01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Valaitis, A.P., Jenkins, J.L., Lee, M.K., Dean, D.H.,<br />

Garner, K.J., 2001. Isolation <strong>and</strong> partial characterization<br />

<strong>of</strong> Gypsy moth BTR-270 an anionic brush<br />

border membrane glycoconjugate that binds Bacillus<br />

thuringiensis Cry1A toxins with high affinity. Arch.<br />

<strong>Insect</strong> Biochem. Physiol. 46, 186–200.<br />

van Frankenhuyzen, K., 2000. Application <strong>of</strong> Bacillus<br />

thuringiensis in forestry. In: Charles, J.F., Delécluse,<br />

A., Nielsen-LeRoux, C. (Eds.), Entomopathogenic Bacteria:<br />

From Laboratory to Field Application. Kluwer,<br />

London, pp. 371–382.<br />

Vie, V., Van Mau, N., Pomarde, P., Dance, C., Schwartz,<br />

J.L., et al., 2001. Lipid-induced pore formation <strong>of</strong><br />

the Bacillus thuringiensis Cry1Aa insecticidal toxin.<br />

J. Membr. Biol. 180, 195–203.<br />

Von-Tersch, M.A., Slatin, S.L., Kulesza, C.A., English,<br />

L.H., 1994. Membrane-permeabilizing activities <strong>of</strong><br />

Bacillus thuringiensis coleopteran-active toxin CryIIIB2<br />

<strong>and</strong> CryIIIB2 domain I peptide. Appl. Environ.<br />

Microbiol. 60, 3711–3717.<br />

Warren, G., 1997. Vegetative insecticidal proteins: novel<br />

proteins for control <strong>of</strong> corn pests. In: Carozzi, N.,<br />

Koziel, M. (Eds.), Advances in <strong>Insect</strong> <strong>Control</strong>: The<br />

Role <strong>of</strong> Transgenic Plants. Taylor <strong>and</strong> Francis, London,<br />

pp. 109–121.<br />

Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., et al.,<br />

2003. Bacillus thuringiensis crystal proteins that target<br />

nematodes. Proc. Natl Acad. Sci. USA 100, 2760–2765.<br />

Widner, W.R., Whiteley, H.R., 1990. Location <strong>of</strong> the dipteran<br />

specific region in a lepidopteran–dipteran crystal<br />

protein from Bacillus thuringiensis. J. Bacteriol. 172,<br />

2826–2832.<br />

Wirth, M.C., Georghiou, G.P., Federeci, B.A., 1997. CytA<br />

enables CryIV endotoxins <strong>of</strong> Bacillus thuringiensis to<br />

overcome high levels <strong>of</strong> CryIV resistance in the mosquito,<br />

Culex quinquefasciatus. Proc. Natl Acad. Sci. USA<br />

94, 10536–10540.<br />

Wirth, M.C., Delécuse, A., Walton, W.E., 2001. CytAb1<br />

<strong>and</strong> Cyt2Ba1 from Bacillus thuringiensis subsp. medellin<br />

<strong>and</strong> B. thuringiensis subsp. israelensis synergize<br />

Bacillus sphaericus against Aedes aegypti <strong>and</strong> resistant<br />

Culex quinquefasciatus (Diptera: Culicidae). Appl.<br />

Environ. Microbiol. 67, 3280–3284.<br />

7: Bacillus thuringiensis: Mechanisms <strong>and</strong> Use 277<br />

Wu, D., Aronson, A.I., 1992. Localized mutagenesis<br />

defines regions <strong>of</strong> the Bacillus thuringiensis d-endotoxin<br />

involved in toxicity <strong>and</strong> specificity. J. Biol. Chem. 267,<br />

2311–2317.<br />

Wu, D., Johnson, J.J., Federeci, B.A., 1994. Synergism<br />

<strong>of</strong> mosquitocidal toxicity between CytA <strong>and</strong> CryIVD<br />

proteins using inclusions produced from cloned<br />

genes <strong>of</strong> Bacillus thuringiensis. Mol. Microbiol. 13,<br />

965–972.<br />

Wu, S.-J., Dean, D.H., 1996. Functional significance <strong>of</strong><br />

loops in the receptor binding domain <strong>of</strong> Bacillus thuringiensis<br />

CryIIIA d-endotoxin. J. Mol. Biol. 255,<br />

628–640.<br />

Yamagiwa, M., Esaki, M., Otake, K., Inagaki, M.,<br />

Komano, T., et al., 1999. Activation process <strong>of</strong> dipteran-specific<br />

insecticidal protein produced by Bacillus<br />

thuringiensis subsp. israelensis. Appl. Environ. Microbiol.<br />

65, 3464–3469.<br />

Yaoi, K., Kadotani, T., Kuwana, H., Shinkawa, A.,<br />

Takahashi, T., et al., 1997. Aminopeptidase N from<br />

Bombyx mori as a c<strong>and</strong>idate for the receptor <strong>of</strong> Bacillus<br />

thuringiensis Cry1Aa toxin. Eur. J. Biochem. 246,<br />

652–657.<br />

Yaoi, K., Nakanishi, K., Kadotani, T., Imamura, M.,<br />

Koizumi, N., et al., 1999. Bacillus thuringiensis<br />

Cry1Aa toxin-binding region <strong>of</strong> Bombyx mori aminopeptidase<br />

N. FEBS Lett. 463, 221–224.<br />

Zangerl, A.R., McKenna, D., Wraight, C.L., Carroll, M.,<br />

Ficarello, P., et al., 2001. Effects <strong>of</strong> exposure to event<br />

176 Bacillus thuringiensis corn pollen on monarch <strong>and</strong><br />

black swallowtail caterpillars under field conditions.<br />

Proc. Natl Acad. Sci. USA 98, 11908–11912.<br />

Zalunin, I.A., Revina, L.P., Kostina, L.I., Chestukhina,<br />

G.G., Stepanov, V.M., 1998. Limited proteolysis <strong>of</strong><br />

Bacillus thuringiensis CryIG <strong>and</strong> CryIVB d-endotoxins<br />

leads to formation <strong>of</strong> active fragments that do not coincide<br />

with the structural domains. J. Protein Chem. 17,<br />

463–471.<br />

Zhuang, M., Oltean, D.I., Gómez, I., Pullikuth, A.K.,<br />

Soberón, M., et al., 2002. Heliothis virescens <strong>and</strong><br />

M<strong>and</strong>uca sexta lipid rafts are involved in Cry1A toxin<br />

binding to the midgut epithelium <strong>and</strong> subsequent pore<br />

formation. J. Biol. Chem. 277, 13863–13872.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!