28.01.2013 Views

Critique and sensitivity analysis of the compensation function used ...

Critique and sensitivity analysis of the compensation function used ...

Critique and sensitivity analysis of the compensation function used ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3 445b 0509637 5


. ................... .<br />

Printed in <strong>the</strong> llnited States <strong>of</strong> America. Available from<br />

National Technical Information Service<br />

U.S. Departmen? <strong>of</strong> Commerce<br />

5285 Port Royal Road, Snringfield, Virginia 22161<br />

Price: Printed Copy $5.50; Micr<strong>of</strong>iche $3.00<br />

................... .........<br />

This report was prepared as an account <strong>of</strong> work sponsored by <strong>the</strong> United States<br />

Government. Nei<strong>the</strong>r <strong>the</strong> United States nor <strong>the</strong> Energy Research <strong>and</strong> Development<br />

AdrniriisrrarioniUnited States Nuclear Regulatory Commission, nor any <strong>of</strong> <strong>the</strong>ir<br />

employees, nor any <strong>of</strong> <strong>the</strong>ir contractors, subcontractors, or <strong>the</strong>ir employees, makes<br />

any warranty, express or implied, or assuiiies any legal liability or responsibility for<br />

<strong>the</strong> accuracy, completeness or usefulness <strong>of</strong> any information, apparatus, product or<br />

process disclosed, or represents that its use would not infringe privately owned rights.<br />

. ..I_..... ................... I_


Contract NQ. kl-7405-eng-26<br />

CRITIQUE AND SENSITIVITY ANALYSIS OF THE<br />

COMPENSATION FUNCTION USED IN THE LMS<br />

HUDSQN RIVER STRIPED BASS MODELS<br />

1<br />

W, Van Winkle, S. W, Christensen, <strong>and</strong> G. Kauffman<br />

ENVIRONMENTAL SCIENCES DIVISION<br />

Pub? i cation No. 944<br />

'Graduate student, University o f Tennessee.<br />

Date Published: December 1976<br />

OAK RIDGE NATIONAL LABORATORY<br />

Oak Ridge, Tennessee 37830<br />

operated by<br />

UNION CARBIDE CORPORATION<br />

for <strong>the</strong><br />

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION<br />

0 RNL/TM- 543 7<br />

3 4456 0507637 5


ABSTRACT<br />

VAN WINKLE, W., S. W. CHRISTENSEN, <strong>and</strong> G. KAUFFMAN. 1976.<br />

<strong>Critique</strong> <strong>and</strong> <strong>sensitivity</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong> <strong>used</strong> in <strong>the</strong> LMS Hudson River striped bass<br />

model s . ORNL/TM-5437. Oak Ri dge National Laboratory,<br />

Oak Ridge, Tennessee. p p .<br />

The description <strong>and</strong> justification for <strong>the</strong> <strong>compensation</strong> <strong>function</strong><br />

developed <strong>and</strong> <strong>used</strong> by Lawler, Matusky & Skelly Engineers (LMS) (under<br />

contract to Consolidated Edison Company <strong>of</strong> New York) in <strong>the</strong>ir Hudson<br />

River striped bass models is presented. A <strong>sensitivity</strong> <strong>analysis</strong> <strong>of</strong><br />

this <strong>compensation</strong> <strong>function</strong> is reported, based on computer runs with<br />

a modified version <strong>of</strong> <strong>the</strong> LMS completely mixed (spatially homogeneous)<br />

model. Two types <strong>of</strong> <strong>sensitivity</strong> <strong>analysis</strong> were performed: (1) a<br />

parametric study involving at least five levels for each <strong>of</strong> <strong>the</strong> three<br />

parameters in <strong>the</strong> <strong>compensation</strong> <strong>function</strong>, <strong>and</strong> (2) a study <strong>of</strong> <strong>the</strong> form<br />

<strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> itself, involving comparison <strong>of</strong> <strong>the</strong> LMS<br />

<strong>function</strong> with Functions having no <strong>compensation</strong> at st<strong>and</strong>ing crops<br />

ei<strong>the</strong>r less than or greater than <strong>the</strong> equilibrium st<strong>and</strong>ing crops. For<br />

<strong>the</strong> range <strong>of</strong> parameter values <strong>used</strong> in this study, estimates <strong>of</strong> percent<br />

reduction are least sensitive to changes in YS, <strong>the</strong> equilibrium<br />

st<strong>and</strong>ing crop, <strong>and</strong> most sensitive to changes in KXO, <strong>the</strong> minimum mortality<br />

rate coefficient. Eliminating <strong>compensation</strong> at st<strong>and</strong>ing crops<br />

ei<strong>the</strong>r less than or greater than <strong>the</strong> equilibrium st<strong>and</strong>ing crops results<br />

in higher estimates <strong>of</strong> percent reduction. For all values <strong>of</strong> KXO <strong>and</strong><br />

for values <strong>of</strong> YS <strong>and</strong> KX at <strong>and</strong> above <strong>the</strong> baseline values, eliminating<br />

<strong>compensation</strong> at st<strong>and</strong>ing crops less than <strong>the</strong> equi 1 i bri urn st<strong>and</strong>ing crops<br />

results in a greater increase in percent reduction than eliminating com-<br />

pensation at st<strong>and</strong>ing crops greater than <strong>the</strong> equilibrium st<strong>and</strong>ing crops.<br />

The conceptual basis for <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong> is criticized,<br />

particularly <strong>the</strong> lack <strong>of</strong> a sound biological basis for <strong>the</strong> left limb <strong>of</strong><br />

<strong>the</strong> <strong>function</strong>. An alternative <strong>function</strong>al form is presented. The lack<br />

<strong>of</strong> a relationship between any <strong>of</strong> <strong>the</strong> three parameters in <strong>the</strong> LMS<br />

<strong>compensation</strong> <strong>function</strong> <strong>and</strong> measureable biological phenomena is also<br />

criticized.<br />

iii


iv<br />

Toge<strong>the</strong>r, <strong>the</strong> critique <strong>and</strong> <strong>sensitivity</strong> <strong>analysis</strong> <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong> <strong>used</strong> in <strong>the</strong> LMS Hudson River striped bass models highlight <strong>the</strong><br />

need for caution in relying on <strong>the</strong>se models to reach a reasoned decision<br />

on <strong>the</strong> potential impact <strong>of</strong> <strong>the</strong> Hudson River power plants on <strong>the</strong> striped<br />

bass population.


TABLE OF CONTENTS<br />

ABSTRACT ............................. iii<br />

LISTOF FIGURES ......................... vii<br />

LIST OF TABLES .......................... ix<br />

I NTRODUCT I ON ........................... 1<br />

LMS FORMULATION OF COMPENSATION ................. 1<br />

SENSITIVITY ANALYSIS OF THE COMPENSATION FUNCTION USING<br />

THE LMS COMPLETELY MIXED STRIPED BASS MODEL ........... 8<br />

Justification for Using <strong>the</strong> Completely Mixed Model ..... 8<br />

Methods ........................... 8<br />

Results ........................... 13<br />

Page<br />

Sensitivity <strong>analysis</strong> for YS .............. 15<br />

Sensitivity <strong>analysis</strong> for KX .............. 17<br />

Sensitivity <strong>analysis</strong> for KXO .............. 19<br />

Disablement <strong>of</strong> <strong>the</strong> left or right limb <strong>of</strong> <strong>the</strong><br />

<strong>compensation</strong> <strong>function</strong> ................. 21<br />

Summary ........................... 27<br />

DISCUSSION ............................ 28<br />

Conceptual Basis for <strong>the</strong> LMS Compensation Function ..... 28<br />

Sensitivity Analysis .................... 32<br />

REFERENCES ............................ 35<br />

APPENDIX A . Cross reference listing <strong>of</strong> <strong>the</strong> Lawler. Matusky &<br />

Skelly Engineers completely mixed model for <strong>the</strong><br />

Hudson River striped bass population. as modified<br />

by Oak Ridge National Laboratory .......... 37<br />

APPENDIX B . Input data cards for sample run ........... 67<br />

V


vi<br />

APPENDIX e. Output from sample run . . . . . . . . . . . . . . . 69<br />

APFENDIX D. Tabulation <strong>of</strong> detailed results from <strong>the</strong><br />

various <strong>sensitivity</strong> analyses . . . . . . . . . . . . 89<br />

Page


Figure<br />

LIST OF FIGURES<br />

Exponential mortality coefficient vs concentration<br />

(Juvenile 1) (modified from Fig. 9 <strong>of</strong> ref. 2).<br />

Equivalent symbol s <strong>used</strong> el sewhere in this report:<br />

YS = N,; KX = KE; KXO = 16. ...............<br />

Probability <strong>of</strong> survival vs concentration (Juvenile<br />

1) (modified from Fig. 10 <strong>of</strong> ref. 2). Equivalent<br />

symbols <strong>used</strong> elsewhere in this report:<br />

YS = Pa,;<br />

KX = KE; KXO = KO. ...................<br />

Exponential mortal i ty coefficient vs concentration<br />

(Juvenile 1) (modified from Fig. 9 <strong>of</strong> ref. 2),<br />

showing <strong>the</strong> effect on <strong>the</strong> curve <strong>of</strong> disabling <strong>the</strong><br />

left or right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>.<br />

Equivalent symbol s <strong>used</strong> el sewhere in this report:<br />

YS N,; KX = KE; KXO = KO. ...............<br />

Sensitivity <strong>of</strong> (a) percent reduction <strong>of</strong> year1 ings<br />

(b) percent reduction <strong>of</strong> adults, <strong>and</strong> (c) NMAX/YS to<br />

changes in YS values ..................<br />

Sensitivity <strong>of</strong> (a) percent reduction <strong>of</strong> yearlings,<br />

(b) percent reduction <strong>of</strong> adults, <strong>and</strong> (c) NMAX/YS to<br />

changes in KX values ..................<br />

Sensitivity <strong>of</strong> (a) percent reduction <strong>of</strong> yearlings <strong>and</strong><br />

(b) <strong>and</strong> (c) percent reduction <strong>of</strong> adults to changes in<br />

KXO values. Figure 6c is a plot <strong>of</strong> results from model<br />

runs by <strong>the</strong> applicant (Ref. 7) .............<br />

Dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings<br />

at year 40 on <strong>the</strong> value <strong>of</strong> YS with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong><br />

<strong>compensation</strong> <strong>function</strong> disabled (e-), left limb<br />

disabled ( G 4 ) , <strong>and</strong> right limb disabled (OF) .<br />

Dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings<br />

at year 40 on <strong>the</strong> value <strong>of</strong> KX with nei<strong>the</strong>r limb <strong>of</strong><br />

<strong>the</strong> <strong>compensation</strong> <strong>function</strong> disabled (e-), left<br />

limb disabled (A+), <strong>and</strong> right limb disabled<br />

(0--) .......................<br />

Dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings<br />

at year 40 on <strong>the</strong> value <strong>of</strong> KXO with nei<strong>the</strong>r limb <strong>of</strong><br />

<strong>the</strong> <strong>compensation</strong> <strong>function</strong> disabled (t----.), left<br />

limb disabled (A+), <strong>and</strong> right limb disabled<br />

(o------Q) .......................<br />

vi i<br />

Page<br />

4<br />

6<br />

12<br />

16<br />

18<br />

20<br />

22<br />

24<br />

26


viii<br />

Figure Page<br />

10 Schematic representation <strong>of</strong> <strong>the</strong> population density<br />

correctl’on factor for <strong>the</strong> apparent survival<br />

probability <strong>used</strong> in <strong>the</strong> ORNL computer simulation<br />

model for <strong>the</strong> striped bass young-<strong>of</strong>-<strong>the</strong>-year<br />

population in <strong>the</strong> Hudson River . . . . . . . . . . . . . 36


LIST OF TABLES<br />

Table Page<br />

1 Parameter values <strong>used</strong> by ORNL in its <strong>sensitivity</strong><br />

<strong>analysis</strong> <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong> e . . . . . . . . 10<br />

2<br />

Code number <strong>and</strong> description <strong>of</strong> output variables<br />

tabulated by ORNL . . . . . . . . . . . . . . . . . . . . 14<br />

3 Values <strong>of</strong> maximum probability <strong>of</strong> survival (PSO)<br />

corresponding to <strong>the</strong> KXO values <strong>used</strong> by LMS . . . . . . . . 33<br />

ix


INTRODUCTION<br />

The primary issue in controversy with respect to estimating <strong>the</strong><br />

effects <strong>of</strong> entrainment <strong>and</strong> impingement on <strong>the</strong> Hudson River striped bass<br />

population is <strong>the</strong> extent to which regulatory agencies, utilities, <strong>and</strong><br />

society should rely on compensatory decreases in natural mortal i ty to<br />

<strong>of</strong>fset <strong>the</strong> increased mortality due to <strong>the</strong> power plants. This issue is<br />

<strong>of</strong> particular importance in terms <strong>of</strong> how <strong>compensation</strong> is included in<br />

striped bass simulation models, because <strong>the</strong> h<strong>and</strong>1 ing <strong>of</strong> <strong>compensation</strong><br />

appears to account for <strong>the</strong> major part <strong>of</strong> <strong>the</strong> difference among<br />

estimates <strong>of</strong> percent reduction in <strong>the</strong> striped bass population.<br />

The objectives <strong>of</strong> this report are (1) to present <strong>the</strong> description<br />

<strong>and</strong> justification for <strong>the</strong> <strong>compensation</strong> <strong>function</strong> developed <strong>and</strong> <strong>used</strong> by<br />

Lawler, Matusky & Skelly Engineers (LMS) (under contract to Consolidated<br />

Edison Company <strong>of</strong> New York), <strong>and</strong> (2) to present a <strong>sensitivity</strong> <strong>analysis</strong><br />

<strong>and</strong> critique <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong>.<br />

1,2,3<br />

LMS FORMULATION OF COMPENSATION<br />

LMS describes <strong>and</strong> justifies <strong>the</strong> ma<strong>the</strong>matical formulation for<br />

density-dependent mortality <strong>of</strong> early life stages, which is <strong>used</strong> in all<br />

three <strong>of</strong> <strong>the</strong> LMS striped bass models to estimate <strong>the</strong> percent reduction<br />

due to power plant operation, as follows: 2<br />

"Quantitative accounting for <strong>compensation</strong> in biological<br />

systems is simply a recognition that, as in'o<strong>the</strong>r physical<br />

systems, first order kinetics cannot be employed to describe<br />

survival kinetics over <strong>the</strong> whole range <strong>of</strong> population. This<br />

recognition requires that ra<strong>the</strong>r than using <strong>the</strong> simple first<br />

order decay <strong>function</strong> exclusively to describe natural survival<br />

behavior, a more complex expression must be employed.<br />

"'This expression should reduce to <strong>the</strong> first order <strong>function</strong><br />

over <strong>the</strong> range <strong>of</strong> populations where such is appropriate, but<br />

should also recognize <strong>the</strong> tendency <strong>of</strong> <strong>the</strong> system to compensate<br />

itself when driven substantially beyond this range in ei<strong>the</strong>r<br />

<strong>the</strong> direction <strong>of</strong> increased populations or in <strong>the</strong> direction<br />

<strong>of</strong> decreased populations. This is <strong>the</strong> concept <strong>of</strong> homeostasis<br />

or 'bi<strong>of</strong>eedback', that is, that a living system tends to be<br />

self-stabilizing.


"The first order decay expression is written:<br />

in which:<br />

Rate <strong>of</strong> mortal ity, fishlunit volurne/day = KEN<br />

2<br />

N = number <strong>of</strong> fish per unit volume <strong>of</strong> water<br />

KE = unit first order decay rate, a constant having <strong>the</strong><br />

units <strong>of</strong> days -I.<br />

"This expression was <strong>used</strong> in <strong>the</strong> early modeling El] to describe<br />

<strong>the</strong> natural mortality behavior in any life stage. The<br />

numerical value <strong>of</strong> KF is obtained when <strong>the</strong> duration <strong>of</strong> <strong>the</strong><br />

stage in days <strong>and</strong> thhe percent survival for that stage are known.<br />

in which:<br />

"The kinetic expression employed in <strong>the</strong> transport model<br />

was developed by employing <strong>the</strong> first order form, in which a<br />

general rate coefficient K, ra<strong>the</strong>r than <strong>the</strong> constant KE, is<br />

introduced <strong>and</strong> is allowed to vary with fish concentration.<br />

"For any stage, K is varied with <strong>the</strong> prevailing concentration<br />

so that <strong>the</strong> rate <strong>of</strong> mortality in that stage increases with<br />

increasing concentration (due to crowding , 1 ess food per<br />

unit number <strong>of</strong> fish, more food [fish] for predators, etc.)<br />

<strong>and</strong> decreases with decreasing concentration for <strong>the</strong> converse<br />

reasons. Thus, <strong>the</strong> concept <strong>of</strong> homeostasis is preserved in<br />

<strong>the</strong> model.<br />

"The <strong>function</strong>al form chosen for variation <strong>of</strong> K is:<br />

K =: general ized unit mortal i ty rate, day-'<br />

KE = conventional first order or "equilibrium" rate,<br />

day-l<br />

KO = minimum unit mortality rate consistent with system<br />

biology, day-'<br />

Ns = "saturation" or equilibrium population level, fish<br />

per unit volume<br />

N = actual fish concentration at any point in time<br />

(week <strong>and</strong> year) <strong>and</strong> space (river location)


"This kinetic model has been devel oped after extensi ve<br />

review <strong>of</strong> population dynamics literature ([a] through<br />

[f]). Many <strong>of</strong> <strong>the</strong> concepts described herein are presented<br />

in <strong>the</strong>se earlier references in a largely qualitative<br />

fashion; <strong>the</strong>y have been quantified here.<br />

"Figure [l], which is a graphical representation <strong>of</strong> <strong>the</strong><br />

behavior <strong>of</strong> Equation 1 for a given set <strong>of</strong> rate constants<br />

(KE, KO, Ns), shows how <strong>the</strong> generalized rate coefficient,<br />

K, varies with population density. Explanation <strong>of</strong> <strong>the</strong><br />

behavior <strong>of</strong> Equation 1 <strong>and</strong> Figure [l] follows. [The<br />

Figure 1 in this report is a modified version <strong>of</strong> <strong>the</strong><br />

original LMS Figure 9 <strong>of</strong> Ref. 2.1<br />

"Consideration <strong>of</strong> Equation 1 shows that when <strong>the</strong> actual<br />

population, N, is equal to <strong>the</strong> "saturation" population,<br />

<strong>the</strong> K rate reduces to <strong>the</strong> constant KE, signifying<br />

normal first order behavior.<br />

"What we are saying is that, on a long-term basis,<br />

exclusive <strong>of</strong> <strong>the</strong> plant's effect, we are considering<br />

<strong>the</strong> estuary juvenile striped bass population to have<br />

reached some "saturation1' or "equilibrium" level<br />

This does not imply that <strong>the</strong> estuary can never support<br />

more life - it simply says that for <strong>the</strong> existing set<br />

<strong>of</strong> background conditions , i .e. , conditions both<br />

natural <strong>and</strong> man-made that exist prior to <strong>the</strong> operation<br />

<strong>of</strong> <strong>the</strong> plant, <strong>the</strong> river is "in balance'' or is supporting<br />

that level <strong>of</strong> life which it is capable <strong>of</strong> supporting,<br />

considering all <strong>the</strong> external factors, both good <strong>and</strong> bad,<br />

that presently exist.<br />

aNicholson, A. J., "The Self Adjustment <strong>of</strong> Population to Change,"<br />

Cold Spring Harbor Symposium, 1957, Quant. Biol. 22:153-132.<br />

3<br />

bNicholson, A. J., "An Outline <strong>of</strong> <strong>the</strong> Dynamics <strong>of</strong> Animal Populations3"<br />

Australian Journal <strong>of</strong> Zoology, 2:9-65, 1954.<br />

'Smith, F. E., "Population Dynamics in Daphnia magna <strong>and</strong> a New<br />

Model for Popul ati on Growth, I' Ecol ogy 44: 651 -663, 1 963<br />

dErrington, P. L., "Factors Limiting Higher Vertebrate Populations,"<br />

Quart. Rev. Biol, 21 :144-177, 1946.<br />

e<br />

Mangersky, P. J., Cunningham, W. J., "Time Lag in Population Models,"<br />

Cold Spring Harbor Symposium, 1957, Quant. Biol. 22:329-338.<br />

fPatten, B. C., "System Analysis <strong>and</strong> Simulation in Ecology,'' Academic<br />

Press, New York, pages 275 through 278, 1971 .)


