29.01.2013 Views

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus ...

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus ...

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Quantum Transport <strong>and</strong> Dynamics in Nanostructures<br />

The 4th Windsor Summer School on Condensed Matter Theory<br />

6-18 August 2007, Great Park Windsor (UK)<br />

<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong> <strong>and</strong><br />

<strong>Graphene</strong><br />

<strong>Mildred</strong> <strong>Dresselhaus</strong><br />

Massachusetts Institute <strong>of</strong> Technology, Cambridge, MA


<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong><br />

<strong>and</strong> <strong>Graphene</strong><br />

Outline <strong>of</strong> Lecture 1 - <strong>Nanotubes</strong><br />

• Brief overview <strong>of</strong> carbon nanotubes<br />

•<br />

•<br />

•<br />

•<br />

Review <strong>of</strong> Photophysics<br />

<strong>of</strong> <strong>Nanotubes</strong><br />

Phonon assisted Photoluminescence<br />

Double wall carbon nanotubes<br />

Nano-Metrology


•<br />

•<br />

Carbon Nanotube researchstill<br />

a growing field<br />

1991 nanotube observation by Sumio Iijima (NEC) opening field<br />

number <strong>of</strong> publications is still growing exponentially<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1991 1996 2001 2006<br />

number <strong>of</strong> publications containing “Carbon Nanotube” vs. time<br />

Iijima, S., Helical Microtubules <strong>of</strong> Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.


Carbon <strong>Nanotubes</strong><br />

(5,5)<br />

Armchair Nanotube<br />

(9,0)<br />

Zigzag Nanotube<br />

(6,5)<br />

Chiral Nanotube<br />

(n,m) notation focuses on symmetry <strong>of</strong> cylinder edge


Carbon materials<br />

• Diamond<br />

• <strong>Graphite</strong> (hexagonal, rhombohedral)<br />

• HOPG (highly oriented pyrolytic graphite)<br />

• Pyrolytic graphite<br />

• Turbostratic graphite<br />

• Kish graphite<br />

• Liquid carbon<br />

• Amorphous carbon<br />

• Carbon <strong>and</strong> graphitic foams<br />

• Carbon fibers<br />

• Fullerenes<br />

• <strong>Nanotubes</strong><br />

• Nanohorns<br />

• <strong>Graphene</strong> fibers <strong>and</strong> scrolls<br />

• <strong>Graphene</strong><br />

• <strong>Graphene</strong> ribbons


3D, 2D, 1D Carbon Materials<br />

Diamond<br />

sp 3<br />

(3D) 1332 cm -1<br />

<strong>Graphite</strong><br />

sp 2<br />

(2D) 1582 cm -1<br />

sp 1<br />

Chain<br />

(1D) 1855 cm -1<br />

All are Raman active with characteristic frequencies


Unique Properties <strong>of</strong> Carbon<br />

<strong>Nanotubes</strong> within the Nanoworld<br />

graphene sheet SWNT<br />

armchair<br />

zigzag<br />

chiral<br />

• Size: Nanostructures with dimensions<br />

<strong>of</strong> ~1 nm diameter (~10 atoms around<br />

the cylinder)<br />

• Electronic Properties: Can be either<br />

metallic or semiconducting depending on<br />

diameter <strong>and</strong> orientation <strong>of</strong> the hexagons<br />

• Mechanical: Very high strength,<br />

modulus, <strong>and</strong> resiliency. Good<br />

properties on both compression <strong>and</strong><br />

extension.<br />

• <strong>Physics</strong>: 1D density <strong>of</strong> electronic states<br />

• Single molecule Raman spectroscopy<br />

<strong>and</strong> luminescence.<br />

• Single molecule transport properties.<br />

• Heat pipe, electromagnetic waveguide.


One Dimensional Systems:<br />

• High aspect ratio<br />

• Enhanced density <strong>of</strong> states<br />

• Single wall carbon nanotubes SWNT: Nanowire<br />

Chirality <strong>and</strong> diameter-dependent properties<br />

D. O. S.<br />

E<br />

3D<br />

Bulk Semiconductor<br />

D. O. S.<br />

2D<br />

Quantum Well<br />

D. O. S.<br />

Nanotube<br />

1D<br />

Quantum Wire<br />

D. O. S.<br />

E E E<br />

0D<br />

Quantum Dot


Nanotube Structure in a Nutshell<br />

<strong>Graphene</strong> Sheet SWNT<br />

Rolled-up graphene layer<br />

Large unit cell.<br />

� � �<br />

C na ma ( n, m)<br />

h<br />

= 1 + 2 ≡ ⎨<br />

⎪ θ =<br />

(4,2)<br />

⎧<br />

⎪<br />

dt ⎪<br />

L a<br />

= =<br />

π π<br />

n + nm + m<br />

⎪ ⎩<br />

−1<br />

3m<br />

tan<br />

2n<br />

+ m<br />

2 2<br />

Each (n,m) nanotube is a unique molecule<br />

R.Saito et al, Imperial College Press, 1998


Electronic structure <strong>of</strong> a carbon nanotube<br />

Rolling up 2D graphene sheet Confinement <strong>of</strong> 1D electronic states<br />

