29.01.2013 Views

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

Problems in Mathematical Analysis.pdf - pwp.net.ipl.pt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

104 Extrema and the Geometric Applications of a Derivative [Ch. 3<br />

Solution. X = 4* 8 , Y--<br />

1 + 6* 2<br />

Elim<strong>in</strong>at<strong>in</strong>g the parameter x, we f<strong>in</strong>d<br />

the equation of the evolute <strong>in</strong> explicit form, Y o' + ^lT")<br />

The <strong>in</strong>volute of a curve is a curve for which the given curve is an<br />

evolute.<br />

The normal MC of the <strong>in</strong>volute P 2 is a tangent to the evolute P,; the<br />

length of the arc CC l of the evolute is equal to the correspond<strong>in</strong>g <strong>in</strong>crement<br />

Solution.<br />

1<br />

. ,<br />

a cosh 2<br />

36<br />

S<strong>in</strong>ce<br />

J<br />

<strong>in</strong> the radius of curvature CC, M,C, AfC;<br />

that is why the <strong>in</strong>volute P is<br />

2 also called the<br />

evolvent of the curve P, obta<strong>in</strong>ed by unw<strong>in</strong>d<strong>in</strong>g<br />

a taut thread wound onto P, (Fig. 36). To each<br />

evolute there corresponds an <strong>in</strong>f<strong>in</strong>itude of <strong>in</strong>volutes,<br />

which are related to different <strong>in</strong>itial<br />

lengths of thread.<br />

4. Vertices of a curve. The vertex of a curve<br />

is a po<strong>in</strong>t of the curve at which the curvature<br />

has a maximum or a m<strong>in</strong>imum. To determ<strong>in</strong>e<br />

the vertices of a curve, we form the expression<br />

of the curvature K and f<strong>in</strong>d its extremal po<strong>in</strong>ts.<br />

In place of the curvature K we can take the<br />

radius of curvature R 7-7^ and seek its extremal<br />

^ I<br />

I<br />

po<strong>in</strong>ts if the computations are simpler <strong>in</strong> this case.<br />

Example 2. F<strong>in</strong>d the vertex of the catenary<br />

y a cosh (a > 0).<br />

// = s<strong>in</strong>h and (/" = cosh<br />

a<br />

J<br />

a a<br />

X rf/? X<br />

it follows that tf =<br />

and, hence, /? = acosh 2<br />

. We have -j- = s<strong>in</strong>h2 . Equat<strong>in</strong>g M 6<br />

x a dx a<br />

a<br />

J I") y<br />

the derivative -j to zero, we get s<strong>in</strong>h 2<br />

ax a<br />

0, whence we f<strong>in</strong>d the sole<br />

critical po<strong>in</strong>t * = Q Comput<strong>in</strong>g the second derivative and putt<strong>in</strong>g <strong>in</strong>to<br />

2 A:<br />

it the value x Q, we get ,= cosh2 = -r-y-<br />

> 0. Therefore,<br />

a a<br />

a<br />

* = is the m<strong>in</strong>imum po<strong>in</strong>t of the radius of curvature (or of the maximum<br />

of curvature) of the catenary. The vertex of the catenary f/ = acosh is,<br />

thus, the po<strong>in</strong>t A (0, a).<br />

F<strong>in</strong>d the differential of the arc, and also the cos<strong>in</strong>e and s<strong>in</strong>e<br />

of the angle formed, with the positive ^-direction, by the tangent<br />

to each of the follow<strong>in</strong>g curves:<br />

993. * 2<br />

2<br />

+ = */ a 2<br />

(circle).<br />

994. ~2 + ^-=l (ellipse).<br />

995 y* = 2px (parabola).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!