29.01.2013 Views

3D Charge Trapping NAND Flash Memory - Sematech

3D Charge Trapping NAND Flash Memory - Sematech

3D Charge Trapping NAND Flash Memory - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>3D</strong> <strong>Charge</strong> <strong>Trapping</strong> (CT) <strong>NAND</strong> <strong>Flash</strong><br />

Yen-Hao Shih<br />

Macronix International Co., Ltd.<br />

Hsinchu, Hsinchu,<br />

Taiwan<br />

Email: yhshih@mxic.com.tw<br />

1


Outline<br />

� Why Does <strong>NAND</strong> Go to <strong>3D</strong>?<br />

� Design a <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Challenges and Opportunities in <strong>3D</strong> CT<br />

<strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Summary<br />

2


Source<br />

Floating Gate (FG) <strong>Flash</strong> <strong>Memory</strong><br />

Control<br />

gate<br />

ONO<br />

Floating<br />

gate<br />

Oxide<br />

Drain<br />

Single cell structure<br />

~10F 2<br />

~4F 2<br />

� 1967 FG Transistor invented by D. Kahng and S. M. Sze (Bell Labs)<br />

� 1984 NOR <strong>Flash</strong> invented by Fujio Masuoka (Toshiba)<br />

� 1987 <strong>NAND</strong> <strong>Flash</strong> invented also by Fujio Masuoka (Toshiba)<br />

3


<strong>Flash</strong> <strong>Memory</strong> Applications<br />

<strong>NAND</strong><br />

(High Density for Data Storage)<br />

<strong>Flash</strong> <strong>Memory</strong><br />

NOR<br />

(Fast for Code Access)<br />

4


Scaling of FG <strong>NAND</strong> <strong>Memory</strong> (2D)<br />

0.25um<br />

K. Shimizu, et al.,<br />

(Toshiba) IEDM 1997<br />

1/100 of area in 13 years<br />

(~ 2 6.5 increase, or one<br />

node per 2 years)<br />

90nm<br />

D.C. Kim, et al., (Samsung)<br />

IEDM 2002<br />

25nm<br />

K. Prall, et al., (Micron)<br />

IEDM 2010 5


Design Rule (nm)<br />

100<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Recent Scaling is Even Faster<br />