0.1 8<br />

0.1 6<br />

0.1 4<br />

0.12<br />

; 0.10<br />

W<br />

\<br />

-<br />

t<br />

o. a<br />

0.6<br />

0.4<br />

0.2<br />

4<br />

OHN L- DWG 76 -885 6<br />

NMAX/ N,, RATIO OF MAXIMUM MODEL-CALCUL-ATEB CONCENTRATIQN TO<br />

0<br />

0 0.2 0.4 0.6 0.8 1.0<br />

N, CONCENTRATION (nurnber/1000 f13)<br />

1.2 4.4<br />

Fig. 1. Exponential mortality coefficient vs concentration<br />

(Juvenile 1) (modified from Fig. 9 <strong>of</strong> ref. 2). Equivalent symbols<br />

<strong>used</strong> elsewhere in this report: YS = N,; KX = KE; KXO = KO.


"These include, for exaniple, <strong>the</strong> possibility that<br />

railroad construction before <strong>the</strong> turn <strong>of</strong> <strong>the</strong> century on<br />

both sides <strong>of</strong> <strong>the</strong> river may have cut <strong>of</strong>f some natural<br />

nursery areas, that <strong>the</strong> Sac<strong>and</strong>aga <strong>and</strong> Indian<br />

Lake Reservoirs in <strong>the</strong> Adirondack Mountains near <strong>the</strong><br />

headwaters <strong>of</strong> <strong>the</strong> Hudson are probably posing a different<br />

freshwater regime than once existed, etc,<br />

"Whe<strong>the</strong>r we are close or far from <strong>the</strong> <strong>the</strong>oretical<br />

ultimate saturation that might be reached under <strong>the</strong><br />

best <strong>of</strong> conditions is beside <strong>the</strong> point. We are only<br />

interested in saying that before a specific new<br />

influence enters <strong>the</strong> river, <strong>the</strong> river is probably not<br />

in a state in which significant departure from a<br />

balanced populatian exists.<br />

"The ma<strong>the</strong>matics chosen represent this notion quite<br />

well The plateau shown in Figure [l], extending over<br />

a concentration range <strong>of</strong> .42 [per one thous<strong>and</strong>] cubic<br />

feet to .68 [per one thous<strong>and</strong>] cubic feet <strong>of</strong> juvenile<br />

I'sg <strong>and</strong> in an approximate sense over an even broader<br />

range, corresponds to <strong>the</strong> saturation level. The decay<br />

rate is constant at -0536 day-1 <strong>the</strong> chosen value <strong>of</strong> KE.<br />

Note that this corresponds to 20% survival over 30 days<br />

<strong>of</strong> life <strong>of</strong> any juvenile I: complement.<br />

over this relatively broad range are essentially first<br />

order, <strong>the</strong> system is in relative balance or at relative<br />

equilibrium, <strong>and</strong> <strong>the</strong>re is little active <strong>compensation</strong>.<br />

The important point is that this numerically apparent<br />

non-compensatory behavior is occurring over a re1 ati vely<br />

broad range centered about "existing" conditions in<br />

<strong>the</strong> river.<br />

5<br />

The kinetics<br />

""Tis notion is shown again in Figure [2] where survival<br />

rate versus concentration is plotted. [The Figure 2 in<br />

this report is a modified version <strong>of</strong> <strong>the</strong> original LMS<br />

Figure 10 <strong>of</strong> Ref. 2.1. The daily survival rate at<br />

which relative equilibrium is attained for this stage is<br />

.948. Mote that <strong>the</strong> carrying capacity concentration<br />

satisfying this plateau is in <strong>the</strong> range -42 to .68 per<br />

one thous<strong>and</strong> cubic feet for given values. On ei<strong>the</strong>r<br />

side <strong>of</strong> this plateau, we observe ei<strong>the</strong>r an increase or<br />

decrease in survival <strong>of</strong> existing concentration. Survival<br />

increases to compensate for lower concentration <strong>and</strong><br />

decreases ta compensate for higher concentration.<br />

"NOW, Equation 1 also indicates that as <strong>the</strong> fish con-<br />

centration drops <strong>of</strong>f, because <strong>of</strong> induced population-<br />

draining effects, <strong>the</strong> rate <strong>of</strong> mortality, K, continues<br />

to decrease until a minimum rate <strong>of</strong> mortality, l$, is<br />

reached. K approaches KO as <strong>the</strong> population decreases


0.98<br />

0.96<br />

0.94<br />

2 0.92<br />

1<br />

><br />

n<br />

3<br />

cn<br />

& 0.90<br />

>-<br />

t<br />

II<br />

.-<br />

m<br />

a<br />

m<br />

0.88<br />

a<br />

t<br />

. J<br />

-<br />

a<br />

n<br />

- 0.86<br />

0,<br />

0.84<br />

0.8 2<br />

0.80<br />

6<br />

0 RN L- D WG 76 - 0 8 5 7<br />

NMAX/N, , RATIO OF MAXIMUM MODEL-CALCULATED CONCENTRATION TO<br />

EQUl L IBR IUM CONCENTRATION<br />

0.5 4 .O 2 .o<br />

0 0.2 0.4 0.6 0.8 1.0<br />

A/, CONCENTRATION (number/!000 ft3)<br />

t- ~<br />

1.2 1.4<br />

Fig. 2. Probability <strong>of</strong> survival vs concentration<br />

(Juvenile 1) (modified from Fig. 10 <strong>of</strong> ref. 2). Equivalent<br />

symbols <strong>used</strong> elsewhere in this report: YS = N,; KX = KE;<br />

KXO = KO.


toward zero. Thus, may be interpreted as <strong>the</strong> minimum<br />

rate <strong>of</strong> mortality that will exist in <strong>the</strong> system when<br />

population influences on mortality (competition for food,<br />

availability to predators, etc.) are eliminated.<br />

"In this sense, KO has <strong>the</strong> same system interpretation as<br />

does KE <strong>and</strong> Ns, i.e., it is representative <strong>of</strong> <strong>the</strong> "now"<br />

condition in <strong>the</strong> estuary, taking into account all positive<br />

<strong>and</strong> negative, natural <strong>and</strong> man-made influences on <strong>the</strong><br />

system.<br />

"Equation 1, <strong>the</strong>refore, shows that, as concentrations<br />

ape reduced by plant effects, <strong>the</strong> mortality rate due<br />

to o<strong>the</strong>r effects will decrease, <strong>the</strong>reby compensating<br />

partially for <strong>the</strong> smaller numbers by allowing a<br />

larger fraction <strong>of</strong> <strong>the</strong> fish that remain to advance<br />

to <strong>the</strong> next stage. This will only partially <strong>of</strong>fset<br />

<strong>the</strong> effects <strong>of</strong> <strong>the</strong> plant, since each early stage is<br />

subjected to el<strong>the</strong>r entrainment or impingement by <strong>the</strong><br />

plant.<br />

"Note that in <strong>the</strong> presence <strong>of</strong> a factor which will<br />

tend to increase population, such as a year in which<br />

"everything is right," <strong>the</strong> mortality rate, K, will<br />

exceed KE <strong>and</strong> <strong>the</strong> tendency to increase <strong>the</strong> population<br />

will be controlled. Thus, <strong>compensation</strong> can be seen<br />

to be <strong>the</strong> mechanism which keeps a fluctuating<br />

population under control.<br />

non-compensating feed back system is discussed in<br />

detail in <strong>the</strong> early testimony.[l]<br />

7<br />

The fate <strong>of</strong> a fluctuating<br />

"In summary, <strong>the</strong>n, Equation 1 was chosen to represent<br />

background or existing survival kinetics in <strong>the</strong> model<br />

because it operates in a noma1 first order fashion<br />

about existing concentrations <strong>and</strong> will permit partial<br />

<strong>compensation</strong> if significant departures from existing<br />

levels occur upon introduction <strong>of</strong> new influences."<br />

LMS uses exactly <strong>the</strong> same <strong>compensation</strong> <strong>function</strong> in its real-time,<br />

two dimensional model .3 With one modification, LMS also uses <strong>the</strong><br />

same <strong>compensation</strong> <strong>function</strong> in its completely (totally) mixed model<br />

(i.e., spatially homogeneous model).' The one modification is that<br />

<strong>the</strong> "saturation" or equilibrium population density (fish per<br />

Ns 9<br />

unit volume) <strong>used</strong> in <strong>the</strong> two transport models, is replaced by YS, <strong>the</strong><br />

"saturation" or equilibrium st<strong>and</strong>ing crop for <strong>the</strong> entire Hudson River<br />

estuary .


SENSITIVITY ANALYSIS OF THE COMPENSATION FUNCTION<br />

USING THE LMS COMPLETELY MIXED STRIPED BASS MODEL<br />

Justification for Using <strong>the</strong> Completely Mixed Model<br />

8<br />

As indicated in <strong>the</strong> preceding section, LMS uses essentially <strong>the</strong><br />

same <strong>compensation</strong> <strong>function</strong> in all three or its striped bass models.<br />

We selected <strong>the</strong> completely iiiixed model for <strong>the</strong> detai 1 eii sensi ti vi ty<br />

<strong>analysis</strong> <strong>of</strong> this <strong>function</strong> because it is <strong>the</strong> easiest <strong>and</strong> least expensive<br />

<strong>of</strong> <strong>the</strong> three models to run. We have also performed a <strong>sensitivity</strong><br />

<strong>analysis</strong> <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong> using <strong>the</strong> LFSS tidai -averaged,<br />

4<br />

one dimensional model.<br />

Met ho cl s<br />

We started with <strong>the</strong> deck <strong>of</strong> computer cards for <strong>the</strong> transport <strong>and</strong><br />

5<br />

completely mixed models as supplied <strong>and</strong> documepted' by LMS <strong>and</strong> Can<br />

Edison. These two models consist <strong>of</strong> subroutines <strong>of</strong> a main program,<br />

with <strong>the</strong> main program calling whichever model is specified. We<br />

modified <strong>the</strong> main program to call only <strong>the</strong> cample"c1y mixed model <strong>and</strong><br />

left only those few subroutines required for <strong>the</strong> csmplletely mixed<br />

model. Additional changes were made in <strong>the</strong> program, relating primarily<br />

to input <strong>and</strong> output. lhe basic ma<strong>the</strong>matical formulation <strong>of</strong> <strong>the</strong> model<br />

was not altered except in one part <strong>of</strong> <strong>the</strong> investigation [<strong>the</strong> flattening<br />

out horizontally (i.e., disabling) <strong>of</strong> <strong>the</strong> right or 1eT.t limb <strong>of</strong> <strong>the</strong><br />

<strong>compensation</strong> Function]. A listing <strong>of</strong> <strong>the</strong> computer program as <strong>used</strong> by<br />

ORNL is given in Appendix A. Input data cards for a sample run are<br />

given in Appendix By <strong>and</strong> output from <strong>the</strong> sample run is given in Appendix<br />

C.<br />

We performed two types <strong>of</strong> <strong>sensitivity</strong> <strong>analysis</strong>: (1) a parametric<br />

study involving a range <strong>of</strong> values for each <strong>of</strong> <strong>the</strong> three parameters in<br />

<strong>the</strong> <strong>compensation</strong> <strong>function</strong>, <strong>and</strong> (2) a study <strong>of</strong> <strong>the</strong> form <strong>of</strong> <strong>the</strong> cempensation<br />

<strong>function</strong> itself involving disabling <strong>the</strong> left or right limb.<br />

The LMS <strong>compensation</strong> <strong>function</strong> has three parameters for each life<br />

stage:<br />

YS(rNs), <strong>the</strong> saturation or equilibrium st<strong>and</strong>ing crop; KX(=KE)


9<br />

<strong>the</strong> corresponding equilibrium mortality rate coefficient; <strong>and</strong> KXO(-K0),<br />

<strong>the</strong> minimum mortality rate coefficient (see Figs. 1 <strong>and</strong> 2). (The<br />

variables in all capital letters are <strong>the</strong> computer variable names, which<br />

are <strong>used</strong> throughout <strong>the</strong> remainder <strong>of</strong> this report. The variables in<br />

paren<strong>the</strong>ses are <strong>the</strong> ma<strong>the</strong>matical symbols <strong>used</strong> by Lawler, Matusky &<br />

Skelly Engineers as quoted earlier in this report.) For each <strong>of</strong> <strong>the</strong>se<br />

three parameters we carried out a separate <strong>sensitivity</strong> <strong>analysis</strong> using<br />

at least five different values for <strong>the</strong> parameter. The values <strong>of</strong> <strong>the</strong><br />

remaining two parameters were held constant at <strong>the</strong> baseline values.<br />

The baseline parameter values [Table l(a)] were selected as<br />

follows. The probability <strong>of</strong> survival (PS) <strong>and</strong> duration (DTE) were<br />

specified for each life stage. The PS values were selected so that<br />

<strong>the</strong> probability <strong>of</strong> survival frwm egg to yearling was 0.00001 <strong>and</strong> <strong>the</strong><br />

p ~ o ~ ~ <strong>of</strong> ~ survival i l i from ~ ~ Juvenile 1 through Juvenile 3 was 0.01,<br />

with <strong>the</strong> probability <strong>of</strong> survival <strong>the</strong> same for each <strong>of</strong> <strong>the</strong> three<br />

juvenile life stages. The DTE values are those <strong>used</strong> by LMS except<br />

for eggs (2.0 vs 1.5 days) <strong>and</strong> Juvenile 2 (100 days vs 180.5 days).<br />

aseline KX values were ca7culated as -ln(PS)/DTE. The model was run<br />

using <strong>the</strong>se KX values <strong>and</strong> KXO = KX for each life stage (i.e., no<br />

<strong>compensation</strong>) without <strong>the</strong> power plant in Operation. The program was<br />

modified ta select <strong>and</strong> print NMAX, <strong>the</strong> maximum st<strong>and</strong>ing crop calculated<br />

for each life stage during <strong>the</strong> simulation. Then baseline YS values<br />

were taken as one-half <strong>of</strong> <strong>the</strong>se maximum st<strong>and</strong>ing crop values. The<br />

choice <strong>of</strong> one-half was designed to assure that both limbs, as we17<br />

as <strong>the</strong> plateau, <strong>of</strong> each <strong>compensation</strong> <strong>function</strong> would be utilized.<br />

Baseline KXQ values were calculated as 0.8 KX. Additional levels<br />

for <strong>the</strong> values <strong>of</strong> <strong>the</strong> equilibrium st<strong>and</strong>ing crop (YS), <strong>the</strong> equilibrium<br />

mortality rate coefficient (MX), <strong>and</strong> <strong>the</strong> minimum mortality rate<br />

coefficient (KXO) were obtained by using <strong>the</strong> mu1 tip1 icative constants<br />

(denoted AYS, AKX, <strong>and</strong> AKXO, respectively) in Table l(b). Note that<br />

level 4 <strong>of</strong> AYS, level 4 <strong>of</strong> AKX, <strong>and</strong> level 3 <strong>of</strong> AKXO (l”.e., KXO=O.8 KX)<br />

correspond to <strong>the</strong> baseline set <strong>of</strong> parameter values.


10<br />

Table 1. Parameter values <strong>used</strong> by ORNL in its <strong>sensitivity</strong> <strong>analysis</strong><br />

<strong>of</strong> <strong>the</strong> LMS coiiipensation <strong>function</strong><br />

(a) Baseline values<br />

Parameter Life stage<br />

_. ......... .<br />

Symbo 1 a Units Eg$ Larva Juvenile 1 Juvenile 2 Juvenile 3<br />

PS<br />

DT E<br />

YS(z N<br />

S<br />

KX(- KE<br />

KXO( =KO<br />

...........<br />

0.1 0.01 0.21 5 0.215 0.215<br />

Days 2 28 30 100 158<br />

No. <strong>of</strong><br />

organisms<br />

---- 1.47E9' 2.65E7' 8.98E6' 2.29E6'<br />

Day-' 1.15 0.164 0.0511 0.0124 0.00972<br />

Day-' _--- 0.132 0.0409 0.00996 0.00778<br />

aPS = probability <strong>of</strong> survival through <strong>the</strong> life stage; DTE = duration <strong>of</strong><br />

<strong>the</strong> life stage; YS = saturation or equilibrium st<strong>and</strong>ing crop; KX = equilibrium<br />

mortality rate coefficient; KXO = minimum mortality rate coefficient.<br />

bORNL <strong>and</strong> LMS assume no <strong>compensation</strong> occurs in <strong>the</strong> egg stage.<br />

9<br />

'Fortran exponential notation; e.g., 1.47E9 = 1.47 x 10 .<br />

dFor each life stage, KXO = 0.8 KX; e-g., for larvae 0.132 = 0.8 (0.164).<br />

(b) Multiplicative constantse<br />

Level AYS A K X ~ AKXO~<br />

1 0.2 0.5 0.3<br />

2 0.5 0.75 0.5<br />

3 0.75 0.9 0.8<br />

4 1 .o 1 .o 0.9<br />

5 1.5 1.1 1 .o<br />

6 2 .o 1.2<br />

7 5 .O 1.3<br />

e<br />

For a given paraiiieter (i .e., YS, KX or KXO) <strong>and</strong> model run, <strong>the</strong> same<br />

multiplicative constant: (value <strong>of</strong> AYO, AKX or AKXO, respectively) was <strong>used</strong> for all<br />

four life stages. Parameter values are calculated in <strong>the</strong> computer program by<br />

multiplying <strong>the</strong> baseline values in Table l(a) by multiplicative constants selected<br />

from Table l(b).<br />

fI~i <strong>the</strong> <strong>sensitivity</strong> <strong>analysis</strong> for KX, KXO values were always calculated as<br />

0.8 times <strong>the</strong> KX value being <strong>used</strong>. For example, for larvae <strong>and</strong> AKX = 0.5, <strong>the</strong> KX<br />

value <strong>used</strong> in <strong>the</strong> model is 0.5 (0.164) = 0.082. Then <strong>the</strong> KXO value <strong>used</strong> in <strong>the</strong><br />

model is 0.8 (0.082) = 0.0656.<br />

gThe AKXO multiplicative constants were applied to <strong>the</strong> baseline KX values<br />

(Table l(a)). The approach was to specify a value for <strong>the</strong> ratio KXO/KX(- AKXO)<br />

(e.g., 0.3), <strong>and</strong> <strong>the</strong>n given <strong>the</strong> baseline KX value (e.g., 0.164 for larvae) to<br />

calculate KXO as KXO = AKXO-KX for <strong>the</strong> different levels <strong>of</strong> AKXO given in<br />

Table l(b) (e.g., KXO = 0.3 (0.164) = 0.0492).


11<br />

The range OT values <strong>used</strong> for each parameter was large enough<br />

to evaluate <strong>the</strong> <strong>sensitivity</strong> <strong>of</strong> <strong>the</strong> model to parameter variations in<br />

<strong>the</strong> neighborhood <strong>of</strong> <strong>the</strong> baseline values. We have not included results<br />

for what we consider to be extreme variations in parameter values.<br />

Extreme variations around <strong>the</strong> baseline values do provide fur<strong>the</strong>r insight<br />

into <strong>the</strong> operatian <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong>, but <strong>the</strong>y tend to<br />

be inconsistent with <strong>the</strong> LMS conceptual justification far <strong>the</strong> <strong>function</strong><br />

<strong>of</strong> controlling population levels about an equilibrium point.<br />

In addition to <strong>the</strong> above parametric study <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong><br />

<strong>function</strong>, we examined <strong>the</strong> <strong>sensitivity</strong> <strong>of</strong> <strong>the</strong> results to <strong>the</strong> form <strong>of</strong><br />

<strong>the</strong> <strong>function</strong> itself by disabling ei<strong>the</strong>r <strong>the</strong> left limb or <strong>the</strong> right<br />

limb (see Figs. 1 <strong>and</strong> 2). Again, when values <strong>of</strong> one parameter were<br />

changed, <strong>the</strong> values <strong>of</strong> <strong>the</strong> remaining two parameters were held constant<br />

at <strong>the</strong> baseline values. Note that disabling both arms simultaneously<br />

eliminates <strong>compensation</strong> from <strong>the</strong> model <strong>and</strong> is equivalent to <strong>the</strong> case<br />

with AKXO = 1 .O.<br />

The left limb was disabled for each life stage by setting <strong>the</strong><br />

cubic term in Eq. (1) equal to zero whenever <strong>the</strong> st<strong>and</strong>ing crop at<br />

time t, N(t), was less than <strong>the</strong> equilibrium st<strong>and</strong>ing crop, YS; ?.e.,<br />

whenever N(t) < YS. The right limb was disabled in a similar manner,<br />

but based on <strong>the</strong> test condition N(t) > YS. Figure 3 provides an<br />

example <strong>of</strong> <strong>the</strong> resulting shapes <strong>of</strong> <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong> when<br />

<strong>the</strong> left limb or right limb is disabled. The effects <strong>of</strong> disabling<br />

<strong>the</strong> left limb or <strong>the</strong> right limb were compared with each o<strong>the</strong>r <strong>and</strong><br />

with <strong>the</strong> case <strong>of</strong> nei<strong>the</strong>r arm disabled.<br />

The model was run for 41 years (year 0 through year 40) for<br />

each parameter combination <strong>and</strong> form <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>. The<br />

output for year 0 provided results with no power plant; <strong>the</strong> output for<br />

year 1 provided results with <strong>the</strong> power plant operating for 1 year;<br />

<strong>and</strong> <strong>the</strong> output for year 40 provided results with <strong>the</strong> power plant<br />

operating for 40 years. The hypo<strong>the</strong>tical power plant considered in<br />

<strong>the</strong>se model runs had an intake flow <strong>of</strong> 8000 cubic feet per second (cfs),<br />

which is more than <strong>the</strong> combined intake flows <strong>of</strong> Indian Point Units.


