30.01.2013 Views

Synthesis of late Paleozoic and Mesozoic eolian deposits of the ...

Synthesis of late Paleozoic and Mesozoic eolian deposits of the ...

Synthesis of late Paleozoic and Mesozoic eolian deposits of the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Many e<strong>of</strong>ian s<strong>and</strong>stones have one or more<br />

margins that were removed by <strong>late</strong>r erosion or are<br />

covered by younger strata <strong>and</strong> no subsurface data<br />

is available. This is most common along <strong>the</strong> west-<br />

ern <strong>and</strong> sou<strong>the</strong>rn margins <strong>of</strong> <strong>the</strong> region <strong>of</strong> study.<br />

Late <strong>Paleozoic</strong> <strong>eolian</strong> <strong>deposits</strong><br />

Introduction<br />

The <strong>late</strong> <strong>Paleozoic</strong> <strong>eolian</strong> s<strong>and</strong>stones range in<br />

age from Atokan to <strong>late</strong> Leonardian <strong>and</strong> possibly<br />

Guadalupian (Fig. 2). They are divided here into<br />

five erg-bearing sequences: Pennsylvanian, Wolf-<br />

campian, Leonardian I, Leonardian II <strong>and</strong><br />

Leonardian III. Each sequence is interca<strong>late</strong>d with<br />

or bracketed by fossil-bearing rocks. Penn-<br />

sylvanian <strong>eolian</strong> <strong>deposits</strong> are primarily distributed<br />

north <strong>of</strong> <strong>the</strong> Ancestral Rockies, whereas Permian<br />

ergs are extensively distributed to <strong>the</strong> southwest <strong>of</strong><br />

<strong>the</strong>se major barriers. Figure 4 shows <strong>the</strong> distribu-<br />

tion <strong>of</strong> <strong>late</strong> <strong>Paleozoic</strong> tectonic elements that af-<br />

fected Pennsylvanian <strong>and</strong> Permian deposition.<br />

Pennsylvanian <strong>eolian</strong> <strong>deposits</strong><br />

Pennsylvanian <strong>eolian</strong> deposition is widespread<br />

<strong>and</strong> has been documented from <strong>the</strong> lower Casper<br />

Formation (Steidtmann, 1974), lower Tensleep<br />

S<strong>and</strong>stone (Mankiewicz <strong>and</strong> Steidtmann, 1979;<br />

Kerr, this volume) <strong>and</strong> Quadrant S<strong>and</strong>stone<br />

(Saperstone <strong>and</strong> Ethridge, 1984) in Wyoming <strong>and</strong><br />

adjacent Montana <strong>and</strong> Colorado, in <strong>the</strong> lower<br />

Weber S<strong>and</strong>stone <strong>of</strong> Utah, Wyoming <strong>and</strong> Col-<br />

orado (Bissell <strong>and</strong> Childs, 1958; Driese <strong>and</strong> Dott,<br />

1984), <strong>and</strong> from <strong>the</strong> Honaker Trail Formation <strong>of</strong><br />

<strong>the</strong> Hermosa Group <strong>of</strong> sou<strong>the</strong>astern Utah (Loope,<br />

1984). In addition, <strong>eolian</strong> s<strong>and</strong>stone is present in<br />

<strong>the</strong> Manakacha <strong>and</strong> Wescogame Formations <strong>of</strong><br />

<strong>the</strong> Supai Group in nor<strong>the</strong>rn Arizona but has yet<br />

to be documented in <strong>the</strong> literature. The Pennsyl-<br />

vanian age <strong>of</strong> each <strong>of</strong> <strong>the</strong> above is well docu-<br />

mented by interca<strong>late</strong>d fossil-beating marine rocks.<br />

Figure 5 <strong>and</strong> Table 2 present <strong>the</strong> data base for<br />

Pennsylvanian <strong>and</strong> Permian <strong>eolian</strong> <strong>deposits</strong>.<br />

