01.02.2013 Views

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

Insect Control: Biological and Synthetic Agents - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Agrawal, N., Malhotra, P., Bhatnagar, R.K., 2002. Interaction<br />

<strong>of</strong> gene-cloned <strong>and</strong> insect cell-expressed aminopeptidase<br />

N <strong>of</strong> Spodoptera litura with insecticidal<br />

crystal protein Cry1C. Appl. Environ. Microbiol. 68,<br />

4583–4592.<br />

Aronson, A.I., Geng, C., Wu, I., 1999. Aggregation <strong>of</strong><br />

Bacillus thuringiensis Cry1A toxins upon binding to<br />

target insect larval midgut vesicles. Appl. Environ.<br />

Microbiol. 65, 2503–2507.<br />

Aronson, A.I., 2000. Incorporation <strong>of</strong> protease K in insect<br />

larval membrane vesicles does not result in the disruption<br />

<strong>of</strong> the integrity or function <strong>of</strong> the pore-forming<br />

Bacillus thuringiensis d-endotoxin. Appl. Environ.<br />

Microbiol. 66, 4568–4570.<br />

Aronson, A.I., Shai, Y., 2001. Why Bacillus thuringiensis<br />

insecticidal toxins are so effective: unique features<br />

<strong>of</strong> their mode <strong>of</strong> action. FEMS Microbiol. Lett.<br />

195, 1–8.<br />

Audtho, M., Valaitis, A.P., Alzate, O., Dean, D.H., 1999.<br />

Production <strong>of</strong> chymotrypsin-resistant Bacillus thuringiensis<br />

Cry2Aa1 d-endotoxin by protein engineering.<br />

Appl. Environ. Microbiol. 65, 4601–4605.<br />

Baum, J.A., Light Mettus, A.-M., 2000. Polypeptide compositions<br />

toxic to Diabrotica insects, obtained from<br />

Bacillus thuringiensis; CryET70, <strong>and</strong> methods <strong>of</strong> use.<br />

Journal Patent PCT WO/00/26378-B.<br />

Becker, N., 2000. Bacterial control <strong>of</strong> vector-mosquitoes<br />

<strong>and</strong> black flies. In: Charles, J.F., Delécluse, A., Nielsen-<br />

LeRoux, C. (Eds.), Entomopathogenic Bacteria: From<br />

Laboratory to Field Application. Kluwer, London, pp.<br />

383–398.<br />

Belfiore, C.J., Vadlamudi, R.K., Osman, Y.A., Bulla, L.A.<br />

Jr., 1994. A specific binding protein from Tenebrio<br />

molitor for the insecticidal toxin <strong>of</strong> Bacillus thuringiensis<br />

subsp. thuringiensis. Biochem. Biophys. Res.<br />

Commun. 200, 359–364.<br />

Bernhard, K., Jarret, P., Meadows, M., Butt, J., Ellis, D.J.,<br />

et al., 1997. Natural isolates <strong>of</strong> Bacillus thuringiensis:<br />

worldwide distribution, characterization <strong>and</strong> activity<br />

against insect pests. J. Invertebr. Pathol. 70, 59–68.<br />

Berry, C., O’Neil, S., Ben-Dov, E., Jones, A.F., Murphy, L.,<br />

et al., 2002. Complete sequence <strong>and</strong> organization <strong>of</strong><br />

pBtoxis, the toxin-coding plasmid <strong>of</strong> Bacillus thuringiensis<br />

subsp. israeliensis. Appl. Environ. Microbiol.<br />

68, 5082–5095.<br />

Blalock, J.E., 1995. Genetic origins <strong>of</strong> protein shape <strong>and</strong><br />