0.1 8<br />

0.1 6<br />

0.1 4<br />

0.12<br />

c<br />

," 0.10<br />

W<br />

\<br />

..<br />

.rk<br />

12<br />

ORNL. -DW6 76-8855<br />

NMAX/ N,, RATIO OF MAXIMUM MGDEL-CALCULATED CONCkNTRAIION TO<br />

LEFT LIMB<br />

DISABLED,<br />

EQUILIBRIUM CONCENTRATION<br />

0.5 1 .G 20<br />

1 P---<br />

RIGHT LIMB DISABLED<br />

/<br />

I I I I I I 1 I I I<br />

JUVENILE -I/iOOO ft3<br />

. . :.<br />

0<br />

0 0. z 0.4 0.s 0.8 1 .o 1.2<br />

N, CONCENTRATION (numttar/1000 ft3)<br />

Fig. 3. Exponential mortality coefficient vs concentration<br />

(Juvenile 1) (modified from Fig. 9 <strong>of</strong> ref. 21, showing <strong>the</strong> effect<br />

on <strong>the</strong> curve <strong>of</strong> disabl ing <strong>the</strong> 1 e ft or right 1 imb <strong>of</strong> <strong>the</strong> csmpensa-<br />

tion <strong>function</strong>. €qui val ent symbol s <strong>used</strong> el sewhere in tki s report:<br />

YS N,; KX = KE; KXO = KO.


1, 2, <strong>and</strong> 3 (4585 cfs) <strong>and</strong> less than <strong>the</strong> combined intake flows at<br />

13<br />

Indian Point plus Bowline, Lovett, Roseton, <strong>and</strong> Danskammer (9750 cfs).<br />

A composite f-factor value <strong>of</strong> 0.5 was <strong>used</strong> for each <strong>of</strong> <strong>the</strong> three<br />

entrainable 1 ife stages (eggs larvae, <strong>and</strong> Juvenile 1 ). (We have also<br />

performed a combined <strong>sensitivity</strong> <strong>analysis</strong> for <strong>compensation</strong> parameters<br />

<strong>and</strong> f-factors using <strong>the</strong> LMS tidal-averaged, one dimensional transport<br />

model .4)<br />

The code number <strong>and</strong> description <strong>of</strong> output variables we have<br />

tabulated for each model run are given in Table 2. Variables 1-15 are<br />

.For production into a life stage, ratio <strong>of</strong> maximum st<strong>and</strong>ing crop to<br />

equil ibriurn st<strong>and</strong>ing crop (NMAX/YS), <strong>and</strong> percent survival through <strong>the</strong><br />

life stage for each <strong>of</strong> <strong>the</strong> five young-<strong>of</strong>-<strong>the</strong>-year life stages. In<br />

addition, <strong>the</strong>re are variables for number <strong>of</strong> yearlings produced (16),<br />

total number <strong>of</strong> adults -in <strong>the</strong> population (17), relative number <strong>of</strong> adults<br />

in age classes 1, 2, <strong>and</strong> 3 (181, <strong>and</strong> annual probability <strong>of</strong> survival for<br />

adults in each <strong>of</strong> age classes 4 through 73 (19). Values <strong>of</strong> variables<br />

9-19 were tabulated for years 0, 1, <strong>and</strong> 40. Variables 62-74 are <strong>the</strong><br />

“impact variables.’’ The percent reduction ca<strong>used</strong> by <strong>the</strong> power plant is<br />

cal CUI ated for each young-<strong>of</strong>-<strong>the</strong>-year 1 i fe stage <strong>and</strong> for yearl i ngs <strong>and</strong><br />

total number <strong>of</strong> adults. As an example, percent reduction in <strong>the</strong> number<br />

<strong>of</strong> yaung-<strong>of</strong>-<strong>the</strong>-year striped bass surviving to become yearlings after<br />

one year <strong>of</strong> power plant operation is calculated as:<br />

10<br />

(Number <strong>of</strong> year1 ings produced in year 0 - Number <strong>of</strong><br />

-_I__<br />

yearl ings produced in year 1)<br />

Number <strong>of</strong> yearlings produced in year 1<br />

Values <strong>of</strong> variables 62-74 were tabulated for years 1 <strong>and</strong> 40, with<br />

year 0 (no power plant) as <strong>the</strong> reference condition in both cases.<br />

Results<br />

Detailed results corresponding to <strong>the</strong> variables in Table 2 are<br />

given in Appendix D, Tables D1-D6. Graphs in this Results section are<br />

based on values from <strong>the</strong>se tables.


14<br />

Table 2. Code number <strong>and</strong> description <strong>of</strong> output variables<br />

tabu1 ated by ORNL.<br />

.........<br />

.........<br />

Output variable<br />

b<br />

codea Description <strong>of</strong> output variable<br />

.<br />

.<br />

.........<br />

........<br />

01 Number <strong>of</strong> eggs produced<br />

03 Percent survival through <strong>the</strong> egg life stage<br />

04<br />

05<br />

Number <strong>of</strong> 1 arvae produced<br />

NMAXIYS for larvae<br />

06 Percent survival through <strong>the</strong> larval life stdge<br />

07 Number <strong>of</strong> J1 produced<br />

08 NMAXIYS for larvae<br />

09 Percent survival through J1<br />

10 Number <strong>of</strong> 52 produced<br />

il NMAXIYS for 52<br />

12 Percent survival through 52<br />

13 Number <strong>of</strong> 53 produced<br />

14 NMAXIYS for 53<br />

15 Percent survi Val through 5.3<br />

16<br />

17<br />

18<br />

Number <strong>of</strong> yearlings produced<br />

Total number <strong>of</strong> adults<br />

Relative age composition in <strong>the</strong> first three age<br />

classes<br />

19 Annual probability <strong>of</strong> survival for adult age<br />

classes 4-1 3c<br />

Impact Vari ab1 e?<br />

62<br />

64<br />

66<br />

68<br />

70<br />

71<br />

72<br />

73<br />

74<br />

___<br />

Percent reduction in number <strong>of</strong> eggs produced<br />

Percent reduction in number <strong>of</strong> larvae produced<br />

Percent reduction in number <strong>of</strong> Jl produced<br />

Percent reduction in number <strong>of</strong> 52 produced<br />

Percent reduction in number <strong>of</strong> 53 produced<br />

Reduction in number <strong>of</strong> yearlings produced<br />

Percent reduction in number <strong>of</strong> yearlings produced<br />

Reduction in total number <strong>of</strong> adults<br />

Percent reduction in total number <strong>of</strong> adults<br />

-.<br />

____. .........<br />

aVariables 1-'I8 are <strong>used</strong> for each <strong>of</strong> year 0 (power plant <strong>of</strong>f) <strong>and</strong><br />

years 1 <strong>and</strong> 40 (power plant on); variables 62-74 are <strong>used</strong> for each <strong>of</strong><br />

years 1 <strong>and</strong> 40 <strong>and</strong> refer to percent or number reductions at year 1 <strong>and</strong><br />

year 40 relative to year 0. See text for definition <strong>of</strong> percent reduction.<br />

bNMAX is <strong>the</strong> maximum st<strong>and</strong>ing crop occurring in a given model run<br />

for <strong>the</strong> indicated life stage; YS is <strong>the</strong> saturation or equilibrium st<strong>and</strong>-<br />

ing crop for <strong>the</strong> indicated life stage <strong>and</strong> is an input parameter; J1<br />

denotes <strong>the</strong> Juvenile 1 life stage; 52 denotes <strong>the</strong> Juvenile 2 life stage;<br />

53 denotes <strong>the</strong> Juvenile 3 life stage.<br />

'Variable 19, <strong>the</strong> annual probability <strong>of</strong> survival for adults in each<br />

<strong>of</strong> age classes 4 through 13, is calculated during year 0 using an<br />

iteration scheme. It is calculated to satisfy <strong>the</strong> constraint that,<br />

given <strong>the</strong> values for all <strong>of</strong> <strong>the</strong> o<strong>the</strong>r parameters in <strong>the</strong> model, this is<br />

<strong>the</strong> annual probability <strong>of</strong> survival for adults that results in a constant<br />

adult population with no power plant. This parameter is <strong>the</strong>n held<br />

constant for years 1 through 40.<br />

-~


15<br />

Sensitivity <strong>analysis</strong> for YS, <strong>the</strong> equilibrium st<strong>and</strong>ing -<br />

sx9.<br />

The dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings (age<br />

class 1) <strong>and</strong> number <strong>of</strong> adults (age classes 1-13) on YS (Ns <strong>of</strong> Ey., 1) is<br />

quite complicated (Figs. 4a <strong>and</strong> 4b>, although two basic trends st<strong>and</strong><br />

out <strong>and</strong> merit comnent. Values <strong>of</strong> YS less than <strong>the</strong> baseline values (that<br />

is, where <strong>the</strong> multicative constant AYS 1 .O> result in lower percent<br />

reductions than for <strong>the</strong> baseline case. Values <strong>of</strong> YS greater than <strong>the</strong><br />

basellne values (AYS > 1.8) result in higher percent reductions, As<br />

would be expected, <strong>the</strong>se trends are more obvious at year 40 than at<br />

year 1. For example, at year 40 <strong>the</strong> percent reduction a’n number <strong>of</strong><br />

adults ranges from I5 to 49%, while at year 1 <strong>the</strong> percent reduction<br />

ranges from 7 to 12% (Fig. 4b). It is important to note that <strong>the</strong>se<br />

variations are due to relatively small changes in YS from one-half (AYS =<br />

0.5) to twice (AYS = 2-01 <strong>the</strong> baseline values.<br />

The curves in Figs. 4a <strong>and</strong> 4b nay be explained, in part, by <strong>the</strong><br />

shape <strong>of</strong> <strong>the</strong> curves in Fig. 4c. Again YS is <strong>the</strong> equilibrium st<strong>and</strong>ing<br />

crop for a given 1 ife stage, which was varied over seven levels by<br />

means <strong>of</strong> <strong>the</strong> multiplicative constant AYS; <strong>the</strong> value <strong>of</strong> YS fixes <strong>the</strong><br />

location <strong>of</strong> <strong>the</strong> plateau <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> along <strong>the</strong> abscissa<br />

(Figs. 1 <strong>and</strong> 2). NMAX is <strong>the</strong> maximum st<strong>and</strong>ing crop calculated far a<br />

given life stage during each simulation. Thus, <strong>the</strong> ratio NMAX/YS is an<br />

indicator <strong>of</strong> <strong>the</strong> right-most point on <strong>the</strong> <strong>compensation</strong> curve actually <strong>used</strong><br />

in a given model run (Figs. 1 <strong>and</strong> 2; note <strong>the</strong> X-axis scale at <strong>the</strong> top <strong>of</strong><br />

<strong>the</strong>se figures). For example, if NMAX/YS = 1.0 for a given life stage,<br />

this means that <strong>the</strong> simulated st<strong>and</strong>ing crop reached a maximum value <strong>of</strong><br />

YS; thus, only <strong>the</strong> left limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> was <strong>used</strong> at<br />

all. As indicated in Fig. 4c <strong>and</strong> as would be expected, increasing YS<br />

(AYS > 1 .O) causes NMAX9YS to decrease, eventually to less than 1 .O.<br />

Decreasing YS (AYS < 1 .0) causes NMAX9YS to increase, although for<br />

AYS - < 0.5 <strong>the</strong> value <strong>of</strong> NMAX/YS ultimately decreases for <strong>the</strong> juvenile<br />

life stages.<br />

Considered toge<strong>the</strong>r, Figs. 4a, 4b, <strong>and</strong> 4c indicate that at YS<br />

values slightly above <strong>the</strong> baseline levels (1.0 AYS - < 2.0), NMAX


v)<br />

k l<br />

2<br />

J<br />

0<br />

K<br />

W<br />

u3<br />

50<br />

40<br />

z<br />

3 30<br />

z<br />

r<br />

P<br />

52<br />

3<br />

n<br />

W<br />

(r<br />

V<br />

lx<br />

W<br />

b<br />

20<br />

(0<br />

0<br />

16<br />

...<br />

..........<br />

--<br />

..................<br />

ORPdL-D9G 76-7908R<br />

.........<br />

YEAR 40<br />

....................<br />

JUVENILE 3<br />

...........<br />

0 I ..... 1 ...... I... 1<br />

0 i 2 3 4 5<br />

V4L.UE OF AYS<br />

Fig. 4. Sensitivity o f (a) per-<br />

cent reduction <strong>of</strong> yearlings, (b) per-<br />

cent reduction <strong>of</strong> adults, <strong>and</strong> (c)<br />

NMAX/YS to changes in YS values.


YS approach each o<strong>the</strong>r <strong>and</strong> <strong>the</strong> populations spend more time oyi <strong>the</strong><br />

plateau (region <strong>of</strong> no <strong>compensation</strong>) <strong>and</strong> left limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

vsction, with <strong>the</strong> result that percent reduction increases. At YS<br />

values greater than<br />

1% <strong>the</strong> populations are restra'cted<br />

to <strong>the</strong> left limb (wh<br />

atory at all points), with <strong>the</strong><br />

result that percent reduction decreases slightly, As YS decreases<br />

below <strong>the</strong> baseline levels (AYS < ? .O) <strong>the</strong> inodel tends ta operate<br />

more on <strong>the</strong> right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>, which gets<br />

progressively steeper (i .e., stronger <strong>compensation</strong>), with <strong>the</strong> result<br />

that percent reduction decreases.<br />

.--__.l-m__.._ Sensitivity analysfs for KX9 <strong>the</strong> first - order mortality<br />

rate coefficient<br />

The dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings an<br />

strated in Fig, 5. Values<br />

<strong>of</strong> KX less than <strong>the</strong> baseline values (that is, where <strong>the</strong> ~ ~ l t<br />

constant AKX < 1 .O) result in lower percent reductions than <strong>the</strong><br />

base?ine case. Values <strong>of</strong> KX greater than <strong>the</strong> baseline values (AKX :> 1-03<br />

result in higher percent reductions. Again, <strong>the</strong>se trends are more<br />

obvious at year 40 than year 1. For example, at year 465 <strong>the</strong> percent<br />

reduction in number <strong>of</strong>' adults ranges from 3 %o 44%, while at year 1 <strong>the</strong><br />

percent reduction ranges from 2 to 10% (Fig. 5b), Estimates <strong>of</strong><br />

percent reduction are particularly sensitive to changes in KX in<br />

<strong>the</strong> n~ighbor~ood <strong>of</strong> <strong>the</strong> baseline values (0.75 I c: AKX I 1 1 ).<br />

The curves in Figs, 5a <strong>and</strong> 5b may be explained by <strong>the</strong> curves in<br />

Fig. 5c, which is analogous in derivation to Fig. 4c. Again, <strong>the</strong><br />

ratio NMAX/YS is an indicator <strong>of</strong> <strong>the</strong> right-most point on <strong>the</strong> co~i~~~sation<br />

curve <strong>used</strong> in a given model run (Figs. 1 <strong>and</strong> 2; note <strong>the</strong> X-axis<br />

scale at <strong>the</strong> tap <strong>of</strong> <strong>the</strong>se figures). Increasing K): (AKX > 1.0) muses<br />

~ ~ ~ to X decrease, ~ Y S eventually to less than 1 .Id for a31 three<br />

juvenile life stages. Decreasing KX (AKX < 1.0) causes ~ ~ to<br />

~ X ~<br />

increase to values considerably greater than 2.8, which is <strong>the</strong> approximate<br />

baseline ratio for all four life stages.<br />

Considered toge<strong>the</strong>r, Figs. 5a, 5b, <strong>and</strong> 5c indicate that at KX<br />

slightly above <strong>the</strong> baseline levels (1.0 < AKX 5- 1.11, natural mortalit


m<br />

0<br />

z<br />

-I 40<br />

(L<br />

a<br />

W<br />

><br />

lL<br />

0<br />

E 30<br />

m<br />

5<br />

E<br />

z<br />

0<br />

!-<br />

V<br />

3<br />

n<br />

k<br />

e<br />

w<br />

V<br />

20<br />

10<br />

a I-<br />

k 0;<br />

LL<br />

0<br />

u<br />

w<br />

m<br />

I<br />

3<br />

z<br />

r<br />

z<br />

0<br />

+<br />

U<br />

3<br />

CI<br />

w<br />

K<br />

k<br />

z<br />

W<br />

V<br />

a<br />

w<br />

a<br />

m<br />

><br />

\<br />

X<br />

a<br />

5<br />

P<br />

...... .-<br />

1<br />

18<br />

---"<br />

-. ................... -. .<br />

ORNL-DWG 76.- 7906<br />

---.,<br />

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3<br />

VALUE OF AKX<br />

Fig. 5. Sensitivity <strong>of</strong> (a) percent reduction <strong>of</strong><br />

yearlings, (b) percent reduction <strong>of</strong> adults, <strong>and</strong> (c)<br />

NF14XIYS to changes in KX values.


19<br />

increases, <strong>and</strong> thus, NMAX decreases <strong>and</strong> approaches YS as <strong>the</strong> populations<br />

spend more time on <strong>the</strong> plateau (region <strong>of</strong> no <strong>compensation</strong>) <strong>and</strong> left<br />

limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>. As a result percent reduction<br />

increases. At still higher KX values (AKX 1.1 >, NMAX becomes less<br />

than YS <strong>and</strong> <strong>the</strong> populations are restricted to <strong>the</strong> left limb which is<br />

compensatory at all points. As a result percent reduction decreases<br />

slightly. As KX decreases below <strong>the</strong> baseline levels, natural mortality<br />

decreases <strong>and</strong> thus NMAX increases <strong>and</strong> <strong>the</strong> populations spend more time<br />

on <strong>the</strong> right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>, which gets progressively<br />

steeper (i .e., stronger <strong>compensation</strong>), with <strong>the</strong> result that percent<br />

reduction decreases.<br />

Sensitivity <strong>analysis</strong> <strong>of</strong> KXO, <strong>the</strong> minimum mortality rate<br />

coefficient<br />

The dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings <strong>and</strong><br />

number <strong>of</strong> adults on KXO (KO <strong>of</strong> Eq. 1) is illustrated in Fig. 6. Values<br />

<strong>of</strong> KXO less than <strong>the</strong> baseline values (that is, where <strong>the</strong> multiplicative<br />

constant AKXO I<br />

< 0.8) result in lower percent reductions than <strong>the</strong> base-<br />

line case. Values <strong>of</strong> KXO greater than <strong>the</strong> baseline values (AKXO > 0.8)<br />

result in higher percent reductions. Once again, <strong>the</strong>se trends are<br />

more ovbious at year 40 than year 1. For example, at year 40 <strong>the</strong><br />

percent reduction in number <strong>of</strong> adults ranges from 8 to 85%, while at<br />

year 1 <strong>the</strong> percent reduction ranges from 4 to 14% (Fig. fib). Estimates<br />

<strong>of</strong> percent reduction are particularly sensitive to changes in KXO<br />

above <strong>the</strong> base1 ine values but become progressively less sensi tive<br />

bel ow <strong>the</strong> basel i ne val ues .<br />

The curves in Figs. 6a <strong>and</strong> 6b may be explained as fallows. The<br />

major effect on <strong>the</strong> <strong>compensation</strong> curves (Figs. 1 <strong>and</strong> 2) <strong>of</strong> changing<br />

KXO, while holding YS <strong>and</strong> KX constant, is to increase (ADO > 0.8) or<br />

decrease (AKXO > 0.8) <strong>the</strong> steepness <strong>of</strong> both <strong>the</strong> left <strong>and</strong> right limbs.<br />

When AKXQ = 1.0, a horizontal straight line at KXO = KK results; this<br />

case corresponds to no <strong>compensation</strong>. Values <strong>of</strong> KXO greater than KK<br />

(AKXO > 1 .O) are <strong>the</strong>oretically possible, but <strong>the</strong>y have not been <strong>used</strong><br />

in <strong>the</strong> present study; such cases correspond to depensatory mortality,<br />

i.e., a decrease in <strong>the</strong> mortality rate as st<strong>and</strong>ing crop increases,


t-<br />

r O<br />

w<br />

20<br />

I<br />

~II<br />

(a)<br />

. .-<br />

.....<br />

-. ................<br />

-YEAR P<br />

- -YEAR 40<br />

..........<br />

.............<br />

-..............I .<br />

.............<br />

--T-<br />

t---<br />

YEAR 4<br />

- -YEAR “PO<br />

-E<br />

.. ._ ............<br />

I /<br />

0 0.2 0.4 0.6 0.8 4.0<br />

VALUE Of AKXO<br />

Fig. 6. Sensitivity <strong>of</strong> (a) percent r-edwc-<br />

tion <strong>of</strong> yearlings <strong>and</strong> (b) <strong>and</strong> (c) percerit redus-<br />

lion <strong>of</strong> adults to changes in KXO values. Fig.<br />

6c is a plot <strong>of</strong> results from model runs by <strong>the</strong><br />

applicant (Ref. 7).