1D van Hove singularities -<br />

high density <strong>of</strong> electronic<br />

states (DOS) at well defined<br />

energies<br />

<strong>Graphene</strong> ribbons resemble nanotubes in some ways


⎧ 3p<br />

n − m = ⎨<br />

⎩3p<br />

± 1<br />

Metal or Semiconductor ?<br />

R. Saito et al., Appl. Phys. Lett. 60, 2204 (1992)<br />

• Density <strong>of</strong> States<br />

• Depending on Chirality, Diameter<br />

metal<br />

semiconductor<br />

Each (n,m) nanotube is a unique molecule<br />

Armchair graphene ribbons can be M or S<br />

E ∝1/<br />

d<br />

gap t


<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong><br />

<strong>and</strong> <strong>Graphene</strong><br />

Outline <strong>of</strong> Lecture 1 - <strong>Nanotubes</strong><br />

• Brief overview <strong>of</strong> carbon nanotubes<br />

•<br />

•<br />

•<br />

•<br />

Review <strong>of</strong> Photophysics<br />

<strong>of</strong> <strong>Nanotubes</strong><br />

Phonon assisted Photoluminescence<br />

Double wall carbon nanotubes<br />

Nano-Metrology


Resonance Raman Spectroscopy (RRS)<br />

A.M. Rao et al., Science 275 (1997) 187<br />

RRS: R.C.C. Leite & S.P.S. Porto, PRL 17, 10-12 (1966)<br />

• Enhanced Signal<br />

� Optical Absorption<br />

� e-DOS peaks<br />

π π∗<br />

diameter-selective resonance process<br />

ω RBM = α /<br />

d t<br />

Raman spectra from SWNT bundles<br />

E = 0.94eV<br />

= 1.17eV<br />

= 1.58eV<br />

= 1.92eV<br />

= 2.41eV


Resonant Raman Spectra <strong>of</strong> Carbon Nanotube Bundles<br />

M. A. Pimenta (UFMG) et al., Phys. Rev. B 58, R16016 (1998)<br />

G-b<strong>and</strong> resonant Raman spectra<br />

laser energy<br />

G-b<strong>and</strong><br />

d t = 1.37 ±<br />

0.18 nm<br />

Diameter dependence <strong>of</strong><br />

the Van-Hove singularities


RBM<br />

Single Nanotube Spectroscopy yields E ii<br />

, (n,m ( n,m)<br />

Resonant Raman spectra for isolated single-wall carbon<br />

nanotubes grown on Si/SiO2 substrate by the CVD method<br />

A. Jorio (UFMG) et al., Phys. Rev. Lett. 86, 1118 (2001)<br />

Semiconducting<br />

Metallic<br />

Raman signal from one<br />

SWNT indicates a strong<br />

resonance process<br />

'<br />

Each nanotube has a<br />

unique DOS because <strong>of</strong><br />

trigonal warping effects<br />

R. Saito et al.,<br />

Phys. Rev. B 61, 2981<br />

(2000)<br />

(ω RBM<br />

, Eii) �<br />

(n,m)


Raman Intensity<br />

o<br />

RBM: ωRBM∝ 1/dt Raman Spectra <strong>of</strong> SWNT Bundles<br />

D-b<strong>and</strong><br />

G-b<strong>and</strong><br />

G -<br />

G +<br />

Raman Shift (cm −1 )<br />

Metallic G-b<strong>and</strong><br />

G -<br />

G +<br />

G′-b<strong>and</strong><br />

•RBM gives tube diameter <strong>and</strong> diameter distribution<br />

•Raman D-b<strong>and</strong> characterizes structural disorder<br />

•G -<br />

b<strong>and</strong> distinguished M, S tubes <strong>and</strong> G + relates to charge transfer<br />

•G’ b<strong>and</strong> (2nd order <strong>of</strong> D-b<strong>and</strong>) provides connection <strong>of</strong> phonon to its wave vector<br />

G +


Water, 1.1 g/cm3 SDS<br />

Energy [eV]<br />

2<br />

0<br />

–2 0<br />

1.0 g/cm 3<br />

c 1<br />

fluorescence<br />

v 1<br />

1.2 g/cm 3<br />

SDS=Sodium Dodecyl<br />

c 2<br />

absorption<br />

v 2<br />

Density <strong>of</strong> Electronic States<br />

e-DOS <strong>of</strong> (n, m) = (10,5)<br />

B<strong>and</strong> Gap Fluorescence<br />

Sulfate<br />

M. J. O’Connell O Connell et al., al.,<br />

Science 297 (2002) 593<br />

S. M. Bachilo et al., Science 298 (2002) 2361.<br />

Excitation (nm)<br />

Peaks only<br />

Emission (nm)<br />

Initially (n,m) assignments were made by<br />

empirical excitation-emission pattern


PHOTOLUMINESCENCE<br />

SDS-wrapped HiPco nanotubes in solution<br />

S. M. Bachilo et al., Science 298, 2361 (2002)<br />

�2n+m=constant family patterns are observed in the PL excitation-emission spectra<br />