The Pennsylvanian <strong>deposits</strong>, although almost<br />

certainly a series <strong>of</strong> separate ergs ranging from<br />

Atokan to Virgilian in age, are herein isopached<br />

on a single map. Eolian-bearing units consist <strong>of</strong><br />

several stratigraphic units across Wyoming, south-<br />

ern Montana, nor<strong>the</strong>rn Utah <strong>and</strong> nor<strong>the</strong>rn Col-<br />

orado (Fig. 6). The lack <strong>of</strong> detailed stratigraphic<br />

<strong>and</strong> sedimentologic data prevent fur<strong>the</strong>r subdivi-<br />

sion. The <strong>eolian</strong> <strong>deposits</strong> in sou<strong>the</strong>astern Utah <strong>and</strong><br />

<strong>the</strong> Gr<strong>and</strong> Canyon region do not have sufficient<br />

data available to construct isopachs; only <strong>the</strong>ir<br />

known <strong>and</strong> inferred <strong>late</strong>ral distribution are shown.<br />

For simplicity, <strong>the</strong> nor<strong>the</strong>rn s<strong>and</strong> body will be<br />

referred to as <strong>the</strong> Tensleep complex <strong>and</strong> it also<br />

includes part <strong>of</strong> <strong>the</strong> Weber, Quadrant <strong>and</strong> Casper<br />

stratigraphic units. The Tensleep forms a broad<br />

sheet across <strong>the</strong> Central <strong>and</strong> Nor<strong>the</strong>rn Rocky<br />

Mountain region that generally ranges to 100 m<br />

thick but <strong>the</strong> erg-bearing interval locally exceeds<br />

300 m in nor<strong>the</strong>rn Utah <strong>and</strong> 500 m in southwest-<br />

ern Montana (Bissell <strong>and</strong> Childs, 1958; Mallory,<br />

1967; Saperstone <strong>and</strong> Ethridge, 1984). Figure 7A,<br />

B <strong>and</strong> C shows <strong>the</strong> Tensleep <strong>and</strong> re<strong>late</strong>d units in<br />

cross-section. Although <strong>the</strong> unit is renowned for<br />

exposures <strong>of</strong> large-scale, high-angle s<strong>and</strong>-flow<br />

strata that dip to <strong>the</strong> south <strong>and</strong> sou<strong>the</strong>ast (Steidt-<br />

mann, 1974; Mankiewicz <strong>and</strong> Steidtmann, 1979),<br />

detailed sedimentologic studies have documented<br />

a broad variety <strong>of</strong> <strong>eolian</strong> stratification styles in-<br />

cluding small-scale trough <strong>and</strong> planar-tabular<br />

wind-ripple cross strata, horizontal to gently in-<br />

clined wind-ripple strata, <strong>and</strong> wet <strong>and</strong> dry inter-<br />

dune <strong>deposits</strong> (Mankiewicz <strong>and</strong> Steidtmann, 1979;<br />

Driese <strong>and</strong> Dott, 1984; Saperstone <strong>and</strong> Ethridge,<br />

1984; Kerr, this volume; J. Haslett, pets. commun.,<br />

1986). In addition, each <strong>of</strong> <strong>the</strong> above authors have<br />

noted interbedding <strong>of</strong> <strong>eolian</strong> <strong>and</strong> marine-sabkha<br />

strata within <strong>the</strong> Tensleep S<strong>and</strong>stone, especially<br />

near erg-deposit margins.<br />

The Tensleep complex is a north-northwest-<br />

trending s<strong>and</strong>stone body (Fig. 6) bordered by<br />

marine clastic <strong>and</strong> carbonate rocks to <strong>the</strong> west<br />

(Oquirrh <strong>and</strong> Wood River Groups <strong>and</strong> re<strong>late</strong>d<br />

rocks), marine carbonate to <strong>the</strong> east (lower Min-<br />

nelusa Formation <strong>and</strong> re<strong>late</strong>d rocks), <strong>and</strong> fluvial<br />

clastic rocks to <strong>the</strong> south (Maroon Formation <strong>and</strong><br />

Fountain Arkose; Maughan <strong>and</strong> Wilson, 1960).<br />

Little is known about <strong>the</strong> erg margins to <strong>the</strong> north,<br />

although Stewart <strong>and</strong> Walker (1980) reported Pen-<br />

nsylvanian <strong>eolian</strong> <strong>deposits</strong> in <strong>the</strong> Rockies <strong>of</strong><br />

sou<strong>the</strong>rn Canada.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!