21<br />

As <strong>the</strong> limbs sf <strong>the</strong> ~ ~ ~ ~ e ~ <strong>function</strong> s a t i become ~ n steeper3 <strong>the</strong> effectiveness<br />

<strong>of</strong> compe~sa~ory changes in mortality -in <strong>the</strong> model increases, <strong>and</strong><br />

estimates <strong>of</strong> percent r ~ ~ decrease. u ~ ~ i ~ ~<br />

This aspect <strong>of</strong> our <strong>sensitivity</strong> <strong>analysis</strong> has also been ~~~~~~~~~~<br />

The rnajsr difference ~~~~~~~~<br />

b,y LMS with similar results7 (F-ig. 6c)<strong>the</strong><br />

two analyses is that <strong>the</strong> LMS curve is shifted ownwards <strong>and</strong> covers<br />

a narrower range <strong>of</strong> percent reduction values. This difference is due<br />

primarily to <strong>the</strong> use by LMS <strong>of</strong>:: (’8) lower f-factom (for discussion <strong>of</strong><br />

f-factors, see Ref. Ed, pp. V-87 to V-1 1) for eggs, larvae, <strong>and</strong> duvenile<br />

E .4, 0.4, O,2) versus (0.5, 0.5, O.5)]; (2) lower total power plant<br />

intake flow [2642 cfs (Indian Poa’nt Units 1 <strong>and</strong> 2 with ~ ~ ~ ~ - t . ~<br />

cooling) versus 8080 cfs (hypo<strong>the</strong>tical power plant)]; <strong>and</strong> (3) a IO-yeznr<br />

versus a 4.0-year simul ati an.<br />

Disablement <strong>of</strong> I- <strong>the</strong> ._. .- .- left or right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> -_-_.-----<br />

func ti on<br />

lll.^-l<br />

__. Dependence on YS. .- The dependence <strong>of</strong> percent reduction in number<br />

<strong>of</strong> yearlings at year 40 an YS with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong> disabled, left limb isabled, <strong>and</strong> right limb disabled is<br />

i1 lustrated in Fig. 7 The curve for nei<strong>the</strong>r 1 imb disabled is <strong>the</strong><br />

same as <strong>the</strong> curve for year 40 in Fig. 4a, Disabling <strong>the</strong> left limb<br />

results in higher percent reductions, especially for YS at <strong>and</strong> above<br />

<strong>the</strong> basel ine values (AYS - 1.0). Disabling <strong>the</strong> right limb also results<br />

in higher percent reductions, especially for YS at <strong>and</strong> below <strong>the</strong> baseline<br />

values (AYS < 1.D).<br />

The curves in Fig. 7 may be explained as follows, Disablin<br />

ei<strong>the</strong>r limb decreases t e range <strong>of</strong> st<strong>and</strong>ing crops over whic<br />

tory changes in mortality can occur (Fig. 3). In addition, decreasing<br />

YS (AYS s‘ 1.0) accentuates <strong>the</strong> importance <strong>of</strong> <strong>the</strong> right limb <strong>of</strong> <strong>the</strong><br />

~ ~ ~ ~ <strong>function</strong> ~ n i ~ <strong>of</strong>fsetting a t i power ~ plant ~ mortality, wh’ile<br />

increasing US(AYX 1.0 accentuates <strong>the</strong> importance <strong>of</strong> <strong>the</strong> left 1 imb<br />

I 3). Thus, disabl ng <strong>the</strong> 1 eft 1 imb in combi nati<br />

values z 1 .O markedly increases percent reduct ons (Fig. 7). Likewise,<br />

disabling <strong>the</strong> right limb in combination with A S vallies 1 .cd ~ ~ a ~ ~ ~<br />

increases percent reducta” ons


22<br />

I I I<br />

-. . . .. . ... .... . ... ..... .,<br />

1 2 3 4 5<br />

VALUE OF<br />

Fig. 7. Dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings<br />

at year 40 an <strong>the</strong> value <strong>of</strong> YS with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

1 eft 1 imb di sabl ed (A----------A>, <strong>and</strong> right<br />

<strong>function</strong> di sabl Ed (a- 1<br />

limb disabled (OF).<br />

a


23<br />

. The dependence <strong>of</strong> percent reduction in number<br />

<strong>of</strong> yearlings at year 40 on KX with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> Compensation<br />

<strong>function</strong> disabled, left limb disabled, <strong>and</strong> right limb disabled is<br />

illustrated in Fig. 8. The curve for nei<strong>the</strong>r limb disabled is <strong>the</strong><br />

same as <strong>the</strong> curve for year 40 in Fig. 5a. The curve for <strong>the</strong> left<br />

limb disabled is similar in shape to that for nei<strong>the</strong>r limb disabled.<br />

However, <strong>the</strong> percent reduction values with <strong>the</strong> left limb disabled are<br />

approximately double <strong>the</strong> values with nei<strong>the</strong>r limb disabled for KX at<br />

<strong>and</strong> above <strong>the</strong> baseline KX values (AKX - > 1.0). With <strong>the</strong> right limb<br />

disabled <strong>the</strong> dependence <strong>of</strong> percent reduction on KX is <strong>the</strong> reverse <strong>of</strong><br />

that with nei<strong>the</strong>r limb disabled or <strong>the</strong> left limb disabled. Percent<br />

reduction is highest for small KX values (AKX < 1.0) <strong>and</strong> decreases<br />

far large KX values (AKX<br />

‘I imb di sabl ed.<br />

1 .O) to approach <strong>the</strong> curve for nei<strong>the</strong>r<br />

The curves in Fig. 8 may be explained as follows. Again, disabling<br />

ei<strong>the</strong>r limb decreases <strong>the</strong> range <strong>of</strong> st<strong>and</strong>ing crops over which compensatory<br />

changes in mortality can occur. Decreasing KX (AKX < 1 .O)<br />

decreases mortality, <strong>and</strong> thus increases st<strong>and</strong>ing crops <strong>and</strong> NMAX<br />

values (Table D5). As a result <strong>the</strong> left limbs <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong>s become relatively unimportant, <strong>and</strong> consequently, disabling<br />

<strong>the</strong> left ’limbs does not have much effect on percent reduction at low<br />

AKX values. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, because <strong>of</strong> <strong>the</strong> increases in st<strong>and</strong>ing<br />

crops <strong>and</strong> NMAX values, <strong>the</strong> right limbs <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>s<br />

are <strong>of</strong> greater importance; consequently, disabling <strong>the</strong> right limbs at<br />

low KX values results in tremendous increases in percent reduction<br />

(Fig. 8).<br />

Increasing KX increases mortality, <strong>and</strong> thus decreases st<strong>and</strong>ing<br />

crops <strong>and</strong> NMAX values {Table D5). As a result <strong>the</strong> right limbs <strong>of</strong> <strong>the</strong><br />

<strong>compensation</strong> <strong>function</strong>s become relatively unimportant, <strong>and</strong> consequently,<br />

disabling <strong>the</strong> right limbs does not have much effect on percent reduction<br />

at high AKX values (Fig. 8). On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, because <strong>of</strong> <strong>the</strong><br />

decreases in st<strong>and</strong>ing crops <strong>and</strong> NMAX values, left limbs <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong>s are <strong>of</strong> greater importance. Consequently, disabling <strong>the</strong><br />

left limbs at high KX values increases percent reduction.


6<br />

0<br />

u--<br />

....... ~<br />

r<br />

....... ~<br />

................<br />

..................<br />

0<br />

bv<br />

--e-<br />

.-____.<br />

8<br />

_.<br />

................ .-<br />

24


25<br />

The sl-ight decrease in percent reduction at AKX = 1.2 (<strong>the</strong> model<br />

is unstable at A H = 1.3) from <strong>the</strong> apparent maximum percent reduction<br />

at AKX = 1.1 for <strong>the</strong> ease <strong>of</strong> <strong>the</strong> left limb disabled merits comment<br />

because this result reflects a subtle balancing <strong>of</strong> opposing effects.<br />

As AKX increases from 1.1 to 1.2, <strong>the</strong> resulting higher mortality rates<br />

have <strong>the</strong> effect <strong>of</strong> decreasing st<strong>and</strong>ing crops <strong>and</strong> NMAX values <strong>and</strong> <strong>of</strong><br />

driving <strong>the</strong> life stage populations <strong>of</strong>f <strong>the</strong> rlght limbs <strong>of</strong> <strong>the</strong> compensa-<br />

tion <strong>function</strong>s. Tn fact, as indicated in Table D5, b.y year 40 NMAX is<br />

considerably less than YS for each life stage, <strong>and</strong> because <strong>the</strong> left<br />

limbs <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>s are disabled in this case, <strong>the</strong>re is<br />

no <strong>compensation</strong> in effect during <strong>the</strong> latter years <strong>of</strong> <strong>the</strong>se model runs.<br />

As AKX increases from 1.1 to 1.2, however, <strong>the</strong> right limbs <strong>of</strong> <strong>the</strong><br />

<strong>compensation</strong> <strong>function</strong>s become steeper (i .e., stronger <strong>compensation</strong>).<br />

During <strong>the</strong> earlier years <strong>of</strong> <strong>the</strong> model run when <strong>the</strong> NMAX values are<br />

still 'larger than <strong>the</strong> YS values, percent reduction decreases as AKX<br />

increases from 1.1 to 1.2, due to <strong>the</strong> increasingly strong <strong>compensation</strong>.<br />

This trend during <strong>the</strong> earlier years carries over to year 40 <strong>and</strong> accounts<br />

fot- <strong>the</strong> decrease in percent reduction at AKX = 1.2.<br />

Dependence on KXO. The dependence <strong>of</strong> percent reduction in number<br />

<strong>of</strong> yearlings at year 40 on KXO with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong> disabled, left limb disabled, <strong>and</strong> right limb disabled is<br />

illustrated in Fig. 9. The curve for nei<strong>the</strong>r limb disabled is <strong>the</strong><br />

same as <strong>the</strong> curve for year 40 in Fig. 6a. Disabling ei<strong>the</strong>r <strong>the</strong> left<br />

or right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> results in higher percent<br />

reductions, especially for KXO at <strong>and</strong> below <strong>the</strong> baseline value (AKXO<br />

- < 0.8).<br />

Disabling <strong>the</strong> left limb, as compared to <strong>the</strong> right limb,<br />

results in somewhat higher percent reductions. The relative steepness<br />

<strong>of</strong> <strong>the</strong> three curves in Fig. 8 indicates that <strong>the</strong> <strong>sensitivity</strong> <strong>of</strong> <strong>the</strong><br />

model to <strong>the</strong> value <strong>of</strong> KXO is greatest when nei<strong>the</strong>r limb is disabled<br />

<strong>and</strong> is least when <strong>the</strong> left limb is disabled.<br />

The curves in Fig. 9 may be explained as follows. Disabling<br />

ei<strong>the</strong>r limb decreases <strong>the</strong> range <strong>of</strong> st<strong>and</strong>ing crops over which compensatory<br />

changes in mortality can occur. In particular, disabling <strong>the</strong> left<br />

limb eliminates compensatory changes in mortality for st<strong>and</strong>ing crops


26<br />

0 0.2 0.4 0*6 8.8 1.0<br />

VALUE OF AKXO<br />

Fig. 9. Dependence <strong>of</strong> percent reduction in number <strong>of</strong> yearlings<br />

at year 40 on <strong>the</strong> value <strong>of</strong> KXO with nei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> camyensation<br />

<strong>function</strong> disabled (e-)<br />

left limb disabled (A------A), <strong>and</strong><br />

right limb disabled (o---------o).


27<br />

less than YS, while disabling <strong>the</strong> right limb eliminates compensatory<br />

changes for st<strong>and</strong>ing crops greater than YS (Fig. 3). Figure 9 indicates<br />

that both limbs <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> are important in <strong>of</strong>f-<br />

setting power plant mortality for all values <strong>of</strong> KXO, but that <strong>the</strong> left<br />

limb is <strong>the</strong> more important <strong>of</strong> <strong>the</strong> two.<br />

Sumtiiary<br />

(1) Two types <strong>of</strong> <strong>sensitivity</strong> <strong>analysis</strong> were performed: (a) a para-<br />

metric study involving at least five levels for each <strong>of</strong> <strong>the</strong> three<br />

parameters in <strong>the</strong> <strong>compensation</strong> <strong>function</strong>, (b) a study <strong>of</strong> <strong>the</strong> form <strong>of</strong><br />

<strong>the</strong> <strong>compensation</strong> <strong>function</strong> itself involving disabling <strong>the</strong> left or right<br />

1 imb.<br />

(2) The model was run for 41 years (year 0 through year 40) for<br />

each parameter combination <strong>and</strong> form <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong>--year<br />

0 with no power plant <strong>and</strong> years 1 through 40 with a power plant. The<br />

hypo<strong>the</strong>tical power plant had an intake flow <strong>of</strong> 8000 cfs. A composite<br />

f-factor value <strong>of</strong> 0.5 was assumed for each <strong>of</strong> <strong>the</strong> entrainable life<br />

stages (eggs, larvae, <strong>and</strong> Juvenile 1).<br />

(3) Output variables, including production, percent survival, <strong>and</strong><br />

population size, were tabulated for years 0, 1, <strong>and</strong> 40. Values for<br />

percent reduction due to power plant mortality were tabulated for years<br />

1 <strong>and</strong> 40, with year 0 as <strong>the</strong> reference case.<br />

(4) For <strong>the</strong> range <strong>of</strong> parameter values <strong>used</strong> in this study, estimates<br />

<strong>of</strong> percent reduction are least sensitive to changes in YS, <strong>the</strong><br />

equilibrium st<strong>and</strong>ing crop, <strong>and</strong> most sensitive to changes in KXO, <strong>the</strong><br />

minimum mortality rate coefficient. Estimates <strong>of</strong> percent reduction in<br />

number <strong>of</strong> adults at year 40 range from 15 to 49% for YS, 3 to 44"L for<br />

KX, <strong>and</strong> 8 to 85% for KXO.<br />

(5) Disabling ei<strong>the</strong>r limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> results in<br />

higher estimates <strong>of</strong> percent reduction. For all values <strong>of</strong> KXO <strong>and</strong> for<br />

values <strong>of</strong> YS <strong>and</strong> KX at <strong>and</strong> above <strong>the</strong> baseline values, disabling <strong>the</strong> left<br />

limb resulted in a greater increase in percent reduction than did<br />

disabling <strong>the</strong> right limb.


28<br />

DISCUSSION<br />

Conceptual Basis for <strong>the</strong> LMS Compensation unction^<br />

We feel that <strong>the</strong> LMS nia<strong>the</strong>matical formulation, as described under<br />

- LMS formulation --.- <strong>of</strong> <strong>compensation</strong>, is not conceptually sound. As implemented<br />

in <strong>the</strong> three LMS striped bass models, ’ ,*y3 <strong>the</strong> assumption is<br />

made that without <strong>the</strong> new power plants (Indian Point Units 2 <strong>and</strong> 3,<br />

Bowline, <strong>and</strong> Rosetsn), “<strong>the</strong> system is in relative balance or at relative<br />

equilibrium, <strong>and</strong> <strong>the</strong>re is little active <strong>compensation</strong>.’’ For young-sf<strong>the</strong>-year<br />

life stages <strong>of</strong> striped bass, it: is difficult to visualize a<br />

source <strong>of</strong> mortality that (1 ) is a minimum near zero densi Ly, (2) increases<br />

(although at a decreasing rate) ai; low densities to reach a plateau over<br />

a range <strong>of</strong> intermediate densities (0.42 to 0.68 in Figs. 1 <strong>and</strong> 2 for <strong>the</strong><br />

Juvenile 1 life stage), <strong>and</strong> <strong>the</strong>n (3) increases again (but now at an<br />

increasing rate) at a high densl’ty. For example, it is not reasonable<br />

to hypo<strong>the</strong>size a curve with this entire shape due solely to crowding or<br />

less food per unit number <strong>of</strong> fish as density increases.<br />

In particular, <strong>the</strong>re is not a sound biological basis for <strong>the</strong> left<br />

limb <strong>of</strong> <strong>the</strong> curves in Figs. 1 <strong>and</strong> 2 for fish species such as striped<br />

bass. Much <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>compensation</strong> in animal populations is based<br />

on experience with terrestrial <strong>and</strong> h<br />

<strong>the</strong>se populations <strong>the</strong>re may be sound<br />

<strong>the</strong> left half <strong>of</strong> <strong>the</strong> curves in Figs.<br />

mortality coefficient <strong>and</strong> an increas<br />

gher vertebrate popul ati ons .<br />

In<br />

biological bases for hypo<strong>the</strong>sizing<br />

1 <strong>and</strong> 2, which show a decreasing<br />

ng probability <strong>of</strong> survival as<br />

density decreases to very low values. The biological bases far this<br />

type <strong>of</strong> curve involve refugia, territoriality, food preferences <strong>of</strong><br />

predators on target species (e.g. , young-<strong>of</strong>-<strong>the</strong>-year striped bass as<br />

<strong>the</strong> target species), <strong>and</strong> o<strong>the</strong>r behavioral phenomena that tend to be<br />

more highly developed in terrestrial <strong>and</strong> higher vertebrate species<br />

than in nonterritarial fish species such as <strong>the</strong> striped bass. Based<br />

on model results LMS has presented to date, it is not clear which half<br />

aFor a previous discussion <strong>of</strong> some <strong>of</strong> <strong>the</strong> points mentioned below, see<br />

reference 7 , pages 134-1 35.