�Identification <strong>of</strong> ratio problem<br />

�Showed value <strong>of</strong> mapping optical transitions<br />

Perhaps this technique can be applied to study graphene ribbons


Raman Mapping <strong>of</strong> a Nanotube<br />

(µm)<br />

G-b<strong>and</strong> @ 1600cm x 10<br />

40<br />

-1<br />

4<br />

20<br />

2<br />

0<br />

0<br />

-20<br />

-2<br />

-40<br />

-4<br />

-60<br />

-6<br />

-80<br />

-8<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

-100<br />

-20 0 20 -2 0 2 (µm)<br />

-10<br />

0<br />

(µm)<br />

RBM 40 @ 173cm<br />

4<br />

-1<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-20 0 20<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

-2 0 2 (µm)<br />

-10<br />

0<br />

(µm)<br />

H. Son et al. unpublished (2006)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Silicon @ 520cm -1<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-20 0 20<br />

x 10<br />

9<br />

-2 0 2 (µm)<br />

-10<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0


E 33 S<br />

Resonance Raman Spectroscopy<br />

on the same sample used for PL<br />

E 11 M<br />

RRS<br />

simple tight binding (sTB)<br />

γ 0<br />

E 22 S<br />

sTB<br />

=2.9eV<br />

2n+m = constant<br />

family behavior is<br />

observed<br />

E 33 S<br />

Fantini (UFMG) et al.<br />

PRL (2004) showed<br />

RRS <strong>and</strong> PL give<br />

the same E ii<br />

E 11 M<br />

E 22 S<br />

The simple TB does not<br />

describe Eii correctly!<br />

Family effects are<br />

mainly due to<br />

trigonal warping


Transition Energy (eV)<br />

EXTENDED TIGHT BINDING MODEL<br />

Inverse Diameter (1/nm)<br />

M 2n+m=3p<br />

S1 2n+m=3p+1<br />

S2 2n+m=3p+2<br />

Kataura plot is calculated within the<br />

extended tight-binding approximation<br />

using Popov/Porezag approach:<br />

�<br />

�<br />

�<br />

curvature effects (ssσ, spσ, ppσ, ppπ)<br />

long-range interactions (up to ~4Å)<br />

geometrical structure optimization<br />

The extended tight-binding<br />

calculations show family behavior<br />

(differentiation between S1 & S2<br />

<strong>and</strong> strong chirality dependence)<br />

similar to that <strong>of</strong> the PL empirical fit<br />

Family behavior is strongly influenced<br />

by the trigonal warping effect<br />

Ge.G. Samsonidze et al., APL 85, 5703 (2004)<br />

N.V. Popov et al Nano Lett. 4, 1795 (2004) & New J. Phys. 6, 17 (2004)


Brillouin zone (BZ)<br />

2D graphene BZ<br />

K’<br />

Family<br />

mod (2n+m, 3) =<br />

2n+m families in SWNTs<br />

R. Saito et al., Phys. Rev. B, 72, 153413 (2005)<br />

SWNT BZ<br />

K<br />

type I type II<br />

0 : metal<br />

1 : type I SC<br />

2 : type II SC<br />

(example)<br />

2n+m = const family<br />

type I – type II separation<br />

(8,0), (7,2), (6,4)<br />

→ 2n+m = 16 type I family


<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong><br />

<strong>and</strong> <strong>Graphene</strong><br />

Outline <strong>of</strong> Lecture 1 - <strong>Nanotubes</strong><br />

• Brief overview <strong>of</strong> carbon nanotubes<br />

•<br />

•<br />

•<br />

•<br />

Review <strong>of</strong> Photophysics<br />

<strong>of</strong> <strong>Nanotubes</strong><br />

Phonon assisted Photoluminescence<br />

Double wall carbon nanotubes<br />

Nano-Metrology


DNA wrapping <strong>of</strong> SWNTs<br />

DNA Wrapping:<br />

� provides good separation <strong>of</strong><br />

CoMoCAT SWNT sample<br />

Subsequent fractionation:<br />

� results in sample strongly<br />

enriched in (6,5) species<br />

M. Zheng, et al. Science 302, 1546 (2003)<br />

Average DNA helical<br />

pitch ~ 11nm,<br />

height ~ 1.08nm.


