helicoverpa armigera, in Australia:<br />

a tool for resistance management. The BCPC International<br />

Congress. Glasgow, British Crop Protection<br />

Council. pp. 789–794.<br />

Gunning, R.V., Easton, C.S., Balfe, M.E., Ferris, I.G.,<br />

1991. Pyrethroid resistance mechanisms in Australian<br />

Helicoverpa armigera. Pestici. Sci. 33, 473–490.<br />

Gunning, R.V., Moores, G.D., Devonshire, A., 1999.<br />

Esterase inhibitors synergise the toxicity <strong>of</strong> pyrethroids<br />

in Australian Helicoverpa armigera (Hubner)<br />

(Lepidoptera: Noctuidae). Pestici. Biochem. Physiol.<br />

63, 50–62.<br />

Gunning, R.V., Moores, G.D., Devonshire, A.L., 1998a.<br />

Inhibition <strong>of</strong> pyrethroid resistance related esterases by<br />

piperonyl butoxide in Australian Helicoverpa armigera<br />

<strong>and</strong> Aphis gossypii. In: Jones, G. (Ed.), Piperonyl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!