29<br />

<strong>of</strong> <strong>the</strong> curves in Figs. 1 <strong>and</strong> 2 is <strong>the</strong> more important in <strong>of</strong>fsetting <strong>the</strong><br />

power plant impact. However, because <strong>the</strong> density in each river segment<br />

initially starts at zero <strong>and</strong> finally drops back down to zero, <strong>the</strong><br />

left limbs <strong>of</strong> <strong>the</strong>se curves are certainly utilized.<br />

In our opinion, a ma<strong>the</strong>matical formulation for <strong>compensation</strong> for<br />

striped bass with a more sound biological basis is one that has a<br />

plateau extending from zero ta some critical density. Above this<br />

critical density <strong>the</strong> density-dependent parameter increases (e.g.<br />

mortality rate coefficient <strong>and</strong> duration) or decreases (e.g., growth<br />

rate coefficient <strong>and</strong> probability <strong>of</strong> survival) with fur<strong>the</strong>r increases<br />

in density due to resource limitations or selective predation.’ The<br />

<strong>compensation</strong> <strong>function</strong>s <strong>used</strong> in both our young-<strong>of</strong>-<strong>the</strong>-year model” <strong>and</strong><br />

our life cycle model” have this property.<br />

As an example, Fig. 10 is a schematic representation <strong>of</strong> <strong>the</strong><br />

population density correction factor for <strong>the</strong> apparent survival probability<br />

<strong>used</strong> in <strong>the</strong> ORNL computer simulation model for <strong>the</strong> striped<br />

bass young-<strong>of</strong>-<strong>the</strong>-year population in <strong>the</strong> Hudson River.” This type <strong>of</strong><br />

<strong>function</strong> is analogous to <strong>the</strong> plateau <strong>and</strong> right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong><br />

<strong>function</strong> <strong>used</strong> by LMS (cf. Figs. 2 <strong>and</strong> 10). Given this formulation,<br />

<strong>the</strong> major issue (j.e.$ <strong>the</strong> extent to which regulatory agencies, utilities,<br />

<strong>and</strong> society should rely on compensatory changes in mortality to<br />

<strong>of</strong>fset <strong>the</strong> increased mortality due to <strong>the</strong> power plants) reduces to<br />

choosing: (a) critical densities, (b) steepness <strong>of</strong> <strong>the</strong> right limbs <strong>of</strong><br />

curves, <strong>and</strong> (c) where to assme <strong>the</strong> population would exist on <strong>the</strong> curve<br />

without <strong>the</strong> additional power plant mortality.<br />

We are also concerned about <strong>the</strong> conceptual relationship between<br />

<strong>the</strong> three parameters in <strong>the</strong> LMS <strong>compensation</strong> <strong>function</strong> <strong>and</strong> actual bio-<br />

f ogical phenomena.<br />

The parameter YS for a givers life stage is defined as <strong>the</strong> equilib-<br />

rium population level In <strong>the</strong> Hudson River. In our opinion <strong>the</strong> entire


31<br />

concept <strong>of</strong> an equilibrium population level far any <strong>of</strong> <strong>the</strong> young-<strong>of</strong>-<strong>the</strong>-<br />

year life stages is inappropriate. Within a year, <strong>the</strong> young-sf-<strong>the</strong>-<br />

year population consists <strong>of</strong> a series <strong>of</strong> linked transients, with one life<br />

stage over1 apping with both <strong>the</strong> preceding <strong>and</strong> succeeding 1 i fe stages<br />

To speak <strong>of</strong> an equilibrium population level for each I-ife stage in such<br />

a system is meaningless. In ea1 i ng wi th compari sons among years, only<br />

<strong>the</strong> concepts <strong>of</strong> an average maximum st<strong>and</strong>ing crop <strong>and</strong>-an average transient<br />

curve far a given life stage have ~peratiana~ meaning. In sum-<br />

mary, it is our opinion that <strong>the</strong> parameter YS has na operational meaning<br />

for <strong>the</strong> transient dynamics <strong>of</strong> <strong>the</strong> young-af-<strong>the</strong>-year life stages, <strong>and</strong> it<br />

cannot be based directly ar indirectly an observed st<strong>and</strong>ing-crop or<br />

density data.<br />

KX I__<br />

The parameter KX is defined by LMS as <strong>the</strong> ~ ~ ~ i first ~ order i b ~ i ~ ~<br />

mortality rate coefficient.' y2 LMS calculates this parameter as<br />

-ln(PS)/DTE far each life stage, where DTE is <strong>the</strong> time required to<br />

pass through a gSven life stage under equilibrium conditians <strong>and</strong> PS is<br />

<strong>the</strong> probability <strong>of</strong> survival through that life stage under equilibrium<br />

conditions. However, all that can be estimated from field <strong>and</strong>/or<br />

laboratory data are DTE', an average time required to pass through a<br />

given 1 IPe stage, <strong>and</strong> PS' an average probability <strong>of</strong> survival through<br />

that l-ife stage. DTE' <strong>and</strong> PS' could <strong>the</strong>n be <strong>used</strong> to calculate an<br />

-.-_ averas first or er mortality rate coefficient (KX') as KXt = -In(PS')/<br />

DTE', assuming exponential mortality. Only by chance would DTE8 = DTE,<br />

PS' = PS, <strong>and</strong>/or MXl = MX, because <strong>the</strong> average values wi?l reflect<br />

biological phenomena occurring aver <strong>the</strong> full r nge <strong>of</strong> population<br />

densities achieved in <strong>the</strong> natural system, <strong>and</strong> not just at an "equilibrim"<br />

st<strong>and</strong>ing crop or density ~ h ~ defined) ~ ~ e v Thus, ~ r <strong>the</strong> parameters<br />

necessary to calculate KX cannot be directly estimated from observable<br />

data e<br />

MX<br />

The parameter KXO is defined as <strong>the</strong> mini rtality rate<br />

coefficient, which is ap~r~ached at ~ ~ ~ levels ~ near l zero. a ~ We<br />

i ~ ~


33<br />

already have implicitly criticized <strong>the</strong> biological basis for this<br />

parameter in <strong>the</strong> prw’ous discussion about <strong>the</strong> left limb <strong>of</strong> <strong>the</strong> curves<br />

in Figs- 1 <strong>and</strong> 2 for fish species soch as striped bass (page 28).<br />

Ano<strong>the</strong>r point to be mad^ atwt KXO is that <strong>the</strong> values selected by LMS<br />

eornmnrrly correspond to unr-ealistic probabilities <strong>of</strong> survival (Table 3) -<br />

The PSO values for AKXB = 0.2’5 are comple%ely unrealistic biologically.<br />

Fv~n in a hatchery under optimal conditions, it is difficult to obtain<br />

survivals greater than 50% for <strong>the</strong> jrivenile stages <strong>and</strong> impossible for<br />

12<br />

larvae. The values for AKXO = 0.5 are also high, certainly for<br />

conditions in <strong>the</strong> natural environment.<br />

Sensitivity Analysis<br />

Sensitivity <strong>analysis</strong>, involving systematic variation <strong>of</strong> parameters<br />

through a range <strong>of</strong> values, is a st<strong>and</strong>ard way <strong>of</strong> evaluating <strong>and</strong> even<br />

validating simulation models. On <strong>the</strong> basis <strong>of</strong> examining model output,<br />

one can answer such questa’ons as: (a) what is <strong>the</strong> relative <strong>sensitivity</strong><br />

<strong>of</strong> <strong>the</strong> model to changes in certain parameters, <strong>and</strong> (b) is <strong>the</strong> model<br />

output reasonable or even plausible for a given parameter combination?<br />

With respect to <strong>the</strong> three parameters in <strong>the</strong> LMS <strong>compensation</strong><br />

<strong>function</strong> <strong>and</strong> <strong>the</strong> output variable <strong>of</strong> primary interest (viz. , percent<br />

reduction in <strong>the</strong> striped bass popuiatican due to power plant operation),<br />

<strong>and</strong> given <strong>the</strong> range <strong>of</strong> parameter values <strong>used</strong> in this study, <strong>the</strong> niodel<br />

is least sensitive to changes in YS, <strong>the</strong> equilibrium st<strong>and</strong>ing crop,<br />

<strong>and</strong> most sensitive to changes in KXO, <strong>the</strong> minimum mortality rate<br />

coefficient. For example, estimates <strong>of</strong> percent reduction in nirmber<br />

<strong>of</strong> adults at year 40 range from 15 to 49% for YS, 3 to 44% for KX, <strong>and</strong><br />

8 to 85% for KXO. Variations <strong>of</strong> this magnitude obviously must be<br />

considered in reaching a reasoned decision on <strong>the</strong> potential impact <strong>of</strong><br />

<strong>the</strong> Hudson River power plants on <strong>the</strong> striped bass population. This<br />

concern is accentuated by <strong>the</strong> lack <strong>of</strong> a sound bialogical basis for<br />

<strong>the</strong> parameters YS, KX, <strong>and</strong> KXO.<br />

A more fundamental type <strong>of</strong> sen5itivit.y <strong>analysis</strong> involves comparing<br />

alternative forms For a <strong>function</strong> in a sirnulation model, where each form<br />

<strong>of</strong> <strong>the</strong> fijnctiotl reflects a somewhat different set <strong>of</strong> assumptions <strong>and</strong>


33<br />

Table 3. Values <strong>of</strong> maximum probability <strong>of</strong> survival (PSO)<br />

corresponding to <strong>the</strong> KXO values <strong>used</strong> by LMS<br />

AKXO = AKXO = AKXQ =<br />

Life stage DTE~ PSa 0.8 0,5 0.25<br />

(days)<br />

Larva 28 0,15 0.22 0.39 8.62<br />

Juvenile 1 30 0.20 0.28 0.45 0.67<br />

Juvenile 2 123 0.50 0.57 0,71 0.84<br />

Juvenile 3 158 0.19 0.27 0.44 0.66<br />

aDTE is <strong>the</strong> average number <strong>of</strong> days required to pass through <strong>the</strong><br />

specified life stage. PS is <strong>the</strong> average probability <strong>of</strong> survival<br />

through <strong>the</strong> specified life stage. (See reference 2, table 4, page<br />

40a; <strong>and</strong> reference 13, Table 7, page 13c)<br />

bValues for maximum probability <strong>of</strong> survival through <strong>the</strong> life<br />

stage are calculated as


34<br />

underst<strong>and</strong>ing about how <strong>the</strong> real -world system may operate. We have<br />

ken critical in this report <strong>of</strong> <strong>the</strong> conceptual basis for <strong>the</strong> left limb<br />

<strong>of</strong> <strong>the</strong> LMS Compensation <strong>function</strong>, <strong>and</strong> we have shown that disabling <strong>the</strong><br />

left 1 iinb resill ts in appreciably higher estimatm <strong>of</strong> pev-cent rediiction.<br />

Thus, again, results <strong>of</strong> this type must be considered in reaching a<br />

reasoned decision on lhe potential impact <strong>of</strong> <strong>the</strong> lludson River power<br />

plants on <strong>the</strong> striped bass population.


3 5<br />

REFERENCES<br />

1. J- P. Law1er3 ''The effect <strong>of</strong> entrainment at Indian Pol'nt an <strong>the</strong><br />

poptilati~n <strong>of</strong> <strong>the</strong> Hudson River stripe bass. I' Testimony before<br />

<strong>the</strong> Atomfc Safety lirens%'ng Boardl, lndian Point nit 2, USAEC<br />

Do~ket, NO. 50-247, April 5, 1972,<br />

2. J. P. Lawler, "Effect <strong>of</strong> entrainment <strong>and</strong> impingement at Endjan<br />

Point on <strong>the</strong> poplalatian <strong>of</strong> <strong>the</strong> Hudsogl River striped bass."<br />

Testimony befare <strong>the</strong> Atomic Safety Licensing Board, Indian Point<br />

Unit 2, USAEC Docket No. 50-247, O~tober 30, 1932.<br />

atusky & Skelly Engineers, "Report on ~ e v ~ l <strong>of</strong> ~ a ~ ~ ~ r ~ t<br />

redl-time two dimensional made% <strong>of</strong> <strong>the</strong> Hudson River striped bass<br />

population "<br />

(Prepared under contract with Cans01 idated Ed-s'son<br />

ew Yard, Inc, > October 1975).<br />

Christensen, 9. Golumbek, <strong>and</strong> A. Clark,<br />

""Sensitivity <strong>analysis</strong> <strong>of</strong> <strong>the</strong> L-MS tidal -averaged, one-dimensional<br />

transport mdel <strong>of</strong> <strong>the</strong> Hudson River striped bass pop la ti an^"<br />

O ~ ~ report, L ~ J Oak ~ Ridw National Laboratory, Oak Ridge,<br />

Tennessee, (In preparation)<br />

5. Letter dated July 13, 1974, from MI.. E. R.. Fidell, attorney for<br />

Co~~o~i~~ted Edison at LeBoeuf, L-amb, Leiby, <strong>and</strong> MacRae, to<br />

Mr. J.. Scinto, U.S. Nuclear Regulatory Commission, including as<br />

an enclosure a document entitled "Dacumentatian for Ma<strong>the</strong>matical<br />

Models <strong>of</strong> <strong>the</strong> Hudson River Striped Bass Papulation," dated July<br />

1974 *<br />

6. Letter dated August 11, 1975, from William J. Cahill, Jr. Con-<br />

solidated Edison, to Dr. Richard M. Rush, Oak Ridge National<br />

Laboratory, including as enclosures a source deck for <strong>the</strong> trans-<br />

port <strong>and</strong> <strong>the</strong> completely mixed striped bass life cycle models<br />

developed by Lawler, Matusky Skelly Engineers, a listing far <strong>the</strong><br />

two models, <strong>and</strong> saniple data for testing each <strong>of</strong> <strong>the</strong> two models,


36<br />

7. J. P. Lawler, "Sensitivity <strong>of</strong> <strong>the</strong> model presented in <strong>the</strong> testimony<br />

<strong>of</strong> October 30, 1972, an <strong>the</strong> effect <strong>of</strong> entrainnient <strong>and</strong> inipingement<br />

at Indian Point on <strong>the</strong> population <strong>of</strong> <strong>the</strong> Hudson River striped bass."<br />

lest iilivny beforc <strong>the</strong> Atomic Safety Licensing t3~ar-d~ Indian Point<br />

Unit 2, USAEC Docket No. 50-247, February 5, 1973.<br />

8. U.S. Nuclear Regulatory Conmission (USNRC), "Final environmental<br />

statetnernt related to operation <strong>of</strong> Indian Point Nuclear Generating<br />

Station, Unit No. 3," Gocket No. 50-286, Vols. I <strong>and</strong> %I, February<br />

1995.<br />

9. W. W. Murdoch <strong>and</strong> A. Oaten, "Predation <strong>and</strong> population s.tahi1ityy"<br />

pp. 1-731 IN A. MacFadyen (ed.) _____L_<br />

Advances -111 in ecolo~ical - research,<br />

. - . ~<br />

Vol. 9. Academic Press, New York. 1975.<br />

IO. ,4. H. Eraslan, W. Van Winkle, W. D. Sharp, S. W. Christensen,<br />

C. P. Goodyear, R. M. Rush, <strong>and</strong> W. Fulkerson, "A cotnputer simulation<br />

model for <strong>the</strong> striped bass young-<strong>of</strong>-<strong>the</strong>-year population i ti <strong>the</strong><br />

Hudson River." ORNL-59 77. Oak Ridge National Laboratory, Oak<br />

Ridge, Tennessee. (In press).<br />

11. W. Van Winkle, B. W. Rust, C. P. Goodyear, S. R. Blurn, <strong>and</strong> P. Thall,<br />

"A stripes! bass papulation model <strong>and</strong> computer programs .I' ORNL/TM-<br />

4578. Oak Ridge National Laboratory, Oak Ridge, Tennessee,<br />

Deceiilber 1974.<br />

12. Texan Instrinments Inc. , "Feasibility <strong>of</strong> culturing <strong>and</strong> stocking<br />

Hudson River striped bass. 1974 Annrma! Report." Prepared undet-<br />

13.<br />

contract with consolidated Edison Company <strong>of</strong> New York, Inc.<br />

November 1 97 5.<br />

J. B. Lawler, "Effect <strong>of</strong> entrainment <strong>and</strong> impingement at Cornwall<br />

on <strong>the</strong> Hudson River striped bass population. I' Testimony before<br />

<strong>the</strong> Federal Power Cornmission, Cornwall, USFBC Project No. 2338,<br />