07<br />

Q1 Q2 Q3 Q4<br />

(at 1.5 Year/Gen)<br />

08<br />

Q1 Q2 Q3 Q4<br />

09<br />

Q1 Q2 Q3 Q4<br />

YEAR<br />

10<br />

Q1 Q2 Q3 Q4<br />

IMFT<br />

Samsung<br />

Toshiba<br />

Hynix<br />

11<br />

Q1 Q2 Q3 Q4<br />

6


2D Scaling Fulfills Demands and<br />

Creates New Applications<br />

Kinam Kim (Samsung), IMW 2010<br />

7


However, 2D Scaling is Running Out<br />

ONO and<br />

Tunnel Oxide<br />

can’t be scaled.<br />

For the same Vt window,<br />

∆Q = C * ∆Vt,<br />

Source<br />

of Electrons<br />

Control<br />

gate<br />

ONO<br />

Floating<br />

gate<br />

Tunnel<br />

Oxide<br />

Drain<br />

Single cell structure<br />

the electron number<br />

decreases as <strong>NAND</strong> cells are<br />

scaled down.<br />

Ne: Electron Number<br />

1000<br />

100<br />

10<br />

Electron number of FG<br />

GCR=0.7, Tono=15 nm, Tox=9nm<br />

GCR=0.65, Tono=13 nm, Tox=8nm<br />

10 100<br />

Technology Node: F (nm)<br />

Number of electrons in FG<br />

device (~ 20 for 10nm device)<br />

8


Impact of the Small Number of Electrons<br />

Number of electrons per logic level<br />

Node 45nm 32nm 22nm 16nm 11nm 8nm<br />

SLC 400 200 100 50 25 13<br />

(2 levels)<br />

MLC 140 70 35 18 10 5<br />

(4 levels)<br />

TLC 60 30 15 8 4 2<br />

(8 levels)<br />

QLC 30 15 8 4 2 1<br />

(16 levels)<br />

OLC 2 1 0.5 0.2 0.1 0.05<br />

(256 levels)<br />

Statistical fluctuation ~ √N / N. N = 10 ���� 30%.<br />

9


Solution is the <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong><br />

2-layer TANOS <strong>NAND</strong><br />

(Epitaxial Si growth)<br />

Samsung: IEDM 2006<br />

Stack up 2D devices<br />

C.Y. Lu (Macronix), Semicon Taiwan 2010<br />

2-layer BE-SONOS<br />

<strong>NAND</strong> (TFT device)<br />

Macronix: IEDM 2006<br />

Punch through<br />

multiple layers<br />

Bit-cost scalable<br />

(BiCS) TFT SONOS<br />

Toshiba: VLSI 2007<br />

10


Difference between <strong>3D</strong> Stacked <strong>NAND</strong><br />

and BiCS<br />

H. Tanaka, et al., (TOSHIBA),<br />

VLSI 2007<br />

� Both types maintain the electron number at a reasonable level.<br />

� <strong>3D</strong> Stacked <strong>NAND</strong> can’t further reduce cost when layer number >=4.<br />

� BiCS uses only one critical contact drill hole for many layers so the<br />

bit cost is scalable, even when more than 16 layers are used.<br />

11<br />

� Later <strong>3D</strong> <strong>NAND</strong> technologies have followed the BiCS concept.


Outline<br />

� Why Does <strong>NAND</strong> Go to <strong>3D</strong>?<br />

� Design a <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Challenges and Opportunities in <strong>3D</strong> CT<br />

<strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Summary<br />

12


To Build <strong>3D</strong> <strong>NAND</strong>, Start from 2D<br />

� Conventional structure<br />

� <strong>Charge</strong>s stored in FG<br />

� <strong>Charge</strong>s in/out through<br />

the tunnel oxide.<br />

� SONOS CT structure<br />

� <strong>Charge</strong>s stored in nitride<br />

� <strong>Charge</strong>s in/out through<br />

the tunnel dielectric (ONO here).<br />

13


How <strong>NAND</strong> <strong>Flash</strong> Works?<br />

Asymmetric E-fields and Jg On/Off Ratio<br />

CG<br />

• P/E • High On/Off Ratio<br />

Program Erase<br />

E blocking<br />

IPD/<br />

Blocking Oxide<br />

E tunnel<br />

e- e- Tunnel<br />

Oxide<br />

<strong>Charge</strong><br />

Storage<br />

Substrate<br />

CG<br />

E blocking<br />

e- e- IPD/<br />

Blocking Oxide<br />

<strong>Charge</strong><br />

Storage<br />

E tunnel<br />

Tunnel<br />

Oxide<br />

h + h +<br />

� FG: GCR design<br />

� CT: high WF CG<br />

high-K blocking<br />

ONO tunnel dielectric<br />

Substrate<br />

Jg (log scale)<br />

Good<br />

Retention<br />

Fast P/E<br />

E-field<br />

14


Glance over Various 2D CT Devices<br />

Best reported reliability,<br />

no new process<br />

H. T. Lue et al., (Macronix), TDMR 2010<br />

Theoretically<br />

the highest<br />

performance<br />

15


Retention of 2D BE-SONOS <strong>NAND</strong><br />

H.T. Lue, et al.,<br />

(Macronix),<br />

IEDM 2005<br />

75nm BE-SONOS (Non-cut-ONO), P/E=1K<br />

V T (V)<br />

� Retention is excellent, and there is no single tail bit.<br />

� The best reported CT reliability so far.<br />

� BE-SONOS fundamentally solves traditional CT erase-retention<br />

dilemma.<br />

Bit Counts<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

Disturbed EV<br />

150C Baking<br />

Before bake<br />

10min<br />

100min<br />

1100min<br />

5420min<br />

7230min<br />

10080min<br />

C. C. Hsieh, et al., (Macronix), IEDM 2010<br />

PV<br />

16


CT is Easier than FG for <strong>3D</strong><br />

SungJin Whang, et al., (Hynix),<br />

IEDM 2010<br />

� <strong>3D</strong> CT devices are simpler in topology.<br />

� <strong>3D</strong> CT devices are smaller than <strong>3D</strong> FG devices.<br />

