01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

280 A7: Addendum<br />

toxins is magnitudes <strong>of</strong> order less toxic than the<br />

crystal inclusion containing all toxins (Bravo et al.,<br />

2005). This synergistic effect <strong>and</strong> the lack <strong>of</strong> resistance<br />

is mainly due to Cyt1Aa that enhances the<br />

activity <strong>of</strong> Cry4Aa, Cry4Ba, or Cry11Aa (Bravo<br />

et al., 2005). The mechanism <strong>of</strong> synergism <strong>of</strong><br />

Cyt1Aa <strong>and</strong> Cry11Aa depends on specific interaction<br />

between these toxins since single point mutations<br />

on Cyt1Aa affected Cry11Aa binding <strong>and</strong><br />

synergism (Pérez et al., 2005). Also, it was shown<br />

that Cry11Aa domain II loop regions involved in<br />

receptor binding were also involved in binding <strong>and</strong><br />

synergism with Cyt1Aa (Pérez et al., 2005). These<br />

data led to the hypothesis that Cyt1Aa functions as a<br />

membrane-bound receptor for Cry11Aa (Perez et al.<br />

2005). Furthermore, binding <strong>of</strong> Cry11Aa to Cyt1Aa<br />

facilitates formation <strong>of</strong> Cry11Aa oligomers, which<br />

were efficient in pore-formation indicating Cyt1Aa<br />

fulfils the role <strong>of</strong> the primary cadherin receptor<br />

facilitating oligomer formation (Pérez et al., 2007).<br />

This is the first example <strong>of</strong> an insect pathogenic<br />

bacterium that carries a toxin <strong>and</strong> also its functional<br />

receptor, promoting toxin binding to target membranes<br />

<strong>and</strong> toxicity (Figure A1).<br />

References<br />

Abdullah, M.A., Valaitis, A.P., Dean, D.H., 1996. Identification<br />

<strong>of</strong> a Bacillus thuringiensis Cry11Ba toxin-binding<br />

aminopeptidase from the mosquito. Anopheles<br />

quadrimaculatus. BMC Biochem 22, 7–16.<br />

Bravo, A., Soberón, M., 2008. How to cope with resistance<br />

to Bt toxins? Trends Biotechnol. 26, 573–579.<br />

Bravo, A., Gill, S.S., Soberón, M., 2005. Bacillus thuringiensis<br />

mechanisms <strong>and</strong> use. In: Gilbert, L.I., Iatrou, K.,<br />

Gill, S.S. (Eds.), Comprehensive Molecluar <strong>Insect</strong> Science.<br />

Elsevier, pp. 175–206 ß2005 Elsevier BV ISBN<br />

(Set): 0–44–451516-X.<br />

Chen, J., Aimanova, K.G., Pan, S., Gill, S.S., 2009a.<br />

Identification <strong>and</strong> characterization <strong>of</strong> Aedes aegypti<br />

aminopeptidase N as a putative receptor <strong>of</strong> Bacillus<br />

thuringiensis Cry11A toxin. <strong>Insect</strong> Biochem Mol Biol.<br />

39, 688–696.<br />

Chen, J., Aimanova, K.G., Fern<strong>and</strong>ez, L.E., Bravo, A.,<br />

Soberón, M., Gill, S.S., 2009b. Aedes aegypti cadherin<br />

serves as a putative receptor <strong>of</strong> the Cry11Aa toxin from<br />

Bacillus thuringiensis subsp. israelensis. Biochem. J.<br />

doi:10.1042/BJ20090730.<br />

Fabrick, J., Oppert, C., Lorenzen, M.D., Morris, K.,<br />

Oppert, B., Jurat-Fuentes, J.L., 2009. A novel Tenebrio<br />

molitor cadherin is a functional receptor for Bacillus<br />

thuringiensis Cry3Aa toxin. J. Biol. Chem. 284,<br />

18401–18410.<br />

Fernández, L.E., Aimaniova, K.G., Gill, S.S., Bravo, A.,<br />

Soberón, M., 2006. A GPI-anchored alkaline phosphatase<br />

is a functional midgut receptor <strong>of</strong> Cry11Aa toxin in<br />

Aedes aegypti larvae. Biochem. J. 394, 77–84.<br />

Fernández, L.E., Martinez-Anaya, C., Lira, E., Chen, J.,<br />

Evans, J., Hernández-Martiínez, S., Lanz-Mendoza, H.,<br />

Bravo, A., Gill, S.S., Soberón, M., 2009. Cloning <strong>and</strong><br />

epitope mapping <strong>of</strong> Cry11Aa-binding sites in the<br />

Cry11Aa-receptor alkaline phosphatase from Aedes<br />

aegypti. Biochemistry 48, 8899–8907.<br />

Gómez, I., Arenas, I., Benitez, I., Mir<strong>and</strong>a-Riíos, J.,<br />

Becerril, B., Gr<strong>and</strong>e, G., Almagro, J.C., Bravo, A.,<br />

Soberón, M., 2006. Specific epitopes <strong>of</strong> Domains II<br />

<strong>and</strong> III <strong>of</strong> Bacillus thuringiensis Cry1Ab toxin involved<br />