interaction rules. Nature Med. 1, 876–878.<br />

Bosch, D., Schipper, B., van der Kleij, H., de Maagd, R.A.,<br />

Stiekema, J., 1994. Recombinant Bacillus thuringiensis<br />

insecticidal proteins with new properties for resistance<br />

management. Biotechnology 12, 915–918.<br />

Bradley, D., Harkey, M.A., Kim, M.-K., Biever, K.D.,<br />

Bauer, L.S., 1995. The insecticidal Cry1B crystal protein<br />

<strong>of</strong> Bacillus thuringiensis subsp. thuringiensis has<br />

dual specificity to coleopteran <strong>and</strong> lepidopteran larvae.<br />

J. Invertebr. Pathol. 65, 162–173.<br />

Bravo, A., 1997. Phylogenetic relationships <strong>of</strong> Bacillus<br />

thuringiensis d-endotoxin family proteins <strong>and</strong> their<br />

functional domains. J. Bacteriol. 179, 2793–2801.<br />

7: Bacillus thuringiensis: Mechanisms <strong>and</strong> Use 271<br />

Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C.,<br />

et al., 1998. Characterization <strong>of</strong> cry genes in a Mexican<br />

Bacillus thuringiensis strain collection. Appl. Environ.<br />

Microbiol. 164, 4965–4972.<br />

Bravo, A., Mir<strong>and</strong>a, R., Gómez, I., Soberón, M., 2002a.<br />

Pore formation activity <strong>of</strong> Cry1Ab toxin from Bacillus<br />

thuringiensis in an improved membrane vesicle preparation<br />

from M<strong>and</strong>uca sexta midgut cell microvilli.<br />

Biochem. Biophys. Acta 1562, 63–69.<br />

Bravo, A., Sánchez, J., Kouskoura, T., Crickmore, N.,<br />

2002b. N-terminal activation is an essential early step<br />

in the mechanism <strong>of</strong> action <strong>of</strong> the B. thuringiensis<br />

Cry1Ac insecticidal toxin. J. Biol. Chem. 277,<br />

23985–23987.<br />

Burton, S.L., Ellar, D.J., Li, J., Derbyshire, D.J., 1999.<br />

N-Acetylgalactosamine on the putative insect receptor<br />

aminopeptidase N is recognized by a site on the domain<br />

III lectin-like fold <strong>of</strong> a Bacillus thuringiensis insecticidal<br />

toxin. J. Mol. Biol. 287, 1011–1022.<br />

Butko, P., Huang, F., Pusztai-Carey, M., Surewicz, W.K.,<br />

1997. Interaction <strong>of</strong> the delta-endotoxin CytA from<br />

Bacillus thuringiensis var. israelensis with lipid<br />

membranes. Biochemistry 36, 12862–12868.<br />

Butko, P., 2003. Cytolytic toxin Cyt1A <strong>and</strong> its mechanism<br />

<strong>of</strong> membrane damage: data <strong>and</strong> hypotheses. Appl.<br />

Environ. Microbiol. 69, 2415–2422.<br />

Buzdin, A.A., Revina, L.P., Kostina, L.I., Zalunin, I.A.,<br />

Chestukhina, G.G., 2002. Interaction <strong>of</strong> 65- <strong>and</strong> 62kDa<br />

proteins from the apical membranes <strong>of</strong> the Aedes<br />

aegypti larvae midgut epithelium with Cry4B <strong>and</strong><br />

Cry11A endotoxins <strong>of</strong> Bacillus thuringiensis. Biochemistry<br />

(Moscow) 67, 540–546.<br />

Cabiaux, V., Wolff, C., Ruysschaert, J.M., 1997.<br />

Interaction with a lipid membrane: a key step in bacterial<br />

toxins virulence. Int. J. Biol. Macromol. 21,<br />

285–298.<br />

Carlson, C.R., Caugant, D.A., Kolsto, A.B., 1994. Genotypic<br />

diversity among Bacillus cereus <strong>and</strong> Bacillus<br />

thuringiensis strains. Appl. Environ. Microbiol. 60,<br />

1719–1725.<br />

Carlson, C.R., Johansen, T., Lecadet, M.-M., Kolsto, A.-B.,<br />

1996. Genomic organization <strong>of</strong> the entomopathogenic<br />

bacterium Bacillus thuringiensis subsp. berliner 1715.<br />

Microbiology 142, 1625–1634.<br />

Choma, C.T., Surewicz, W.K., Carey, P.R., Pozsgay, M.,<br />

Raynor, T., et al., 1990. Unusual proteolysis <strong>of</strong> the<br />

protoxin <strong>and</strong> toxin from Bacillus thuringiensis: structural<br />

implications. Eur. J. Biochem. 189, 523–527.<br />

Chow, E., Singh, G.J.P., Gill, S.S., 1989. Binding <strong>and</strong><br />

aggregation <strong>of</strong> the 25 kDa toxin <strong>of</strong> Bacillus thuringiensis<br />

israelensis to cell membranes: alteration by monoclonal<br />

antibodies <strong>and</strong> amino acid modifiers. Appl.<br />

Environ. Microbiol. 55, 2779–2788.<br />

Conner, A.J., Glare, T.R., Nap, J.-P., 2003. The release <strong>of</strong><br />

genetically modified crops into the environment. 2. Overview<br />

<strong>of</strong> ecological risk assessment. Plant J. 33,19–46.<br />

Cooper, M.A., Carroll, J., Travis, E., Williams, D.H.,<br />

Ellar, D.J., 1998. Bacillus thuringiensis Cry1Ac toxin<br />

interaction with M<strong>and</strong>uca sexta aminopeptidase N in a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!