column<br />

containing<br />

stationary<br />

phase<br />

DNA-Assisted DNA Assisted SEPARATION<br />

M. Zheng et al., al. , Science, Science,<br />

302,1546 302,1546<br />

(2003).<br />

load<br />

sample<br />

add<br />

eluant<br />

collect<br />

samples<br />

Raman characterization shows<br />

that<br />

•DNA wrapping removes metallic<br />

(M) SWNTs<br />

•Chromatography further removes<br />

M SWNTs preferentially<br />

Ion-exchange chromatography<br />

(IEC)<br />

Hybrid DNA-SWNTs:<br />

• M-SWNT different surface charge density,<br />

higher polarizability, elute before S-CNTs<br />

RBM Spectra Taken at E laser = 2.18eV<br />

CoMoCAT CNT<br />

(No DNA)<br />

DNA-CNT<br />

M<br />

Fractionated DNA-CNT<br />

(6,5)<br />

150 200 250 300 350 400<br />

Raman Shift (cm -1 )<br />

S


•<br />

•<br />

Nanotube PL Spectroscopy<br />

Most Measurements<br />

- excitation at E22, emission at E11 - measured with Xe lamp<br />

- (2n+m) family patterns<br />

provide (n, m)<br />

identifications.<br />

Our Measurements<br />

– (6,5) enriched sample<br />

– Intense light source<br />

(laser)<br />

– Allows observation <strong>of</strong><br />

phonon assisted<br />

processes<br />

PL map <strong>of</strong> SDS-<br />

dispersed HiPco CNTs<br />

Maruyama et al. NJP (2003)<br />

Maruyama’s work suggests study <strong>of</strong> detailed phonon-assisted<br />

excitonic relaxation processes for different phonon branches.


Excitation Energy (eV)<br />

1.64<br />

1.6<br />

1.56<br />

1.52<br />

1.48<br />

1.44<br />

PL Spectra <strong>of</strong> (6,5) <strong>Nanotubes</strong><br />

1.05 1.1 1.15 1.2 1.25 1.3<br />

Emission Energy (eV)<br />

Phonon-assisted transitions on an exp<strong>and</strong>ed scale<br />

Chou, et al PRL 94, 127402 (2005)<br />

8<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

E 11 = 1.26eV<br />

E 22 = 2.18eV


2-photon excitation to a 2A + symmetry exciton (2p)<br />

<strong>and</strong> 1-photon emission from a 1A− exciton (1s)<br />

cannot be explained by the free electron model<br />

1A−<br />

E11 (1s)<br />

Excitons<br />

ABSORPTION (a.u.)<br />

Experimental Justification for excitons<br />

2A+<br />

E11 (2p)<br />

BAND-EDGE<br />

1.2 1.4 1.6 1.8 2.0<br />

2-PHOTON EXCITATION ENERGY<br />

The observation that excitation <strong>and</strong> emission are<br />

at different frequencies supports exciton model<br />

in Carbon <strong>Nanotubes</strong><br />

1A−<br />

E 11 (1s)<br />

EMISSION ENERGY<br />

1.4<br />

1.3<br />

1.2`<br />

(7,5)<br />

(9,1)<br />

(8,3)<br />

(6,5)<br />

1.2 1.4 1.6 1.8<br />

2-PHOTON EXCITATION ENERGY<br />

Wang et al. Science 308, 838 (2005)


The exciton-phonon sideb<strong>and</strong>s<br />

E 22 S -E11 S<br />

Sideb<strong>and</strong><br />

further support exciton<br />

HiPco + SDS solution<br />

F. Plentz Filho (UFMG) et al,<br />

PRL 95, 247401 (2005)<br />

E 11 S -E11 S<br />

model<br />

Perebeinos, Ters<strong>of</strong>f <strong>and</strong> Avouris,<br />

PRL 94, 027402 (2005)


Emission Identified with<br />

One <strong>and</strong> Two Phonon Processes:<br />

2 iLO/iTO near Γ<br />

2 iTO near K (G’ b<strong>and</strong>)<br />

2 iLO/iLA near K<br />

2 oTO near Γ(M-b<strong>and</strong>)<br />

1iLO/iTO near Γ (G-b<strong>and</strong>)<br />

Chou et al., PRL 94, 127402 (2005)<br />

Phonon dispersion relations<br />

<strong>of</strong> graphite<br />

Two phonon<br />

process<br />

One phonon<br />

process


Non-degenerate Non degenerate Pump-probe<br />

Pump probe<br />

Frequency domain Fast optics, Time domain<br />

S. G. Chou et al. PRL 94 127402 (2005)<br />

E Pump<br />

~E11(6,5) + 2ħωph, D<br />

E probe =E 11(6,5)<br />

Epump = 1.57±0.01eV, ~E11 Eprobe = around E11<strong>of</strong> (6,5) nanotube<br />