� CT is more process-friendly.<br />

C.H. Hung, et al., (Macronix),<br />

VLSI 2011<br />

17


SONOS/TANOS<br />

FG<br />

Various <strong>3D</strong> <strong>NAND</strong> Architectures<br />

~2006 2007 2008 2009 2010 2011<br />

Stacked <strong>NAND</strong><br />

IEDM 2006<br />

Multi TFT<br />

IEDM 2006<br />

Univ. of Tokyo<br />

S-SGT<br />

IEDM 2001<br />

BiCS<br />

VLSI Symp<br />

Stacking Devices:<br />

High Process Cost<br />

P-BiCS<br />

VLSI Symp<br />

TCAT<br />

VLSI Symp<br />

VSAT<br />

VLSI Symp<br />

VG-<strong>NAND</strong><br />

VLSI Symp<br />

VG TFT<br />

VLSI Symp<br />

DC -SF<br />

IEDM<br />

Hybrid <strong>3D</strong><br />

IMW<br />

PNVG TFT<br />

VLSI Symp<br />

BiCS Concept: Low Process Cost<br />

18


In 2010, the Last of Several Crucial<br />

Elements Fell into Place for <strong>3D</strong> <strong>NAND</strong><br />

2005, BE-SONOS, (Macronix)<br />

2007, BiCS (Toshiba)<br />

2009, Vertical Gate (VG) <strong>NAND</strong> (Samsung)<br />

2010, <strong>3D</strong> Decoding (Macronix)<br />

There are occasionally short windows in time when incredibly<br />

important things get invented that shape the lives of humans<br />

– Steve Wozniak<br />

19


Macronix’s BE-SONOS <strong>3D</strong> <strong>NAND</strong><br />

� 75nm half-pitch, 8-layer device is fabricated.<br />

� Equivalent cell size = 0.001406 um 2 (MLC).<br />

� Each device is a double-gate TFT BE-SONOS device.<br />

H. T. Lue et al., (Macronix), VLSI 2010<br />

20


<strong>3D</strong> Decoding Method A —<br />

by Using Island Gate Devices<br />

H. T. Lue, et al., (Macronix), VLSI 2010<br />

� The method uses self-boosting scheme.<br />

� Conventional WL, BL are grouped into “planes”.<br />

� One additional SSL’s device also grouped into “planes”.<br />

� Three planes select a memory cell.<br />

21


<strong>3D</strong> Decoding Method B —<br />

by Using P-N Polysilicon Diode<br />

� 1 st phase, decodes a <strong>NAND</strong> vertical plane, by conventional selfboosting.<br />

� 2 nd phase, decodes a layer in the selected plane by source-side<br />

biasing.<br />

C.H. Hung et al., (Macronix), VLSI 2011<br />

22


Comparison among the Architectures<br />

[P-BiCS] R. Katsumata, et al, VLSI Symposia, pp. 136-137, 2009. [TCAT] J. Jang, et al, VLSI Symposia, pp. 192-193, 2009. [VSAT]<br />

J. Kim, et al, VLSI Symposia, pp. 186-187, 2009. [VG] W. Kim, et al, VLSI Symposia, pp. 188-189, 2009.<br />

23


Outline<br />

� Why Does <strong>NAND</strong> Go to <strong>3D</strong>?<br />

� Design a <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Challenges and Opportunities in <strong>3D</strong> CT<br />