October 1974.


~~~~~~~~ A<br />

33<br />

CROSS REFERENCE LISTING OF SHE LAWLER, blATLISKY &. SKELLY<br />

ENGINEERS 60 PLETELY MIXED MODEL FOR THE WUOSON RIVER<br />

STKIPLD BASS P ~ ~ U ~ ~ ~ I ~ ~ ~<br />

AS<br />

OAK RIDGE NATIONAL LAB


ISM 0002<br />

ISH 0003<br />

ISN 0009<br />

ISN 0005<br />

ISN 0006<br />

XSN 0007<br />

Ish' 0008<br />

ISN 0009<br />

ISH 0010<br />

ISN 0011<br />

ISM 0012<br />

ISN 0013<br />

ISM 0014<br />

I S U 0015<br />

ISM 0016<br />

ISY 0017<br />

ISI 0018<br />

ISM (1019<br />

rsa 0020<br />

ISU 0021<br />

IS8 0022<br />

ISN 0023<br />

ISM 0024<br />

ISN 0025<br />

ISH 0026<br />

ISU 0021<br />

ISM 0028<br />

ISN QQ29<br />

ISN 0030<br />

ISM 0031<br />

ISN 0032<br />

ISM 0033<br />

ISH 0034<br />

ISM 0035<br />

ISM 0036<br />

ISN 0037<br />

ISM 0038<br />

ZSIS oouo<br />

xsn ooui<br />

38<br />

CBIST<br />

SOD K F ~ E ECDIC, NOL IS?, No CE CK ,LOAD, MAP, k OF 0 TT , NO I D , XR EF<br />

HIST c<br />

C...<br />

C JANUARY 1976. CONPUTER fOnB FCK THE CO3PIEPEf.I kIXEE RODFL<br />

HIST<br />

HIST<br />

5<br />

in<br />

C DEVELOEFC BY LAWIEA, MA'IUSKY S SKELIY, AS MODIFIED BY<br />

C VAN YTNRZE.<br />

c.. .<br />

C...TAIS 15 THE RATN EROGHAB FOR THE COBFLEI'dLL HIXEi? MODEL.<br />

c.. . IT +AS PoRn*Rr.y IDENTIFIED AS SIMROUTINE HISTG.<br />

c...<br />

HIST<br />

HIST<br />

HIST<br />

I!ISY<br />

H I ST<br />

YIST<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

CO~M3N/ADoErr/LCw(20) ,PEC(ZO) ,SEAT[20) ,Sr4€,T(20)<br />

H f $7 45<br />

cOnnoa/tsiAI~FrA~r~5) ,AKXO (5) ,AYS(S) ,DE (5) ,DTE(5) ,'PKILL(S) ,SLEPT (5) HISP 50<br />

1 ,IRIGAT[S) ,KX(S) ,KX0(5),YS(5)<br />

COnnON/PAR,/IENU.ISKF ,ISY, RSTP,NN, F, CP, TE, V<br />

HIST<br />

HI ST<br />

55<br />

60<br />

COMMOR' /RKTTA; NX,DN#UT,AUX(16,1) HIST 65<br />

COhHON/YGHP/T?k (10) ,Ti%IY(lO) HIS? 70<br />

COWHON/BYY,'Y(5000) ,YY (SOOC)<br />

DlREhYION ADULT(20) ,ACIILTS [20), K Y U (20) ,PAD(2O) ,PADL(20) ,RMF(20)<br />

DIREYSTON CHAP (6,5r,JLEPT(5),JRIGWT (53 ,PNLAY(B) ,ASUM(4) ,REF (6)<br />

HIST<br />

rllST<br />

HIS7<br />

75<br />

ao<br />

a5<br />

DIMENSION h (100) ,S(lOO) ,R3(100) ,SR(lOO) ,SIi(lOO) ,R3R (loo), A S (100) HIST 9c<br />

1 .R3RSI; flOOI<br />

~ i ~ Iswi ~ e;JLEFI,JRTGHT,NG,YRS e<br />

RPAL iRY33,Il!IPTOT,KX,kXO, NI C, NMAX,NNAXYS ,NTOT,NX,KFLA HT<br />

DATA NC/6H NO/, IES/6H YES/<br />

DATA J , K ,I,; e!, S j 5"l ai DATA IK,?N,IQ,IX,JJ, IL, M8/7*0/<br />

CATA IAC81E3i, i~I,~PL,IPT,IST,IYf,II 6, LPT, Lsa/l O*O/<br />

D AT A R SLT , K TfC/ 2'06<br />

DA FA I RTPO , I'I'LST , K.5 PAN, US FAN/U* O/<br />

D AT & I A CR M T , I S IA G%/ 28.0)'<br />

DATA R ,S, R3 ,S B .- RR, 83R, R 35, E3RSR/B00*0. /<br />

1119: 95<br />

eiST 100<br />

HIST 105<br />

IlIqT 110<br />

HIST 115<br />

HIST 120<br />

HTST 125<br />

HIS' 13C<br />

IIPST 135<br />

HIST 140<br />

HIST 145<br />

DATA AA,A~,Ba,E2,BO,Sk,SP,TP/E*O./<br />

HIST 150<br />

DATA AVG,NEC,REF,SPE. SSF./9 C*O./<br />

HIST 155<br />

DATA ASIIPI, NMAX NTOT, PSPP, BATi?,SOh A, SURI, T€ND,TO'I ?/I 2*0./<br />

DArA PRACT, PN DAP,FTPdE/S* 0 ./<br />

MIS: 160<br />

RE5T 165<br />

DrTB NMAXYS ,PPQ~Wi~,TST&fiT/3*0.j<br />

DATA A CULTc ADULT3 DCZO, PAD, PA LE, RMF/120*0./<br />

HIST 17C<br />

Ei5T 175<br />

IWIEfEB OF1,OPZ<br />

HIST 180<br />

C...<br />

HI9T 1R5<br />

C.. .IWITIALILA'TTOM STbTEHYWTS.<br />

HIS7 190<br />

C...<br />

OF1=6<br />

HIST 195<br />

HIsr 200<br />

OF2=12<br />

HIsT 205<br />

IP1=5<br />

RIST 210<br />

ISH1 = NO<br />

HIST 215<br />

TIB (11 =O.<br />

TIW(9) - 56.<br />

HIST 220<br />

HIST 225<br />

DO<br />

io<br />

c...<br />

C.. .READ<br />

10 I=1,5000<br />

YT(P~=O.<br />

INPUT PARAKETERS AID WRIT2 FROSF: INPUT PARARETERS REQUESTED.<br />

HIST 230<br />

ilIST 235<br />

HIST 240<br />

HIST 245<br />

C .<br />

READ(IFl.10000) ISY,IEND ,LPB, SIP ,TSTHRT,TEND.iSKP<br />

L 1 R=IY. 6-1<br />

IF (ISW-EQ-1) ISU1-YES<br />

HIST 250<br />

HISP 255<br />

HZST 260<br />

XIST 265<br />

TP-TEN D-TSTmT<br />

HPST 270<br />

READ (IF1,lOlOO) IST, IK.IEW, %IN<br />

HIST 275


XSN BO42<br />

ISM 0043<br />

6SR 0044<br />

ISN 0046<br />

XSN 01047<br />

rsI ooua<br />

2SN BOY9<br />

ISk4 0050<br />

LSN 0052<br />

ISM a054<br />

ISB Q055<br />

ISN 8056<br />

IaN 0057<br />

ISM 0058<br />

ISN (8059<br />

LSN Q060<br />

XSY 0061<br />

ISN 0063<br />

ISM 0065<br />

ISH U06b<br />

1SN 0067<br />

ISN 8869<br />

LSN 01070<br />

ISN 0071<br />

TSlP 0072<br />

ibM 0073<br />

XSN 00lU<br />

15td 0074<br />

ISH 0076<br />

1SN 0077<br />

ISW 0078<br />

LSY 0074,<br />

LStd 0080<br />

ItjN 0082<br />

L S ~ OoaU<br />

I$)a UC86<br />

LS$4 0087<br />

ISH 0088<br />

ISI uam<br />

lSbl 0090<br />

IS& OL97<br />

rsn 0093<br />

ISN 0095<br />

ISN 0B96<br />

3slP 0097<br />

ISI aw8<br />

ISN 0100<br />

Isn OIOL<br />

ISH 0104<br />

READ(X F 1 I 1020 0)<br />

READIT Fl,?O30O)<br />

39<br />

QP<br />

V, (PKILLfL) .L=l ,S), IPL<br />

IF (XSW,EQ. 1) LYR=LYB+ISY<br />

QFCFS = 1703hBO*QP<br />

URITE(OF1,13000)<br />

UIRITE(OF1,13900) IEND.LYR,ISYS,IPL<br />

URITE(CFl,? 1000)<br />

I F (NM.EQ.1) WRITE~OP2,131CO)<br />

IF (NN.EQ,I)<br />

RSWT = 1<br />

IST AGE=I<br />

IYR=O<br />

WBITE(OFZ,I~~~O) QF* CPCFS,~, IPKILL(JJ) ,JJ-I,~)<br />

ZEAD~IFl. 10400)P.TZ, (DE(JJ) .JJ=1,5)<br />

PEQUAL=P<br />

REA~(IFI,I~~~CI) SPAN, /TI:R(J) ,J=;, NSPAN)<br />

REEAD(IF’I,106@C) [TItlW(J) ,J=l,NSPAN)<br />

IF (NN.EG.1) UtiXTE(12,14000] (DE(J) ,J=l,5)<br />

IF (NN.EQ.1)<br />

KSPAN=NSPAN-I<br />

GlHXTE(OF2,1Y100) ?E<br />

DO 20 K=l,KSPAN<br />

IF (NN.EQ. 1) YBITE (OF2.142CO)TIKfK) ,TIi‘(K+l) ,TIMW(K]<br />

20 CCWTINUF<br />

READ{IZ1,1070C) /DCY (J) .J=l,IEND)<br />

REAR [I E 1,10800) (SHA T (J) .J=l .IEND)<br />

PEAD (I F 1 1 OR9 0) (SMhT (J) J= 1 I I FN 6)<br />

SFAO(IF1,109~~8) (FEC(J) ,J=l,IEND)<br />

RFbDEIP1,11000) (PUDAY [J) 8J=l”b]<br />

PTrn E= c<br />

30 FRACT-CE(1) *TIklY[l) /TIR(2)<br />

MEO=F* PE ACT<br />

ITEST=tlOD(IYRb IR)<br />

I Y=0<br />

IF (1TEST.EQ. 0) IM=l<br />

IF (I&. EQ. 1 .OR .IYR. EQ, 1) WRITE (OF 1, l1400) TYR<br />

40 IF (IYR.GT,O) GC TO 50<br />

6 ....... s..*-.-.a..<br />

iiTST 284<br />

FIIST 285<br />

HIST 290<br />

HIST 295<br />

YIYT 300<br />

YET 305<br />

BIST 310<br />

HIST 315<br />

HIST 3.20<br />

HIST 325<br />

HIST 330<br />

Y1:FT 335<br />

HIST 340<br />

HIST 345<br />

HLYT 356<br />

NISF 355<br />

KIST 360<br />

YIST 365<br />

VXT 37r<br />

HIST 775<br />

;fIST 3d0<br />

HIS? 385<br />

ii1s.r 310<br />

NIST 399<br />

HIS? 400<br />

HIST 405<br />

HIS? 4lC<br />

YIST 435<br />

YlST 420<br />

HEST 425<br />

usr 430<br />

KIST 43e<br />

nTST 440<br />

HIT” 445<br />

HIST 450<br />

RXST 4’jE.<br />

YIST 46C<br />

YIST 465<br />

HIYT 470<br />

HIST 475<br />

HIST 490<br />

VIST 495<br />

HIST 490<br />

WIST 495<br />

‘iIS? 500<br />

READ(XFl,ll 100) (CUAR(1,ISTACE) .I=1 $6)<br />

RFAC(IF1,11200) KX (ISTAGE) ,KS (ISTAGE) ,DTE(ISTAGF)<br />

FEAD(IF 1,11300) AKX (ISTAGE) .A KXO IS‘IAGE) AYS {ISTAGE]<br />

1 ILi.:PT (XSTAGE) ,IRIGHT (ISTAGE)<br />

JLFPP(1STAGE) = NO<br />

JRICHT[ISTAGE) = NO<br />

IF (ILEPT (ISTAGI). d(2.1)<br />

IF (IRIGHT(1STAGE) .EQ.l)<br />

JLEP‘: (IST AGE) = YES<br />

JRIGHT (ISTAGE) = YES<br />

RX (LSTAGE) = AKX(XSTAGE)*KX (XSTAGE)<br />

RXO (IS‘IAGE) = AKKO [ISTAGE)*KX LISTAGE)<br />

YS ( fST AGE) = A Y S [ISTAGEJ * Y S ( I ST A6 E)<br />

HISF 505<br />

HIST 510<br />

50 IF (Ia.EQ.l.Os.r~R.EQ,l)<br />

IF tIN.EQ.1 .OR,IYR.EQ.I]<br />

UBITE(GP1, 13000)<br />

UAITE(OP1.11500) ISTACE,<br />

HXS‘? 515<br />

(CHAR(1,ISTAGE) .HIST 520<br />

1 I=1,6)<br />

HXST 525<br />

IF (NN.EQ.l.hBG.IN,EY.l.OR,NN.EO. 1.AND.XYB.EQ.I) WRITE{0~1,13300) HIS? 530<br />

1 KX IIISTAGE) .KXO(ISTAGE) ,YC IISTAGE) .DTE (ISIIGE) , ARX (ISTACE) , HXST 535<br />

1 AKXO(ISTXGF1 .AYS(ISTACE) ,JLEPP (ISTAGEj .JRIGHT(SSTAGE)<br />

HIST 540<br />

c. * .<br />

HIST 5U5<br />

C...AVERAGE THE VALUES IN THE PECDUCTIOH TABLE UHEN CIFFEBEHT<br />

HIST 550<br />

C...UODEL TX8E STEPS ARE USEE PCE VARIOUS LIFE STAGES.<br />

HXST 555<br />

c.. . 9IST 560<br />

IP (ISTAFE, NE, 1) ASUU (ISTAGE) =DE (ISTAGE) /CE [ISTAGE- 1)<br />

YIST 565


ISN 0106<br />

ISH 0108<br />

ISM 0110<br />

ISN 0112<br />

IS8 0110<br />

ISN 0116<br />

ISN 0118<br />

ISH 0120<br />

ISU 0122<br />

I S N 0123<br />

ISN 0120<br />

ISM 0126<br />

ISM 0127<br />

ISN 0128<br />

ISU 0130<br />

ISU 0131<br />

ISN 0132<br />

ISH 0133<br />

ISU 0134<br />

ISH 0135<br />

ISH 0136<br />

ISW 0137<br />

ISN 0138<br />

XSN 0139<br />

ISI 0140<br />

ISH 0141<br />

XSN 0142<br />

ISU Oi43<br />

ISU 0145<br />

ISN 0146<br />

XSI 0147<br />

ISU 0148<br />

IS$ 0149<br />

ISH 0150<br />

ISM 0151<br />

ISM 0152<br />

ISN 0153<br />

ISN 015U<br />

ISM 0155<br />

TSU 0156<br />

ISY 0157<br />

ISH 0158<br />

ISM 0159<br />

ISM OlbG<br />

ISU 0161<br />

ISN 0162<br />

ISH 0153<br />

ISH 0164<br />

IS$ 0165<br />

ISil 0156<br />

Isn 9167<br />

ISU 0148<br />

ISM 0159<br />

ISH 0170<br />

ISU 0171<br />

ISN 0172<br />

C...<br />

60<br />

70<br />

80<br />

IF (ISTAGE.EG.1) Fit! = (DTE[ISTAGE)/CE[l) t 0.0001)<br />

IF (ISTAGE.EQ.1) IPT = ((0.0-ETT(lS'TAGE))/CE(l)) + SIGN(O.0001,<br />

1 (O.O-C'IE(ISTAGE)))<br />

IF (ISTAGE. EQ. 1) III=IFT+RR<br />

I F (III.EQ.0) IPTfQ<br />

IF (1FT.NE.O) IFT-IABS (IPT]<br />

IF (1STAGE.EQ. l.AND.IPT.LE.0) IPT-0<br />

IF (KFIRST. EQ. 0) LP'I=LPI<br />

IF (ISTAGE. Ea. 1. OR. XSTAGE. EQ. 5) GC<br />

bA=ABS (PNDA Y( I STAGE) -PN BB P (ISTA GE - 7<br />

BEI=ABS (DE (r5TAGE) -DE (TSTBGE-1))<br />

IF ((AA.LT. .0001).AMD. (BB.LT. .0001)<br />

L=l<br />

INCR?iT;ASU?! (ISTAGXI 4.001<br />

I F (1NCRRT.LE.O) GO TO 120<br />

IX-0<br />

I PT=PLOAT ti PP) /'FLOAT (INCsHT)<br />

EO 70 I-l,KTYO,INCRA~<br />

AVG=O.<br />

IX-IX+INCRPlT<br />

DO 60 J=I,IX<br />

AVG-=AVG+'III (J)<br />

YY (J) =O.<br />

YY (L)=AVG<br />

L=L t 1<br />

CONTINUE<br />

KTYO=L<br />

IAD=PN CAY [ISTAGE) /DE [IS'IAGE) + .OC1<br />

IF (IAr.Ey-I) GO TO 160<br />

PO 110 K=l,iCTYO,lAD<br />

L=R<br />

LL= 3 tIAD-1 AYG=O.<br />

DO SO N-LsLL<br />

AVG BOCbPY(N)<br />

90<br />

DO 100 N=L,LL<br />

100<br />

YT IN) =AVG/IAD<br />

110 COBi TIN UE<br />

GC TO (160,170) ,KSYT<br />

120 IQ=l.O/bSUV (ISTBGF) e.001<br />

IVY=-IQ<br />

IM-KTYC<br />

I KT YO- KT tO* IQ<br />

DC 130 I(I=I,IKTYO,SQ<br />

K=I RTYO-Ht 1<br />

YY (KtIVY*l) =YY (MR)<br />

l Y (aa)=o.<br />

130 w!l=IJ1s-l<br />

DO 150 #=?.IRTYC,IQ<br />

J= K<br />

JJ-KtIQ- 1<br />

AH=PY [K) /IQ<br />

DO 140 N-J,Jd<br />

140<br />

YY (N) =AN<br />

150 COl'IIMWE<br />

RTYO=IKTYO<br />

GO TO 80<br />

0 160<br />

1<br />

GO TC 160<br />

HIST 510<br />

HIST 575<br />

HIS1 590<br />

HIST 585<br />

HI~T 530<br />

HISP 595<br />

HIST 500<br />

Hlsr 605<br />

VIST h10<br />

UI4T 615<br />

H1SP 620<br />

HIST 625<br />

IjIST 630<br />

HI3P 635<br />

KST 64C<br />

HISr 645<br />

'1IST 650<br />

IiISl 655<br />

HIST 660<br />

HIS'P 465<br />

XIST 670<br />

Y X C 475<br />

III;T 680<br />

HIST 685<br />

HIST 59c<br />

IIIST 69=<br />

HTST 700<br />

MIST 705<br />

HlJT 710<br />

PIIST 715<br />

HIST 720<br />

fI1SP 725<br />

HfTT 73C<br />

RIST 735<br />

IfItil' 7'bO<br />

HIST 7Uc<br />

MIST 750<br />

HIST 755<br />

HIST 760<br />

YiST 765<br />

HIST 770<br />

hIST 57'<br />

VIST 780<br />

HIST 785<br />

HIST 790<br />

HIS? 195<br />

HIST 900<br />

HIST 905<br />

HIST 810<br />

HIST 815<br />

HIST 820<br />

HIST 825<br />

TIST 930<br />

HIST 535<br />

HIST 8UO<br />

HIST 8rC5<br />

HI'rT 050<br />

HIST 055


ISH 0173<br />

ISW 0223<br />

IISN 0224<br />

ISH 0226<br />

41<br />

C.. .CALI. SUBROUTINE GROUTH FOR Til& STECXFIED LIfE STAGE.<br />

c...<br />

160 CALL G ROUTH [I# I ISTAGE, IYR "KTPO ,NE0 sNflA X I ET1 RE ., KPLANTJ<br />

HTS? 960<br />

HTST 865<br />

HIST 870<br />

C*".<br />

C.. .CALCULATE AND WRITE TOTAL SRCDOCTIOL, TOTAL TRAHSFTR, % SURVIVAL<br />

HCST 875<br />

HIST 840<br />

C...AND PlAXIFUn STANCING CRCP FOE TH9 SFECIPIZC LIFE STAGE.<br />

c. e "<br />

IP (IS'f'AGIS.GT.1) GO TC 1YO<br />

HlST 985<br />

HZST 990<br />

HIST d?5<br />

KSUT = 2 HIS? 900<br />

GO TO 80<br />

170 TOTI=O,<br />

KSST 7 1<br />

DO lAB .J-l.KTYC<br />

RI'jT '305<br />

HIST 910<br />

HIST 315<br />

HISP 920<br />

180<br />

TOT? = TCTl<br />

COM'IIYUE<br />

YY (J) HIST 925<br />

HIST 930<br />

3ATE = 100.*TQTl/P<br />

cunw = TOTI/P<br />

IP (IYR,E#.O) &ZP(ISl'AGE)<br />

CHAMGN = REP(ISiAGE) - P<br />

= P<br />

HIST 935<br />

q15- 9a0<br />

HISZ 745<br />

l1IST 940<br />

CftXBGP = lOC*CBAIGN/REF (IS'IAGZ)<br />

NFiAXYS = 0.0<br />

IF tINJ,EQ,7 .OR.IYR. EQ.1) WBZTE(OF1, 11600)<br />

Ul5T 955<br />

BIST '96 c<br />

P,TOTa,RA~E,?~RAX,W~RXYS,dIST Oh5<br />

1 CHAHGN,CHBWCP IJIST 970<br />

Gil TO 210 ImST 975<br />

190 NTOT=TOTI HTST -380<br />

TOTl=U<br />

no 200 J=1*K"YO<br />

'IIST YE15<br />

HTST 190<br />

TOT1 = TOT? I YYfJ) HIST 795<br />

200 CCN'IIUUE<br />

RAT E= d GO .*TOT l/NTOT<br />

NOAXIS = NMAX/YS (ISTAGE)<br />

HLSTI 000<br />

B1ST1005<br />

HIST 101 0<br />

CllRPS = (TOT1;ITUT) *CUPlPS HISTI 01 5<br />

PP fIYR.EQ.0) PET(1STfIGE) = HSOT HIST1020<br />

CHAlGN = RYP(1STAGE) - NTCT msr 1025<br />

CNANGP = 100+CHAMGH/BZP [ISTAGE)<br />

HI ST1 03 0<br />

IF [EW .EO. 1 .OR .tYh.EQ. 1) YRITE(6,1lh00) LTCT,TOml .RATE,YHAX,NnAXYS,BISP 103E<br />

1 CHANCN,CHANGF<br />

IP (XSTAGX.EQ.4) InPJ2=(KPLAN~/(KPLAHT+K~(I~~AG~~~<br />

1 *(ITOT-TOTl)<br />

il I ST 1 0 4 0<br />

HISIlOQS<br />

IP (ISTBGE. EQ. 5) IBPJ3= (KPIANT/ (KFI. IINT+KX (IFiTAGE)) ) f (ITOT-TOT 1) HIST 105C<br />

fF (ISTAGE. EQ.5) LI11PTOT IHPJL + XRPJ3 HI ST1 055<br />

I P (ISTAGE. E@ 4,ABID. I N .E Q f -0 R. IS 'IAGE. E Q. 4 AND. I YR. Ea.. 1) WRITE f 6 , HIST 1060<br />

1 11800) IflPJL HI'iT? 065<br />

If (ISSACE.EB.5.BND.IN .EQ - ?.OR, 1SIACE.EQ. 5. AND.IYR. EQ, 1) WRITS (6, HIST1070<br />

1 49900) ZflPJ3,IAETOT HIST 1075<br />