(Instrument resolution ~250fs)<br />

Pump<br />

Intrab<strong>and</strong><br />

relaxation<br />

Probe<br />

Interb<strong>and</strong><br />

relaxation<br />

(6,5)+2ħω D<br />

S. G. Chou et al. Phys. Rev. B (2005)


Pump Probe Studies at Special E pump<br />

• Epump = 1.57±0.01eV≈E 1A-<br />

11 (6,5) +2ħωD • Eprobe = around E 1A-<br />

11 <strong>of</strong> (6,5) nanotube<br />

Pump<br />

Intrab<strong>and</strong><br />

relaxation<br />

Probe at<br />

b<strong>and</strong> edge<br />

Exciton population at E 1A-<br />

11 (6,5):<br />

• Quick rise (within 200fs)<br />

• Three decay components:<br />

• τfast~680fs (dominant process)<br />

• τint~2-3ps (dominant process)<br />

• τslow~50ps (weak during first<br />

20ps).<br />

K


-Pump at 1.57±0.01 eV<br />

Probing at Different Energies:<br />

1.27eV(8,3)<br />

1.25eV(6,5)<br />

1.22eV<br />

1.20eV(7,5)<br />

1.16eV<br />

Exp. (n,m) E Probe FluenceJ/m 2 fast % Int % Slow %<br />

O 5 (8,3) 1.27eV 0.3 900fs 70 Several ps Traces mixed 30ps 30<br />

O 4 (6,5) 1.25eV 0.3 700fs 45 3ps 45 50ps 10<br />

O 2 (7,5) 1.20eV 0.1 800fs 90 N/A N/A 40ps 10<br />

u<br />

z<br />

0<br />

j<br />

Eii o 5<br />

o4 o3 o2 o1 E11 1A- E<br />

11<br />

(6,<br />

1A- 1A- (8,3<br />

E<br />

11 1A- 1A- (7<br />

E<br />

11 1A- 1A-(7<br />

K<br />

(8,3)+2hwD<br />

6,5) 5)+2hwD<br />

(7,5) ,5)+2hwD<br />

E<br />

11 1A- E<br />

11<br />

(6 (6,5) ,5)<br />

1A- (8.3)<br />

(7,5) ,5)


•<br />

•<br />

Why?<br />

–<br />

–<br />

More on Excitons<br />

Large binding energy (0.5eV)<br />

•<br />

Even at room temperature, excitons<br />

exist.<br />

Exciton specific phenomena<br />

•<br />

dark excitons, two photon, environment<br />

What can we know or imagine?<br />

–<br />

–<br />

Near cancellation by self energy<br />

•<br />

ETB + many body effects reproduce Eii<br />

Localized exciton wave function<br />

•<br />

enhancement <strong>of</strong> optical process<br />

• Length dependence.<br />

Wang et al. Science<br />

308, 838 (2005)<br />

2+<br />

A 1- 11 (2p)<br />

A11 (1s)


Exciton exists only in the 3M-triangle<br />

E11S<br />

E22S<br />

E44S<br />

E55S<br />

E33S<br />

Energy minima for the π∗<br />

Cutting lines occur around K-point.<br />

b<strong>and</strong> exist only in 3MΔ.


K’<br />

Centre<br />

Symmetry considerations<br />

<strong>of</strong> mass motion<br />

Relative motion<br />

K<br />

J. Jiang et al. Phys. Rev. B75 035405 (2007)<br />

A symmetry<br />

Γ<br />

K<br />

e h<br />

excitons<br />

:Good quantum number<br />

C 2<br />

K’<br />

K<br />

Bright <strong>and</strong> dark excitons<br />

Γ<br />

A - : bright exciton<br />

A + , E <strong>and</strong> E *: dark excitons<br />

K<br />

e h<br />

A ±<br />

e<br />

hK Γ


E symmetry exciton<br />

E exciton<br />

K’<br />

e<br />

K<br />

K<br />

h<br />

K<br />

Bright <strong>and</strong> dark excitons<br />

A- : bright exciton<br />

A + , E, E *: dark excitons<br />

Dispersion for (6,5) NT<br />

<strong>and</strong> its dispersion<br />

E* exciton<br />

K’<br />

h<br />

K’<br />

K<br />

e<br />

K


A -<br />

Dark state has the lowest energy<br />

J. Jiang et al. Phys. Rev. B75 035405 (2007)<br />

: bright exciton<br />

11 11 11 11<br />

A- : bright exciton<br />

A + , E <strong>and</strong> E *: dark excitons<br />

Lowest energy but not symmetry allowed


<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong><br />

<strong>and</strong> <strong>Graphene</strong><br />

Outline <strong>of</strong> Lecture 1 - <strong>Nanotubes</strong><br />

• Brief overview <strong>of</strong> carbon nanotubes<br />

•<br />

•<br />

•<br />

•<br />

Review <strong>of</strong> Photophysics<br />

<strong>of</strong> <strong>Nanotubes</strong><br />

Phonon assisted Photoluminescence<br />

Double wall carbon nanotubes<br />

Nano-Metrology


Raman Intensity<br />

o<br />

RBM: ωRBM∝ 1/dt Photophysics<br />

Photophysics<br />

Raman Spectra <strong>of</strong> SWNT Bundles<br />

D-b<strong>and</strong><br />

G-b<strong>and</strong><br />

G -<br />

G +<br />

Raman Shift (cm −1 )<br />

Metallic G-b<strong>and</strong><br />

G -<br />

G +<br />

G’-b<strong>and</strong><br />

<strong>of</strong> SWNTs is now at an advanced stage<br />

<strong>of</strong> MWNTs (DWNTs) is at an early stage


•<br />

•<br />

•<br />

•<br />

Motivation for studying DWNTs<br />

Applications<br />

–<br />

world shows much interest<br />

Synthesis<br />

–<br />

world has made major progress<br />

Promising for fundamental physics<br />

Study <strong>of</strong> the interface between DWNTs<br />

<strong>and</strong> bilayer graphene should enrich<br />

both areas


•<br />

Approaches to DWNTs<br />

simplest assumption<br />

+<br />

=<br />

Suggests using Kataura plots for SWNTs as first<br />

approximation for DWNTs, but E(k) <strong>of</strong> monolayer <strong>and</strong><br />