in the sequential interaction with cadherin <strong>and</strong> aminopeptidase-N<br />

receptors in M<strong>and</strong>uca sexta. J. Biol. Chem.<br />

281, 34032–34039.<br />

Herrero, S., Gechev, T., Bakker, P.L., Moar, W.J., de<br />

Maagd, R.A., 2005. Bacillus thuringiensis Cry1Caresistant<br />

Spodoptera exigua lacks expression <strong>of</strong> one<br />

<strong>of</strong> four Aminopeptidase N genes. BMC Genomics 24,<br />

6–96.<br />

Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008.<br />

Anopheles gambiae cadherin AgCad1 binds the Cry4Ba<br />

toxin <strong>of</strong> Bacillus thuringiensis israelensis <strong>and</strong> a fragment<br />

<strong>of</strong> AgCad1 synergizes toxicity. Biochemistry 47,<br />

5101–5110.<br />

Hua, G., Zhang, R., Bayyareddy, K., Adang, M.J., 2009.<br />

Anopheles gambiae alkaline phosphatase is a functional<br />

receptor <strong>of</strong> Bacillus thuringiensis jegathesan Cry11Ba<br />

toxin. Biochemistry 48, 9785–9793.<br />

Jiménez-Juárez, A., Muñoz-Garay, C., Gómez, I., Saab-<br />

Rincon, G., Damian-Alamazo, J.Y., Gill, S.S., Soberón,<br />

M., Bravo, A., 2007. Bacillus thuringiensis Cry1Ab<br />

mutants affecting oligomer formation are non-toxic<br />

to M<strong>and</strong>uca sexta larvae. J. Biol. Chem. 282,<br />

21222–21229.<br />

Jurat-Fuentes, J.L., Adang, M.J., 2004. Characterization<br />

<strong>of</strong> a Cry1Ac-receptor alkaline phosphatase in susceptible<br />

<strong>and</strong> resistant Heliothis virescens larvae. Eur. J. Biochem.<br />

271, 3127–3135.<br />

Ochoa-Campuzano, C., Real, M.D., Martiínez-Ramiírez,<br />

A.C., Bravo, A., Rausell, C., 2007. An ADAM<br />

metalloprotease is a Cry3Aa Bacillus thuringiensis<br />

toxin receptor. Biochem. Biophys. Res. Commun. 362,<br />

437–442.<br />

Moellenbeck, D.J., Peters, M.L., Bing, J.W., Rouse, J.R.,<br />

Higgins, L.S., Sims, L., Neveshmal, T., Marshall, L.,<br />

Ellis, R.T., Bystrak, P.G., Lang, B.A., Stewart, J.L.,<br />

Kouba, K., Sondag, V., Gustafson, V., Nour, K., Xu,<br />

D., Swenson, J., Zhang, J., Czpala, T., Schwab, G.,<br />

Jayne, S., Dtorckh<strong>of</strong>f, B.A., Narva, K., Schnepf, H.E.,<br />

Stelman, S.J., Poutre, C., Koziel, M., Duck, N., 2001.<br />

<strong>Insect</strong>icidal proteins from Bacillus thuringiensis protect<br />

corn from corn rootworms. Nat. Biotechnol. 19,<br />

668–672.<br />

Park, Y., Abdullah, M.A., Taylor, M.D., Rahman, K.,<br />

Adang, M.J., 2009. Enhancement <strong>of</strong> Bacillus thuringiensis<br />

Cry3Aa <strong>and</strong> Cry3Bb toxicities to coleopteran<br />

larvae by a toxin-binding fragment <strong>of</strong> an insect cadherin.<br />

Appl. Environ. Microbiol. 75, 3086–3092.<br />

Pérez, C., Fern<strong>and</strong>ez, L.E., Sun, J., Folch, J.L., Gill, S.S.,<br />

Soberón, M., Bravo, A., 2005. Bacillus thuringiensis<br />

subsp. israeliensis Cyt1Aa synergizes Cry11Aa toxin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!