IF (XSfAGE.EQ.5) YEAR1 = CURPSLF<br />

I? (I5TAGE. EQ, 5.AMD. IN.EQ .l.OR. IS?AGE.Ec. 5. AND. 1YR.EQ.. 1) WfiITE(6,<br />

HISTI 080<br />

HISTlOAS<br />

1 11700) CTIQPS,YEABl<br />

HXST 1090<br />

210 CONTXNOE<br />

c<br />

C...CYCXE TO THE #EXT LIFE STAGE.<br />

C .<br />

C .... STAGE 2-LXRVAE<br />

C =... STAGE 3-5=JUVENILE 1-111<br />

c .... -....I .... .e.<br />

PTIt4E = PTIRE t DTE(I5TAGE)<br />

ISTACE=XSTAGE+1<br />

IP (ISTdGE.EQ.2) PTZBE=PTIRE+TI#( hSEAY)<br />

NEO=YY { 1)<br />

BIST 109 5<br />

HISTllOC<br />

HIST1 105<br />

HIST 11 1 G<br />

HISTI 11 5<br />

HIST1120<br />

AISTl125<br />

HTSTl130<br />

HIST 11 35<br />

HIST1140<br />

HIST 1 1 U5


ISN 0227<br />

ISN 0229<br />

ISU 0231<br />

ISN 0232<br />

ISN 0233<br />

ISN 0235<br />

ISN 0239<br />

ISU 0239<br />

ISN 02bO<br />

ISH 0241<br />

ISN 0242<br />

ISU 0243<br />

ISN 0244<br />

ISN 0245<br />

ISM 0246<br />

ISM 0247<br />

ISN 0248<br />

ISN 0249<br />

ISN 0250<br />

ISN 0251<br />

ISN 0252<br />

ISN 0253<br />

ISN 0254<br />

ISN 0255<br />

ISN 0256<br />

ISN 0259<br />

ISN 0250<br />

ISN 0259<br />

ISN 0260<br />

XSU 0261<br />

ISM 0262<br />

xsn 0263<br />

ISN 0265<br />

ISM 0266<br />

ISM 0269<br />

ISU 0260<br />

ISN 0269<br />

ISY 0270<br />

ISN 0272<br />

1.51 0273<br />

ISN 0274<br />

ISN 0275<br />

IF (ISIAGE.LE.5) GO TO UO<br />

I F (1YR.GT.O) GO TO 230<br />

C.. *<br />

C...CALL<br />

C...<br />

SUBROUTINE EQUAL FOR YEAR ZERO.<br />

CALI. EQUAL (ADULT,ADVITS,DCY~J,NEO,P~~U~L,~~P,~O)<br />

AFS = EXP(-DCYU(4)*365.)<br />

IF (NN.EQ.l)<br />

I F INN. EQ. 1 )<br />

URITE(I2,13600) APS<br />

WRITE [ OF2 ,13 4CO)<br />

HIST 7 150<br />

HIST 7 155<br />

HISTllhO<br />

HIST 1165<br />

RISTll70<br />

HIST1175<br />

HIST 11 80<br />

HI STI 185<br />

HISP1190<br />

J= HIST1195<br />

IF (NN.EQ.1) URITE(OF2,13500) (J.DCYU(J) ,SRAT(J),SMAT(J) ,PEC (J) . .. 1 1,IENC)<br />

HI ST 1200<br />

c...<br />

HIST i 205<br />

C...GENERATE knULT CLASSES FOR YEAR ZERC.<br />

HIST1210<br />

c.. . HIST 1 2 1 5<br />

ADULT (79 =NE0<br />

HIST 1220<br />

REP(6) = ADULT(’P)<br />

XI ST7 22 5<br />

DO 220 J=Z,IEND<br />

HIST 1230<br />

SUR V-EXP (-DCYU (J- 1 )* 365 .)<br />

H I ST1 2 3 5<br />

ADULT (J) =ADULT (J-l)*SUAV<br />

HIST1240<br />

220 CCNTINUE<br />

HIST 1245<br />

GO TO 250<br />

41 ST1 2 50<br />

c. * .<br />

HIST1255<br />

C...CALCULATE ADULT CLASSES FOB ALL PEAK OTHER THAN YEA2 ZE90.<br />

H I ST 126 0<br />

c... HIST4265<br />

230 DO 240 IX1=2,IEND<br />

HIST 1270<br />

J=IEND-IX142<br />

HIST7 275<br />

240 ADULT (J) =ADULT (J-1) *EXP (-DCYD (J-1) *345.)<br />

HIST 1280<br />

ADULT (l)=NEO<br />

YIST 12R5<br />

250 CONTINUE<br />

YI ST 9,290<br />

c...<br />

HIST 1295<br />

C.. .CALCULATE EGG PRODUCZICN PCE THE UPCOPlIYG YEAR.<br />

-<br />

31 ST 1300<br />

c.. . HIS” 1 3 0 5<br />

P=0.<br />

HiST1310<br />

I = IYX 4 1<br />

HISTl3 1 5<br />

S(1) = e.<br />

YISP 1320<br />

DO 260 J=l,IENC<br />

HISTI 325<br />

SSF=ADULT (J) * SRB T ( 5) * SRAT (3) *P EC (J)<br />

HIST1 330<br />

SPAWN = ADULT (.i) *SAAT (J)QS~AT (J)<br />

HIS? 1335<br />

S(1) = S(1) b. SPAWN<br />

H I ST 13U 0<br />

R(1) = ADUL‘I(3)<br />

HIST 1345<br />

26 0 E=P*SSP<br />

HIST1350<br />

c.. .<br />

HISTI 355<br />

C...CALCULATE RELATIVE ADULT AGE DISTRIEDTION IN Two WAYS<br />

qIST 1360<br />

C.. .<br />

HISTI 365<br />

SP-0.<br />

HIST1370<br />

DC 290 J=I,IENC<br />

HISTI 375<br />

270 SPSP+ADULT(J)<br />

H I T 1 380<br />

IP (IYR.GT.0) GO TO 290<br />

HIST 1385<br />

DC 280 K-1,IENC<br />

H I ST 1390<br />

PADE(K1) = lOO.*ADDLI(K)/SP<br />

HIST 1395<br />

280 PAD (K)=100.*ADULT (K) /SF<br />

HIST 4 400<br />

SPE=SP<br />

HIST7405<br />

GO TO 310<br />

HISTlUlO<br />

290 IF (IYR.EQ.0) GO 70 310<br />

HISTla75<br />

DO 300 K=l,IEND<br />

HIST1420<br />

PADE (K) = 10O,*KDDLT (K) /SP<br />

HIST 1 U25<br />

300 PAD (K)=I OO.*BDULT (K) /SFE<br />

HISTIU30<br />

310 PSPP = SP/SPE<br />

HIST1435


ISH Q276<br />

XSN 0277<br />

ISM 0278<br />

XSW 0279<br />

PSY 0280<br />

ISH 02d2<br />

ISH 028U<br />

ISN 028b<br />

ISM 0.488<br />

&SI 0.290<br />

ISN 0292<br />

XSN 0294<br />

ItiW 0296<br />

IS# 0298<br />

I S N 0299<br />

ISH 0300<br />

ISN 0301<br />

XSN 0303<br />

IS13 0304<br />

ISN 0305<br />

.ISM 0307<br />

0309<br />

ISH 0311<br />

LSN 0312<br />

ISH 03113<br />

ISH 031U<br />

XSN 0365<br />

IS1 0317<br />

IS# 0338<br />

xsn 0319<br />

ISH 0320<br />

ISW 0321<br />

ISN 0322<br />

ISH 0323<br />

ISW 0324<br />

ISN 0325<br />

XSI 0326<br />

1SW 0328<br />

ISM 0330<br />

ISH 0.331<br />

ISH 03.32<br />

LSlU 03313<br />

ISM 0334<br />

TSY 0335<br />

CHAGNl = REP(6) - ADULT(1)<br />

CHAGPI = lOC+CHAGNl/REF (6)<br />

CHAGAT = SPE - SP<br />

CBAGPT = 100*CHAGNT/SPE<br />

43<br />

c...<br />

C. ..PRINT ADULT AGE DISTRIBUTIOW AXD RELATIVE ALOLT AGE DISTA1BUT;ON.<br />

c...<br />

IF [IW.EQ. l.OR.IYZ.EQ.1) URITE{OFl, 12000)<br />

IF (IN. EQ. 1 .OR . IYH . EQ. 1 ) YBITE (OF 1.12100) (J,ADULT (J) , J= 1 ~ IE ND)<br />

IF (IN.rg.l.Oa.IYR.EQ.1) YBITE(OF1.12200) SP<br />

IF (IN.EQ.l.Os.IWR.EC.1) UBITE(QF1, 12300)<br />

IF (IN .EQ. 1 .OR.IYR.BQ. 1) WRITE(OF1,12U00) (R, F%I)(K) ,K=l ,IEHD)<br />

TF [IN.!?Q.l,Ofi.XYB. EQ. 1) WRITE{CPI, 12500)<br />

IF (IN.EQ.l.OR.IYR.EQ.1) URlTE{OF 1.124G0) (K,PADE(K) ,Y=l,IEND)<br />

IP (IN .EQ. 1 .OTc .IYR. EQ. 1) YPXTE(OP1,12600) FSPP<br />

XP (IN.EQ.I.Ok.XYR. EQ.1) uFITE(OP1, 12700) CHAGNl,CHAGPl, CHAGWT,<br />

1 CHAGPT<br />

E!2= 1.<br />

SUMA=O.<br />

DO 320 K=l@IEND<br />

IF (K. IE. 1 ) E2=E2+EXL: (-CCY U(K- 1) * 365. )<br />

320 SUHA:SUKA+Ei*i3BF (K)<br />

SH=SUHA* (NEO/PEGUAL)<br />

IF (1N.EQ.l.Ofi.IYR. EC.1) WEITE(OF1, 12800) SY<br />

qIST14 4 0<br />

HIST 1445<br />

HI ST 14 50<br />

HI ST 1 4 55<br />

HIST 1460<br />

HIST14h5<br />

3TS'I 1470<br />

NI ST1 47 5<br />

HZST 14 8 0<br />

HIST l4H5<br />

HISr7 490<br />

HIST 1 4 q 5<br />

HIS? 159G<br />

41ST1505<br />

HI5r 151 C<br />

9IST1515<br />

HIST1520<br />

HIST1525<br />

HI STl S 3 0<br />

HIST 1535<br />

HIST1 SUO<br />

q;s215'45<br />

HIS'? 1550<br />

qIST7 5 55<br />

C.".<br />

C...C'fCIE TO NEXT YEAO.<br />

HIS? 1 Sb 0<br />

HIST1565<br />

C.*-<br />

IF [ISW.EQ.1.AluD.IYB.Ei;.IFL) QP = 0.<br />

IF (IY~~.EQ.LYR) GO TO 330<br />

IYR=IY B t 1<br />

ISTAGE=l<br />

?TIN E= C .<br />

GO TO 30<br />

330 IF (1N.EQ.l) YRITZ(OP1,12900)<br />

LYRl = LYR + 1<br />

DC 34G I = 1,LYRl<br />

R3(1) = R(ft3)<br />

R3S(I) = R3(I)/S(I)<br />

SR(X) = S(X)/S(l)<br />

RR(1) = RfI)/R(l)<br />

R3R(I) = R3(I)/R3[1)<br />

R3RSR(I) = 33R(I)/SR(S)<br />

3U0 CONTIWUE<br />

IF (NN.E(I. 1) WRITE( 12,13100)<br />

IF (NN.EQ.1) SRITE(12,13800) (1,s (I),R(I)<br />

1 RR(1) ,R3R(I) ,835SR{I) ,I=l,IYRl)<br />

,R3(1) .B3S{I) SR(I),<br />

YISTli70<br />

RIST1575<br />

HISTl SRO<br />

HIS? 1585<br />

HIST 1510<br />

HIST15'35<br />

HIST 1600<br />

I11 SY 1 0 0 5<br />

RISTI 6 10<br />

HIST 161 5<br />

HIST 16 2 0<br />

HISTli25<br />

HI ST7630<br />

HIST16 35<br />

HIST1640<br />

HI ST1645<br />

HIST lh5C<br />

HIST 16 5 5<br />

HI ST1 66 0<br />

HIST166'c<br />

c<br />

c<br />

STOP<br />

INPUT FCRHAT CARDS<br />

HIS? 1670<br />

HIST 1615<br />

HIST 1680<br />

HI ST 168 5<br />

C<br />

C OUTPUT POHEAT CARDS<br />

C<br />

ioaoo FORHAT ~I~,~X,I~,~X,I~,~W,~~,~X,~/FU,O,<br />

ix) ,111<br />

l0lQO PORKAT (U(I2,lX))<br />

10200 POBEAT (E16.R)<br />

10300 POHnAT (6F10.0.12)<br />

10400 PQlidAT /E 15.8, PS.O,SP5.2)<br />

RET1690<br />

HIST1695<br />

HIST 170C<br />

HIST1705<br />

HIST171 0<br />

HIST 1715<br />

HI ST1 7 2 0<br />

qIST 1725


ISM 0336<br />

ISH 0337<br />

ISN 0338<br />

ISN 0339<br />

ISN 03UO<br />

ISN 0341<br />

ISN 0342<br />

ISH 0343<br />

ISBI 0344<br />

IS$ 0345<br />

ISN 0346<br />

ISN 0347<br />

ISN 0348<br />

ISN 03N9<br />

ISN 0350<br />

ISN 0351<br />

ISN 0352<br />

ISM 0353<br />

ISN 0354<br />

ISM 0355<br />

ISN 0356<br />

XSN 0357<br />

ISN 0358<br />

ISN 0359<br />

ISN 0360<br />

ISN 0361<br />

ISN 0362<br />

ISN 0363<br />

44<br />

10500 F0RAIi.T [12.1X,95PS.O) HI ST1730<br />

10600 FORRAT (lOF8.0) HISF1735<br />

10700 FOPflAT (3E10.6,10F5.2)<br />

10800 PORAAT 113F6.0)<br />

HIST1 7UO<br />

HISF171t5<br />

10900 PCRBBT 48P10.0) HiST 1750<br />

11000 FORMAT ((686.0) YIST1755<br />

11100 FORPlAT(2OAU) HIS: 1760<br />

11200 FORRAT (2 (~12.1,3x) ,PS.I)<br />

11300 FORKAT (3F5.2.2(4X,I1))<br />

11400 FORRAT (1H1, lX, *. ............. .. .. .. ..... ....... '/ lX,<br />

1 '..CURRENT YEAR ....... ', a _. ,I3,'- ','..'/ lX,<br />

1 * ....*................-.. * ....... '//)<br />

11500 PORRBT (//, * STAGE*,I3,3X, 10AU)<br />

11600 FORRAT (/,* TOTAL PRODUCTICN INTO "PIS LIFE STAGE - ',EZO.lO/<br />

1 * TOTAL TRANSEER #INTO THE NEXT LIFE STAGE = ",E20.10/<br />

1 ' % SURVIVAL THROUGH THIS LIFE STAGE = ',5#,P4.1,8<br />

1 * f'lAXIMUN STANDIWb CAOP FOR THIS LIFE STAGE - ',E20.10/<br />

1 ' RATIO OP IAXIMUN STANDING CROP TC EQUIIIBRIUM SIIANDING',<br />

1 * CROE (NlAX/YS) - '.F7.4/<br />

1 ' REDUCTION I N NUf'lBZR OF ORGANISPIS ENTERING THIS LIFE STAGE',<br />

1 * DUE TO THE FOYEil FLANT...',E20.10/<br />

1 * % IIEEUCTION I N NUMBER OF ORGANISFS ENTERING IHIS LIFE',<br />

1 ' STAGE CUL TC THZ PCkER FLAHT...',F5.2)<br />

11700 FORMAT (//* CUPIULATIVE FROFABILITY OF SURVIVAL FRO4 EGG',<br />

1 * THROOGH JUVENILE 3 = *,515.8/<br />

1 EXPECTFD NCIH@ER OF YEkRLINGS = ',P15.R)<br />

11800 PORNAT (/' NUMBER OF' JUVENILE 7 KILIED BY IYPIWERENT.. . ',E12.6)<br />

HIST 176 5<br />

H I ST1 77 0<br />

HIST 1775<br />

HI ST1 780<br />

HIST1785<br />

YIST 1790<br />

ti1 ST1795<br />

HIST 1 R 0 0<br />

H I ST 1905<br />

H I ST1 q 10 HXS'1815<br />

HISi-1520<br />

HIST1525<br />

HIST183C<br />

HIST 1935<br />

HISP 18'40<br />

H I ST154 5<br />

NISI* 1 Y 50<br />

HIST1955<br />

HI3TlY4P<br />

11900 'OFYAT (/' WUREEG OF JUVENZEF 3 KILLEC EY IVPTNGESENT. ..',E12.6/<br />

1 ' TOTAL NUMBPH OF JUVENILLS KILLED BY IMPIWG~RENT...',E12.6)<br />

3IS118G5<br />

KIST1 A70<br />

12000 PORlAT(///* ADlrLT DIS'IRIBUTION BY AGE CLASSs,//, 5( HIST1575<br />

1 13H AGE NUNBFilS )) HIST18AO<br />

12100 PORAAT (5(1X,I3,1X,P8.0)) HIST1485<br />

12200 PC3PIAT[lX,*TOTAL ADULTS *.F15.0/) HIST 1590<br />

12300 FORaAT (//' PEltCEWT AGE CISfRIBUTION FELATIVE TO YEAR ZERO'/ 1X,5 (HIST1895<br />

1 l2RAGE PERCENT )/)<br />

HIYT 1900<br />

17400 FORMAT (5 (lX,I3,1X,P7.3))<br />

HIS71 905<br />

12500 POFRXT (//' PEBCENT AGE DISTRIBUTION RELATIVE TC CURRENT YEAR'/ HIST1910<br />

1 lX,§(lZHAGE EERCENT )/)<br />

12600 FORRAT (/,* SIZE Op PCPULATION (YEAF CLASSES 1-13] FCJZ THE',<br />

1 ' CURGENT rEAX AS A EERCEBTAGE OF THE STLE OP THE ', /,<br />

1 ' POPCILAPION I N YEAR ZERO.. . I, E6.3)<br />

/,<br />

HIST 19 1s<br />

HIST1920<br />

HIS; 1925<br />

HIST1930<br />

12700 POaRAT[//' REDUCTION I N NUflBER OF YEARLINGS DUE TO PLANT... ',Fq.O/HIST1935<br />

1 * X REDUCTICN I N NUUEEA CP YEARLINGS DUE "0 PLANT...',P5.2/ HIST 1940<br />

1 ' REDUCTION I N TOTAL NUMBER OF ACULTS DUE TO PEAYT...',P9.0/ H I ST1 945<br />

1 * X REDUCTBN I N TOTAL NURBER CP AICULTS [UZ TO PLANT ...*, P5.2) HIST1950<br />

12800 POFMAT (/,' NUHBER OF EGGS EXPECTED TO BE PRODUCED BY', YISml955<br />

1 /,' THE NUNBER OF ONE-YEAR OLD STRIPED BASS FUR THE CURRENT', HIST1960<br />

1 /,* YEAR DURIUG THEIE LIFE TME AS A PERCENTAGE OF THE NBF'BEF'. HIST1365<br />

1 /,' OF EGGS FBODUCED I N fEAR ZERC. .... ',F6.3//)<br />

HIST1 970<br />

12900 FORRAT {//* END HISTG.. ... . ..') HIST 197 5<br />

13000 FCR4A.T {///, * * $*s*a*g+*8~2$****24~*~~~***r )<br />

KIST 1980<br />

13100 FOR!?BT[lHl,* TRACING LIFE HISTORY OF STRIFED BASS FISH ', /, HIST1985<br />

1 * I N HUDSON RIVER, iJITH flC)ITILITP I N EACH *,/, HIST 1990<br />

1 * STAGE GIVE8 BY:*,// 5X, HI ST199 5<br />

1 ' D (N X) /DT=- { KIt (K X- RXO) * { ( N X- IS)/ Y7) ** 3 1 *?l X a )<br />

HIST 200 0<br />

13200 BORRATI16X,'-rKILL*QP+IX/V'.//. * WHERE, QF(MI**3/DAY)= ', f10. Q./,HIST2005<br />

1<br />

1<br />

WHICH IS EQUIVALENT TO Ai4<br />

7x,*v(~rc*3)= *,EIo.~// zx,<br />

INTAKE FLOW OF'... *,E10.4,'(CPS)',/,HIST2010<br />

HIST201 5


ISH a344<br />

ISH 0365<br />

XSB 0366<br />

XSI 0367<br />

KSI 0368<br />

XSN 0371<br />

TSN 0372<br />

ISN 0373<br />

ISN 0374<br />

45<br />

1 "PQBCTXONAI KILL iIaEe, CCRPOSXTE F-FACTOR) FOR:*,/<br />

1 ' EGGS 'qP10.4/ 2X, LARVAE<br />

1 ' JUYENILF 1 *.P10.4/ 2X,* JUVENIIE 2<br />

1 ' JUVENILE 3 '. P10.4)<br />

13300 FORRAT [//.a KX (l/DA Y)= ',EZO. IO,/,* KXO 1/DkY) = *,<br />

2X,<br />

*,e1c.4/<br />

*,FlO.4/<br />

2x,<br />

2X"<br />

1 E20.10,/,P PS(lffHBER)= *,E20.10,/rq LIFE PERICD(DAY]=<br />

1 *10.4,/,<br />

1<br />

1 *<br />

1 8<br />

1 *<br />

1 1<br />

RATIO OF THE KX VALUE USED I N THIS RUN TO THE "SPAHOASD" KX9,<br />

YALflE GIVEN ABOVE = ',F4.3,/,<br />

R~TIO OF THE KXO vaLw USED IN THIS RUE! TO T:-IE KX VALUE*$<br />

USED IN THIS RUN = ',P6.3,/,<br />

RATIO OF THE 'fS VALUE USED IN THIS RUN TO THE "STANDARDW YSp,<br />

1 VALUE GIVEN AbBOVE = *,P6.3,/,<br />

1 * LEFT LIMB CF COMPENSATION PIINCTION DISARLED...',A6,/,<br />

1 * XIGET LIYB OP COMPENSATION FUNCTION CTSABLED.. I 'sAS,/)<br />

13400 FORHAT i(///,TIa,'AGE'.IlT.'DECAY COEFP.' IT31,aSEX 'iiATIO',T45,<br />

1 'FEIACTION' .TbO.aPEdNCITY*./, T??, (I/CAI[) ',T31,* (PEII/TOT) ',T(i6,<br />

1 'NATUBE',,T58,' (i?GSS/FEHALE) ' @ /)<br />

13500 FCRRAT {~10,12,TlS, PlC-6.133, F4.2,T47,P4,2,T5R,E12.4~<br />

6360@ PORNAT(//' ANNUAL PRCEAESLXTY OF SURVIVAL F9F ADULTS (4-13) = ',<br />

1 F5.3)<br />

13700 FORHlT (1H1 ,20XI"STOCK REC6UIT"lENT 78BLE*///<br />

1 ' CEPINITIONS UP COLUNI HEA0INGS'/<br />

1 I = YEAR + le/<br />

1 S(1) = NUnEER OP SPAUNEi?S*/<br />

1 8 R(1) = NURBER OP RECRUITS (3-YEAR OLD$)'/<br />

1 8 R3/I) - NUTlBER OF 8ECRDITS AT I43 SPAUNED AT I,/<br />

1 R3S(I) = BECXUITHENP RATE (RECRUITS 2.65 SPAUNER) '/<br />

1 * SRtI) = NU8EER OP SPAWNERS ZELAPIVE TC NUXBEE OP SPAUNERT*,<br />