bilayer graphene say more detail is needed


Br 2 -doped double-wall nanotubes<br />

TEM images<br />

SEM images<br />

5 nm<br />

Pristine DWNTs<br />

(a) (b)<br />

(c) (d)<br />

100nm<br />

5 nm<br />

100nm<br />

Br2-DWNTs Highly pure<br />

samples<br />

(99% <strong>of</strong> DWNTs<br />

1% <strong>of</strong> SWNTs +<br />

catalysts<br />

particles)<br />

+<br />

Endo et al. Nanolett.<br />

4,1451 (2004)


Kataura plot: undoped vs. doped SWNTs<br />

using Extended Tight Binding Model<br />

E ii (eV)<br />

2.5<br />

2.0<br />

1.5<br />

Outer tubes<br />

Inner tubes<br />

2.4 2.0<br />

d (nm)<br />

t<br />

1.6 1.2 0.8<br />

E M<br />

11<br />

E S<br />

33<br />

38<br />

39<br />

35<br />

36<br />

E S<br />

22<br />

32<br />

33<br />

31<br />

29<br />

29<br />

30<br />

28<br />

1.0<br />

100 150 200 250 300 350<br />

26<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

Frequency (cm −1 )<br />

21<br />

E S<br />

11<br />

19<br />

20<br />

18<br />

17<br />

16<br />

Doped<br />

(+0.04 e - /C)<br />

Undoped<br />

• Different<br />

configurations<br />

for outer/inner<br />

nanotubes<br />

depending on<br />

laser energy


Semiconducting outer/Metallic inner configuration<br />

Raman Intensity (arb. units)<br />

• Breathing mode spectrum<br />

from the Br2 dopant<br />

• Resonance with Bromine<br />

electronic transitions<br />

• Can identify individual<br />

(n,m) inner tubes from<br />

Kataura plot<br />

1.4<br />

M<br />

(b)<br />

S<br />

RBM properties at Elaser=2.33 eV<br />

E laser = 2.33 eV<br />

100 150 200 250 300 350<br />

Frequency (cm -1 )<br />

A.Souza-Filho. et al PRB (2006)<br />

Br 2<br />

doped Br -doped<br />

2<br />

Raman Intensity (arb. units)<br />

1.0<br />

(a)<br />

100 150 200 250 300 350<br />

Frequency (cm -1 )<br />

38<br />

35<br />

ELaser= 2.33 eV Pristine<br />

22<br />

32<br />

(12,3)<br />

(11,5)<br />

29<br />

(9,6)<br />

(7,7)<br />

26<br />

27<br />

24<br />

150 200 250<br />

23<br />

Frequency (cm −1 )<br />

(8,5)<br />

(9,3)<br />

21


Raman Intensity (arb. units)<br />

Metallic outer/Semiconducting inner configuration<br />

1.0<br />

Raman Intensity (arb. units)<br />

1.4<br />

100 150 200 250 300 350<br />

Frequency (cm -1 )<br />

3<br />

(a) E laser = 1.58 eV<br />

1.0<br />

(9,4)<br />

240 250 260 270 280<br />

Frequency (cm -1 )<br />

39<br />

S<br />

(10,2)<br />

36<br />

E S<br />

22<br />

*<br />

33<br />

31<br />

M<br />

RBM properties at Elaser=1.58 eV<br />

29<br />

*<br />

(11,0)<br />

28<br />

25<br />

150 200 250<br />

22<br />

Frequency (cm −1 )<br />

pristine<br />

(9,1)<br />

E S<br />

11<br />

• Intensity enhancement after<br />

bromine doping<br />

• Doping changing relative<br />

intensities <strong>of</strong> (n,m) tubes<br />

• The Kataura plot for SWNTs<br />

gives identification for inner<br />

wall tubes <strong>and</strong> shows doping effect<br />

(b) E laser = 1.58 eV Br 2 doped<br />

1.4<br />

(9,4)<br />

(10,2)<br />

240 250 260 270 280<br />

Frequency (cm -1 )<br />

*<br />

*<br />

(11,0)<br />

100 150 200 250 300 350<br />

Frequency (cm -1 )


