29.01.2013 Views

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

270 Mult<strong>ipl</strong>e and L<strong>in</strong>e Integrals [Ch. 7<br />

2. Improper double and tr<strong>ipl</strong>e <strong>in</strong>tegrals.<br />

a) An <strong>in</strong>f<strong>in</strong>ite region. If a function f (x, y) is cont<strong>in</strong>uous <strong>in</strong> an unbounded<br />

region 5, then we put<br />

\{f(x, y) dx dy = lim (<br />

\ f (x, y) dx dy, (1)<br />

" S U<br />

W<br />

where a is a f<strong>in</strong>ite region ly<strong>in</strong>g entirely with<strong>in</strong> S, where a -+ S signifies that<br />

we expand the region o by an arbitrary law so that any po<strong>in</strong>t of 5 should<br />

enter it and rema<strong>in</strong> <strong>in</strong> it. If there is a limit on the right and if it does not<br />

depend on the choice of the region o , then the correspond<strong>in</strong>g improper <strong>in</strong>tegral<br />

is called convergent , otherwise it is divergent.<br />

If the <strong>in</strong>U'grand / (,v, //) is nonnegative [f (x, y)^Q], then for the convergence<br />

of an <strong>in</strong>irioper <strong>in</strong>tegral it is necej-sary and sufficient for the limit<br />

on the right of (1) lo exist at least for one system of regions o that exhaust<br />

the region 5.<br />

b) A discont<strong>in</strong>uous function. If a function / (x, y) is everywhere cont<strong>in</strong>uous<br />

<strong>in</strong> a bounded closed region S, exce<strong>pt</strong> the po<strong>in</strong>t P (a, b), then we put<br />

(*, y)dxdy=\\m f(x,y)dxdy. (2)<br />

where S6 is a region obta<strong>in</strong>ed from S by elim<strong>in</strong>at<strong>in</strong>g a small region of dia<br />

meter e that conta<strong>in</strong>s the ro<strong>in</strong>t P. If (2) has a limit that does not depend<br />

on the tyre of small regions elim<strong>in</strong>ated from 5, the improper <strong>in</strong>tegral under<br />

consideration is called convergent, otherwise it is divergent.<br />

If /(A, //)^>0, then the limit on the ripht of (2) is not dependent on the<br />

type of regions elim<strong>in</strong>ated from S; for <strong>in</strong>stance, such regions may be circles<br />

of radius with centre at P.<br />

The conce<strong>pt</strong> of improper double <strong>in</strong>tegrals is readily extended to the case<br />

of tr<strong>ipl</strong>e <strong>in</strong>tegrals.<br />

Example 2. Test for convergence<br />

is}<br />

dxdy<br />

where S is the entire j/-plane.<br />

Solution. Let a be a circle of radius Q with centre at the coord<strong>in</strong>ate<br />

orig<strong>in</strong>. Pass<strong>in</strong>g to polar coord<strong>in</strong>ates for p^ 1, we have<br />

If p< 1, then lim 7 (a) = lim /(a) =00 and the <strong>in</strong>tegral diverges. But if p> 1,<br />

O -* S ~f Q QC<br />

then lim 7(o)= r and the <strong>in</strong>tegral converges. For p=l we have<br />

o - a P *<br />

,<br />

3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!