<strong>NAND</strong> <strong>Flash</strong> <strong>Memory</strong><br />

� Summary<br />

24


Process Integration for <strong>3D</strong> CT <strong>NAND</strong><br />

<strong>Flash</strong> <strong>Memory</strong><br />

� <strong>3D</strong> memory in FEOL or BEOL?<br />

� CMOS under or beside the memory array?<br />

� How to handle PL layers left on periphery area<br />

� Planarization between <strong>3D</strong> memory and 2D CMOS<br />

� Thermal budget management<br />

Takashi Maeda, et al., (Toshiba), VLSI 2009<br />

25


HK-MG for Better Performance<br />

� HK can reduce the E-field and suppress the gate injection.<br />

� MG can reduce WL resistivity for faster R/W.<br />

� SEMATECH has been engaging HK-MG for years. The<br />

experience should be very useful to <strong>3D</strong> CT <strong>NAND</strong><br />

community.<br />

Jaehoon Jang, et al., (Samsung), VLSI 2009<br />

26


Contact Holes for Layers<br />

H. Tanaka, et al., (Toshiba), VLSI 2007<br />

Jaehoon Jang, et al., (Samsung), VLSI 2009<br />

� Contact holes for layers are very<br />

area consuming.<br />

� Which approach is the most<br />

compact and manufacturable?<br />

Jiyoung Jim, et al., (UCLA), VLSI 2008<br />

27


Patterning and Etching<br />

� At 5xnm node, <strong>3D</strong> memory<br />

should be more than 32<br />

layers, in order to compete<br />

with 1Z nm MLC <strong>NAND</strong>.<br />

� For 30nm layer pitch, 32<br />

layers gives a stack height<br />

of 960nm.<br />

� The hole etching is<br />

challenging not only due<br />

to the high A/R but also<br />

due to different materials.<br />

Jungdal Choi, et al., (Samsung), VLSI 2011<br />

28


Scaling or Stacking or MLC<br />

� In <strong>3D</strong> VG <strong>NAND</strong>, there<br />

are 3 ways to shrink<br />

equivalent cell size.<br />

� Pitch scaling<br />

� BL gap fill-in<br />

� WL bridging<br />

� Layer stacking<br />

� Deep etching and<br />

profile control<br />

� Multi-level cell<br />

� Device variation<br />

� Which is the right way in<br />

terms of business?<br />

Relative Bit Cost<br />

Ref. (25nm MLC FG <strong>NAND</strong>)<br />

1<br />

Log scale<br />

F=66nm, 6F 2<br />

F=50nm, 6F 2<br />

F=35nm, 4F 2<br />

F=25nm, 4F 2<br />

F=25nm, 6F 2<br />

VG possible<br />

0 5 10 15 20 25 30<br />

Number of Layer for <strong>3D</strong> stacks<br />

29


Polysilicon TFT Channel Engineering<br />

M. Mizukami, et al., (Toshiba), SSDM 2009<br />

� The Worst-On-Current (WOC) of<br />

the <strong>NAND</strong> string is strongly<br />

affected by the electron mobility<br />

in polysilicon. It should be<br />

carefully engineered.<br />

� Polysilicon uniformity on the<br />

same layer and layer-to-layer<br />

uniformity are both challenging.<br />

Y. Fukuzumi, et al., (Toshiba), VLSI 2007<br />

30


In 2D-to-<strong>3D</strong> Paradigm Shift,<br />

Challenges = Opportunities<br />

� By 2013, <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong> is going<br />

into commercialization. This will<br />

be the biggest paradigm shift in<br />

NVM business.<br />

Jungdal Choi, et al., (Samsung), VLSI 2011<br />

� To make <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong><br />

happen, collaboration should be<br />

considered.<br />

31


Summary<br />

� 2D FG <strong>NAND</strong> is running out of electrons. <strong>3D</strong> is a<br />

must to meet demands.<br />

� For <strong>3D</strong> <strong>NAND</strong> <strong>Flash</strong>, CT type is more processfriendly,<br />

and VG is the most scalable architecture.<br />

� Single deep etching (for realizing the BiCS<br />

concept) and polysilicon TFT device uniformity are<br />

the most challenging topics.<br />

� Macronix and other <strong>NAND</strong> giants are dedicated in<br />

this field for years. To accelerate the progress,<br />

collaboration is a good way, and should be<br />

considered.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!