Raman Intensity<br />

Metallic shielding effects<br />

Metallic outer/semiconducting inner wall<br />

E laser =1.58 eV<br />

1500 1550 1600<br />

Frequency (cm<br />

1650<br />

-1 )<br />

1301<br />

D b<strong>and</strong><br />

D <strong>and</strong> G b<strong>and</strong> (DWNTs)<br />

1554<br />

1200 1300 1400 1500 1600 1700<br />

Frequency (cm -1 )<br />

Br 2 -doped<br />

Pristine<br />

• The G-b<strong>and</strong> is predominantly from semiconducting<br />

<strong>Nanotubes</strong> (based on diameter dependence)<br />

• No shift in the G-b<strong>and</strong> for semiconducting inner tubes<br />

• The inner tubes are shielded by the metallic outer tubes<br />

S<br />

M


Raman Intensity<br />

Charge transfer effects<br />

Semiconducting outer/metallic inner<br />

E laser =2.33 eV<br />

x0.5<br />

D b<strong>and</strong><br />

1341<br />

1200 1400 1600<br />

D <strong>and</strong> G b<strong>and</strong> (DWNTs)<br />

Pristine<br />

Frequency (cm -1 )<br />

Br 2 -doped<br />

1450 1500 1550 1600 1650<br />

1485<br />

1570<br />

1545<br />

1562<br />

1537<br />

1519<br />

1581<br />

Frequency (cm -1 )<br />

1575<br />

1592<br />

1599<br />

1450 1500 1550 1600 1650<br />

Frequency (cm -1 )<br />

• The G-b<strong>and</strong> pr<strong>of</strong>ile is a mixing <strong>of</strong> semiconducting <strong>and</strong> metallic pr<strong>of</strong>iles;<br />

• Shift in the G-b<strong>and</strong> from semiconducting outer tubes indicates charge<br />

transfer to the Br2 molecules<br />

• The BWF (Breit Wigner Fano) decreases after doping.<br />

• The decrease in the overall intensity indicates depletion <strong>of</strong> states<br />

M<br />

S


Raman Intensity<br />

Charge transfer<br />

(a)<br />

Br 2 doped<br />

Pristine<br />

M S<br />

<strong>and</strong><br />

effects<br />

x0.3<br />

E laser<br />

2.33 eV<br />

Raman Intensity<br />

1450 1500 1550 1600 1650<br />

Frequency (cm -1 )<br />

Metallic inner tubes highly<br />

affected by doping<br />

Semiconducting inner tubes<br />

is not affected when shielded by<br />

metallic tubes<br />

(b)<br />

screening<br />

G b<strong>and</strong> Raman spectra <strong>of</strong><br />

doped DWNTs.<br />

Br 2<br />

S<br />

M<br />

E laser<br />

1.58 eV<br />

1450 1500 1550 1600 1650<br />

Frequency (cm -1 )


Calculated electronic charge density<br />

difference (ρdoped - ) <strong>of</strong> DWNTs<br />

ρ undoped<br />

Calculation supports experimental observations about charge transfer<br />

A.G. Souza Filho et al Nano Letters (2007)


Raman Intensity<br />

Outer tubes<br />

Undoping experiments on<br />

bromine doped DWNTs<br />

Br 2 -adsorbed DWNTs<br />

Br 2<br />

Inner tubes<br />

E laser =2.33 eV<br />

100 200 300 400 500<br />

Frequency (cm -1 )<br />

Br 2<br />

Energy<br />

needed<br />

for removing<br />

Br 2<br />

is ~ 25 meV<br />

21 o C<br />

heating<br />

600 o C<br />

cooling<br />

21 o C<br />

• The dopant is completely removed after heat treatment<br />

Souza Filho et al, PRB (2006)


Spectrum for RBM for pristine <strong>and</strong><br />

Raman Intensity<br />

H SO doped DWNTs<br />

2 4<br />

Outer Walls M<br />

Inner Walls<br />

H 2 SO 4 doped<br />

Pristine<br />

150 200 250 300 350 400<br />

Frequency (cm -1 )<br />

S<br />

Elaser=2.052 eV<br />

•Outer walls strongly affected by doping<br />

•Inner semiconducting (S) tubes weakly interact with dopant<br />

•Inner metallic (M) tubes more strongly interact with dopant<br />

E. Barros et al, PRB (2007)


•<br />

•<br />

•<br />

What we learned from<br />

intercalation studies <strong>of</strong> DWNTs<br />

The Kataura plot from SWNTs provides a<br />

semi-quantitive interpretation <strong>of</strong> frequencies<br />

for inner wall tubes for DWNTs<br />

The M/S configuration shields inner<br />

semiconducting tubes from the effect <strong>of</strong> the<br />

dopant<br />

The S/M configuration allows charge transfer<br />

to inner metallic tubes<br />

This work potentially relates to bilayer<br />

S<br />

M<br />

M<br />

S<br />

graphene


Laser Energy Dependence <strong>of</strong> G′-b<strong>and</strong> Spectra<br />

The ~2450 cm-1 peak (TO+LA) in<br />

DWNTs is downshifted relative to<br />

the corresponding peak in SWNTs<br />

The SWNT G’ b<strong>and</strong> corresponds to peak 3 <strong>of</strong> DWNTs<br />

Frequency (cm -1 )<br />

2700<br />

2650<br />

2600<br />

2550<br />

2500<br />

2450<br />

SWNTs<br />

Some resemblance to bilayer graphene<br />

E. B. Barros et al., PRB in press (2007)<br />

2.186 eV<br />

inner<br />

outer<br />

2400 2600 2800<br />

Frequency (cm -1 )<br />

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6<br />

Excitation Energy (eV)<br />

4<br />

3<br />

2<br />

1<br />

0


<strong>Physics</strong> <strong>of</strong> <strong>Nanotubes</strong>, <strong>Graphite</strong><br />

<strong>and</strong> <strong>Graphene</strong><br />

Outline <strong>of</strong> Lecture 1 - <strong>Nanotubes</strong><br />

• Brief overview <strong>of</strong> carbon nanotubes<br />

•<br />

•<br />

•<br />

•<br />

Review <strong>of</strong> Photophysics<br />

<strong>of</strong> <strong>Nanotubes</strong><br />

Phonon assisted Photoluminescence<br />

Double wall carbon nanotubes<br />

Nano-Metrology


The problem <strong>of</strong> Nano-metrology<br />

Why do we need metrology for nanotechnology?<br />

Why do we need reference st<strong>and</strong>ards?<br />

What is new about metrology at the nano-scale?<br />

What does nanoscience<br />

have to do with metrology?<br />

World wide production <strong>of</strong> Carbon <strong>Nanotubes</strong><br />

MWNTs 270 tons/yr (2.45× 10 5 kg/year)<br />

SWNTs 7 tons/yr (6.35 × 10 3 kg/year)<br />

8K US$ / kg to 5.0 × 10 5 US$ / kg<br />

(R. Blackmon, http://www.wtec.org/cnm/)


Potential Applications <strong>of</strong> Carbon <strong>Nanotubes</strong><br />

by M. Endo, M. S. Strano, P. M. Ajayan @ Springer TAP111<br />

Large Volume Applications Limited Volume Applications<br />

(Mostly based on Engineered<br />

Nanotube Structures)<br />

Present - Battery Electrode Additives (MWNT)<br />

- Composites (sporting goods; MWNT)<br />

- Composites (ESD* applications; MWNT)<br />

*ESD – Electrical Shielding Device<br />

Near Term<br />

(less than ten<br />

years)<br />

Long Term<br />

(beyond ten<br />

years)<br />

Metrology is guided by applications<br />

- Battery <strong>and</strong> Super-capacitor Electrodes<br />

- Multifunctional Composites<br />

- Fuel Cell Electrodes (catalyst support)<br />

- Transparent Conducting Films<br />

- Field Emission Displays / Lighting<br />

- CNT based Inks for Printing<br />

- Power Transmission Cables<br />

- Structural Composites (aerospace <strong>and</strong><br />

automobile etc.)<br />

- CNT in Photovoltaic Devices<br />

- Scanning Probe Tips (MWNT)<br />

- Specialized Medical Appliances<br />

(catheters) (MWNT)<br />

- Single Tip Electron Guns<br />

- Multi-Tip Array X-ray Sources<br />

- Probe Array Test Systems<br />

- CNT Brush Contacts<br />

- CNT Sensor Devices<br />

- Electro-mechanical Memory Device<br />

- Thermal Management Systems<br />

- Nano-electronics (FET,Interconnects)<br />

- Flexible Electronics<br />

- CNT based bio-sensors<br />

- CNT Fitration/Separation<br />

Membranes<br />

- Drug-delivery Systems


Quantity<br />

What should we measure? At which scale?<br />

mass Mass Mass remaining Remaining, % (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

“Quality”<br />

Statistical Comparison<br />

QCM shows SWNTs<br />

TGA (375 °C)<br />

100<br />

77.90 %<br />

~mg 90 ~µg<br />

1 5 9 13 17 21 25<br />

1 experiment number 25<br />

Experiment Number<br />

are<br />

non-homogeneous already at the μg scale<br />

mass remaining (%)<br />

Mass Remaining, %<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

vs.<br />

Thermogravimetric analysis (TGA)<br />

Quartz cyrstal microbalance (QCM)<br />

QCM (375 °C)<br />

75.88 %<br />

0<br />

1 5 9 13 17 21<br />

1 experiment Experiment Number number 25


Can we trust the measurements?<br />

What do we use for measuring nanomaterials properties?<br />

4-PROBES TRANSPORT SCANNING<br />

PROBES<br />

2<br />

R 14 ≠<br />

R 12 +R 23 +R 34<br />

1<br />

3<br />

4<br />

Purewal et al.,PRL 98,186808 (2007)<br />

50nm<br />

From Achim Hartschuh<br />

IBM Website<br />

LIGHT: Raman <strong>and</strong> photoluminescence<br />

LOCALIZED LIGHT EMISSON<br />

ELECTRON<br />

MICROSCOPY<br />

From Hubert - FEI


Can we trust the measurements?<br />

What is the ideal environment?<br />

Encapsuled by micelles Suspended in air<br />

Sitting on a substrate Within<br />

a forest<br />

Nano-metrology is a wide open area for development requiring collaboration<br />

between metrology <strong>and</strong> nanoscience experts

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!