1 8 AT x=10/<br />

1 8 RR[I) = NUHaER OF RECRUITS RELATIVE TC NfJffHFR OF RECRUITSee<br />

1 ' AT I=1"/<br />

1 1 R3R(I) = NOHBER OF BECRCITS AT 1+3 REIATIVE TO THE NUnBEB OP'@<br />

9 ' BECBOITS AT Ir4 (R3(I)/E3{1))'/<br />

1 * R3RSR ( I) = RELATIVE RECRUITRENT RATE (R3R(I)/SX (I) 9 @//<br />

1 T4,*I~,TlO,*S{X) m,T2G,'R{I) ,T30,'E3(I) ',T40, "!?3S(I) ',T60,<br />

1 'SR (I) ' ,T70, "RR (I) * ,P80, * 63R (I) ' ,T90,' R 3RSR (I) a / / )<br />

13800 FORHAT ~T2,I3,T?,P8.O,T17,F8.0,T27,P8,O,T?7,PR.~~T~7~~~.4~ Th7,<br />

1 P8,4,T7?, Q8.4.I87,f8.4)<br />

13900 FORMAT(* RO. ADULT AGE CLASSES - *,I2/ ' WIDEL SIOULBTES - '@13#<br />

1 IX,*YEARS'/ 1 PLANT OPERATSNG. .. * , ~ 6 / 9 poa .I.*. - ...... .. *"13#<br />

1 YEAFS.')<br />

1UOOO POBnAT (//g RODEL TInE STEE SIZE (DAYS) '/ ~X,gEEGG*,SX,*~LARK',5g,<br />

1 *JUV1',SX,'JUV2'~5Y,'JU~3'/ 5(3XFP4.2,2X)/1<br />

14100 PORflAT(//' TOTAL PBOCflCTION PERIOE (DAYS) = @,F3.0/<br />

1 * SUBPRODUCTION PERIODS A1D ASSOCIATED PEACTICNS OF TOTAL EGGq,<br />

1 * PEOfOCTION'/<br />

1 T5,'PERIOD (Dill!) T20, 'PRBCTIO N' )<br />

14200 PCBfiAT (T5,2( 1X,P4.1) ,T22,P6.4)<br />

E WD


****e5 0 R T H A N C fi 0 S S R E P I R E N C E L I S T 1 N G***>+<br />

SYlBCL<br />

I<br />

INTERNIL STATEMENT NUVEERS<br />

003Y 0035 0086 0086 0086 0100 0100 0100 n132 0135 0252 0253 0257 0257 0258 0113 C319 0319 012C<br />

0320 0320 0321<br />

037R . - - . 077R - - - 077R - - - -<br />

0321 0322 0322 0323 0323 0324 0324 0324 0328 0328 0328 032a 0328 0328 CXR g 3 2 ~<br />

J<br />

OOlU 0059 0059 0059 0060 0060 0060 0061 0061 0061 0070 0070 0070 0011 0!171 0071 3072 0312 0072<br />

0073 0073 0073 0074 007Y 007U 0135 0136 0137 0165 0168 0180 0181 0195 019f 0237 C237 0237 3277<br />

0237<br />

0261<br />

C237<br />

0262<br />

0237 0241 0242<br />

02R2 0282 0282<br />

02U3<br />

0282 _ _<br />

0243 OiU7 0248 0248 024R 025U 0255 0255 3255 0255 C256 C25t 9256<br />

K<br />

L<br />

n<br />

001 4 0066 0067<br />

027 i 0273 0273<br />

0014 0043 OOU'<br />

cc14 C159 0160<br />

0067 0067<br />

0274 0274<br />

0043 012E<br />

0145<br />

0288<br />

0138<br />

0146 0147 0160<br />

62118 0288 O ~<br />

0139 0139 OlUl<br />

0161 016U 0165 0166<br />

R ci92 0292 02~2 0292<br />

0146 0149 0151<br />

0167 0265 0266<br />

0300 0701 0301<br />

C165<br />

03C3<br />

FL67 P?h7<br />

N<br />

P<br />

n<br />

S<br />

V<br />

Y<br />

001 4 0149<br />

000 (1 0057<br />

001 0 c020<br />

001 0 0020<br />

0004 0043<br />

0007<br />

0150 0151 0152<br />

0058 OOJ7 01R3<br />

0258 0319 0322<br />

0253 0257 0257<br />

0052<br />

0168<br />

Ol8U<br />

0322<br />

0320<br />

0169<br />

0185 0187<br />

0328<br />

0321 0321<br />

0190<br />

0328<br />

0211 0251 0259 0259<br />

&A<br />

An<br />

002 1<br />

002 1<br />

Cl22<br />

0167<br />

012Y<br />

0165<br />

JB<br />

DL<br />

002 1<br />

000 3<br />

0123<br />

0057<br />

I3124<br />

0061 0076 0104 0109 0106 0108 0123 0123 0142<br />

dL<br />

IK<br />

IN<br />

1Q<br />

I X<br />

c02 1<br />

0015<br />

001 5<br />

029 i<br />

001 5<br />

001 5<br />

02 98<br />

0041<br />

0079<br />

0294<br />

0155<br />

0130<br />

0301<br />

0018<br />

OORO<br />

0296<br />

0156<br />

013U<br />

0301 0303<br />

0082 0098<br />

03C5 0315<br />

C158 0159<br />

0134 0135<br />

0100<br />

0164<br />

0102 0173<br />

0166 0161<br />

0190 cios 0213 0215 0210 0280 02~2 qzau C ~ R C c;qe c?qp<br />

JJ 0015 0052 0052 005; 0057 0057 C057 0166 0168<br />

KX<br />

LL<br />

0003<br />

001 5<br />

cc12<br />

Olll?<br />

0087 0095 0095 0096<br />

0149 OlEl<br />

0102 0207 0209<br />

RN 001 5 0106 0110 0157 0161 0162 0153 0163<br />

NN 000 L1 OOUl 0050 0052 COhl 0063 0061 0102 0102 0233 0235 0237 0326 032R<br />

b0<br />

NX<br />

QP<br />

au<br />

OC11<br />

000 5<br />

ooola<br />

001 0<br />

OC13 0031<br />

0012<br />

0042 0046<br />

0020 032i<br />

0089<br />

0052<br />

03ie<br />

0090<br />

0307<br />

Ra<br />

R3<br />

5fl<br />

SP<br />

38<br />

?E<br />

PP<br />

oc2 1 0231<br />

0010 0020<br />

002 1 0304<br />

002 1 0260<br />

co1 c c020<br />

00011 0057<br />

002 1 0040<br />

0319<br />

0305<br />

0262<br />

0321<br />

0063<br />

032C 0323<br />

0267 0266<br />

032U 0328<br />

0323<br />

0267<br />

032e<br />

0258 0273 0275 0278 0284<br />

YS 0003 0087 0097 0057 0102 0199<br />

ry 0007 0035 0136 0131 0138 0150 0152 0161 0161 0162 0167 0169 0181 C196 0226<br />

llss Ol2i 0123<br />

A U<br />

AeS<br />

A ux<br />

0003<br />

023i<br />

COO5<br />

0093<br />

0233<br />

0095 0102<br />

A VG<br />

A YS<br />

0022<br />

000 3<br />

0133<br />

ooes<br />

0136<br />

0097<br />

0136<br />

0102<br />

0138 0148 0150 0150 0152<br />

OCY<br />

DTE<br />

r: lip<br />

P E<br />

I ID I B#<br />

OOOi<br />

0003<br />

023i<br />

000:<br />

0016<br />

001 6<br />

0070<br />

0087<br />

02u2<br />

0073<br />

0142<br />

0041<br />

0102 0106 OlOE 0108<br />

0248 03C1<br />

0237 0255<br />

0143 0145 0147 0152<br />

0222


hi310<br />

LR7O<br />

awo<br />

E 700<br />

9 uoo<br />

czoo<br />

E zoo<br />

rzeo<br />

ZOO0<br />

TOO0<br />

8010<br />

t70O<br />

EPO3<br />

@PO0<br />

7100<br />

XlO0<br />

1 tF0<br />

L100<br />

L LOO<br />

h 000<br />

L 100<br />

h 000<br />

no00<br />

hll0<br />

3000<br />

6000<br />

GOOD<br />

E600<br />

L LOO<br />

90')0<br />

ZZOD<br />

?ZOO<br />

3 LOO<br />

0100<br />

RnOD<br />

6030<br />

9000<br />

LZOO<br />

9200<br />

YHOG<br />

t ZOO<br />

OB00<br />

LCOO<br />

ZEOD<br />

5570<br />

8920<br />

0203<br />

ozoo<br />

9200<br />

2700<br />

9203<br />

GrOO<br />

E610<br />

CL75<br />

97.00<br />

€ZOO<br />

Fron<br />

8LE3<br />

LE1 e<br />

*$DO<br />

9E 00<br />

CCOO<br />

QE 00<br />

9LOO<br />

6620<br />

LLOD<br />

2100<br />

znzo<br />

9200<br />

RLL:,<br />

0903<br />

91 QO<br />

QOCO<br />

LEZG<br />

0010<br />

h0lO<br />

9630<br />

Bf0D<br />

FEOO<br />

6523<br />

hLCO<br />

OZtO<br />

tZC0<br />

LEZO<br />

SBLO<br />

L9LU<br />

0500<br />

Etnoo<br />

8E00<br />

06111<br />

BbZO<br />

59ro<br />

F(,tO<br />

ELL0<br />

62EO<br />

ti710<br />

ns to<br />

1 LZO<br />

LBLO<br />

L900<br />

01100<br />

EhZO<br />

EOEO<br />

LCZO<br />

LLZO<br />

3OLO<br />

5L2O<br />

HZEO<br />

h?.EO<br />

Car0<br />

LR LO<br />

ni zo<br />

1ZLO<br />

2310<br />

1600<br />

6503<br />

Zi70<br />

OLOO<br />

moo<br />

>OLO<br />

9L LO<br />

fLEO<br />

6h 10<br />

0610<br />

6610<br />

i3EO<br />

5; ZU<br />

iiZO<br />

4f 50<br />

L3LO<br />

9L 00<br />

LlZO<br />

RV19<br />

8KZO<br />

EYOO<br />

6ZtO<br />

EL20<br />

EGO0<br />

LYOD<br />

SSLD<br />

LEZO<br />

1 LOO<br />

LSLO<br />

6LLO<br />

ZOZO<br />

OPZG<br />

6610<br />

SOLO<br />

hot0<br />

9420<br />

95'0<br />

Oh20<br />

E810<br />

6120<br />

N V<br />

LSOO<br />

hLlO<br />

LOCO<br />

9820<br />

tlt?OO<br />

PtOO<br />

7800<br />

L rz0<br />

L9OO<br />

LO70<br />

bLZ0<br />

L90O<br />

zcz0<br />

ZLOO<br />

6SLO<br />

1 OZD<br />

i; 010<br />

EhZO<br />

net0<br />

3610 HHZO<br />

3010 8600<br />

hZZO 9L30<br />

ELLO 1LL3<br />

soco EOSO<br />

8hZO tal0<br />

E610 0610<br />

1<br />

OLOO<br />

9LL b<br />

L6? 0<br />

ZPLO<br />

LLCO<br />

1010<br />

BOL O<br />

a s<br />

OBZO<br />

I h? 0<br />

081 0<br />

LO!O<br />

PhC 0<br />

b6tO<br />

M a d<br />

LLPO<br />

8LLO<br />

D6Z0<br />


GPO UTH<br />

I W T OT<br />

YRXGHT<br />

*****F 0 R T R<br />

1Xl'EI)bAL STATEHINT NUREEFS<br />

000 5<br />

073 1<br />

0003 CC43 0052<br />

0131 0131<br />

0029 0076<br />

0018 0158<br />

0077<br />

0159 oito 0164<br />

COO3 GO88 0091<br />

0012 0207 0211 0213<br />

OOli 0209 0211 0215<br />

GO18<br />

000s<br />

ooia<br />

0078<br />

coil<br />

0065<br />

0080<br />

0089 coqi<br />

0 ~ 6 6<br />

0102<br />

OOle OC59 no59 0060 0065<br />

0009<br />

oozu<br />

0024<br />

co75<br />

OOlU<br />

0173<br />

0122<br />

0222<br />

0122<br />

0222<br />

OOU6 0052<br />

0010 0020 0324 032R<br />

0256 C257<br />

0217 C21Q<br />

0008 0026 0231<br />

0278 C219 0296<br />

0276 0277 C296<br />

C274 C296<br />

0277 0296<br />

OlP7 OlEe 0190 0203 0204<br />

01Ra<br />

0173<br />

0190 0204 02CE<br />

0012 0211 021=<br />

0019 0127 0128 0131 0132<br />

0003 0088 0093<br />

0019 C055 OCR6 0087 0087<br />

0095 0096 0096 0096 0097<br />

0104 OlOU 0104 0106 0106<br />

0155 C173 0174 0185 0187<br />

0217 0219 Oil9 0222 0223<br />

OCO9 0011 0090 0093 0102<br />

0118<br />

COl2 C173 0207 0207 0209<br />

0012 0025 0189 0190 01U9<br />

0025 0058 0231 0304<br />

0025 OC36 0040<br />

48<br />

a 3 C R O S S R E P I H E N C E LISTING*****<br />

0171<br />

0224<br />

01u2<br />

0224 0224 0313 '<br />

020 5<br />

0134<br />

0087 0088 0088 0C88 OCRd 0C88 00R9 0040 00.11 0391 5093 0091 OC95 GO95<br />

0097 0097 0100 oioo 0102 cia2 0102 0102 0102 0102 oic2 clod air2 oiou<br />

oioa oica oioa aiio 0116 0120 0120 O ~ Z L 0122 0123 01'3 C I Z ~ 0147 ~ 1 ~ 2<br />

0188 C199 0231 0203 OiOU 0207 0207 0209 0209 0211 0213 0213 0215 0215<br />

0223 C224 0227 0312<br />

0209<br />

0205


LA DBL<br />

10<br />

20<br />

3 0<br />

4a<br />

50<br />

60<br />

70<br />

A0<br />

90<br />

IO0<br />

110<br />

t 20<br />

a 30<br />

140<br />

9 EO<br />

160<br />

170<br />

1 80<br />

190<br />

200<br />

210<br />

7 20<br />

2 30<br />

240<br />

2 50<br />

260<br />

270<br />

2 80<br />

290<br />

300<br />

3 10<br />

3 20<br />

330<br />

3r10<br />

l(3000<br />

lo100<br />

lo200<br />

10300<br />

lo400<br />

a0500<br />

lMOO<br />

107oa<br />

lWJ00<br />

lUY00<br />

1 1000<br />

11'100<br />

1120d<br />

17300<br />

11400<br />

llS00<br />

1?40U<br />

I1700<br />

11800<br />

I wao<br />

1.tooa<br />

112100<br />

12200<br />

QEFZNED<br />

aa 35<br />

0069<br />

00 75<br />

oow<br />

OQ 98<br />

07 3?<br />

01 do<br />

01 42<br />

01 so<br />

0152<br />

0153<br />

ai 55<br />

0163<br />

ai 69<br />

01 70<br />

01 13<br />

01 78<br />

c1 E2<br />

01 93<br />

01 91<br />

0223<br />

02 4u<br />

02 166<br />

0248<br />

0250<br />

0259<br />

0262<br />

0261<br />

0.270<br />

02 74<br />

0275<br />

0303<br />

03 15<br />

0325<br />

0331<br />

03 32<br />

0333<br />

Q3 34<br />

0335<br />

03 36<br />

03 31<br />

0338<br />

0.3 30<br />

03UO<br />

03 It?<br />

03 42<br />

03U3<br />

03 4U<br />

03 45<br />

03Ub<br />

03 u7<br />

oJua<br />

0349<br />

0350<br />

0351<br />

035%<br />

0353<br />

0256<br />

0261<br />

0265<br />

0263<br />

0277<br />

0269 0270<br />

0300<br />

0309<br />

031R<br />

0036<br />

aous<br />

0042<br />

0041<br />

OOC7<br />

0059<br />

0060<br />

0070<br />

0071 0072<br />

0073<br />

007U<br />

3056<br />

0097<br />

0088<br />

0082<br />

0100<br />

0190 0205<br />

0219<br />

021 t<br />

02 15<br />

0280<br />

02 82<br />

0284<br />

49


12300 035U<br />

l,2*U0 0355<br />

1,2500 0356<br />

12400 0357<br />

12700 0358<br />

lbR0O 0359<br />

12000 0360<br />

1.2000 0361<br />

13100 0362<br />

lL?()O 0363<br />

13300 0364<br />

13b0 0365<br />

13500 0366<br />

1-30!? 0367<br />

13500 0368<br />

13800 0369<br />

1x00 0370<br />

lZ@OLl 0371<br />

14100 0372<br />

iu?oo 0373<br />

0286<br />

0288 0292<br />

02 90<br />

0294<br />

0295<br />

0305<br />

0315<br />

OOU7 0049 0098<br />

0050<br />

0052<br />

01 02<br />

0235<br />

0237<br />

0233<br />

0326<br />

0328<br />

0048<br />

0061<br />

0063<br />

00h7


ISI OOV6<br />

ISP OO(r7<br />

XSR oew<br />

ISN 0044<br />

ISN 0050<br />

ISN 0052<br />

ISk 0053<br />

LS?i 0354<br />

ISii 0055<br />

ISN 0056<br />

I58 0051<br />

ISM 0058<br />

ISN 0060<br />

ISN 0062<br />

ISN 0044<br />

ISM 0055<br />

ISM 0066<br />

ISN 0067<br />

IS# 0068<br />

IS# 0070<br />

ISI OOil<br />

IS8 0073<br />

IS# 0075<br />

I5W 0074<br />

I5N 0077<br />

IS# 0070<br />

ISH 0080<br />

ISH 0081<br />

Ish 0082<br />

Isn 0083<br />

1Sk 0084<br />

ISH 0085<br />

IS11 9686<br />

ISN 0087<br />

fSk 0088<br />

%Sb’ BCSQ<br />

ISN 0092<br />

bSI 0398<br />

XSI 0095<br />

ISH Qa96<br />

XSB 0097<br />

TSI 0098<br />

IS11 0099<br />

ZSM 0100<br />

I5L 0102<br />

ISI 0103<br />

1sw olaa<br />

XSE 0905<br />

xslk Qla?6<br />

IdY 0107<br />

ZSF 3109<br />

ISY 0711<br />

191 0493<br />

52<br />

GROW 280<br />

GROW ,285<br />

GROU 790<br />

GROS 295<br />

GROH 300<br />

GROY 305<br />

GROW 310<br />

GROW 315<br />

GROY 320<br />

GROB 325<br />

GROW 330<br />

GRQd 335<br />

GROU 340<br />

GROW 3U5<br />

GROU 350<br />

GROU 355<br />

GROU 350<br />

GROY 365<br />

GROU 370<br />

GROW 375<br />

GROW 380<br />

GROV 385<br />

GROY 390<br />

GROY 395<br />

GBOC 400<br />

GROW 1105<br />

FRnW 810<br />

GROW 415<br />

GRnY 420<br />

GROW 425<br />

GBOii ‘E30<br />

Gl?O?J u35<br />

GROP 440<br />

GROU 045<br />

GROW 450<br />

GROY 455<br />

GWCSI Lb50<br />

GROW 465<br />

GROW 470<br />

GBCW 475<br />

GROW 480<br />

GBOW 485<br />

GROF 480<br />

GRnM 495<br />

GRCW 500<br />

GROU 505<br />

GEOW 510<br />

GROii 515<br />

6808 520<br />

GROU 525<br />

GROW 530<br />

GROW 535<br />

GPOQ 560<br />

GROH 545<br />

GanR 550<br />

GBOW 555<br />

GROW 560<br />

GROW 555


iSI 034.2<br />

XSB 0143<br />

53


*****F 0 R T R A N C R O S S R E P E X Z N C E L I S T I N G * * * * *<br />

SYIBOL IBIPEi ?BAL STlrTFlENT WUBMEHS<br />

I 011 4 0115 0137 0138<br />

J<br />

P<br />

009 7<br />

coo4<br />

009R<br />

0131<br />

7<br />

V<br />

Y<br />

0015<br />

coo


SYIlBOL<br />

OLDMX<br />

PTXILIE<br />

RATIO<br />

GBOYTH<br />

IBIGHT<br />

ISl'kGE<br />

ISTART<br />

KOUNTX<br />

Kal YTY<br />

KPLALIT<br />

KTOT ALL<br />

55<br />

*****FORTRAN C R O S S R E F E R E N C E LISTING***+*<br />

IUTERYAL STATEIFNT HOIBERS<br />

00111 0029 0038 0084 0092 0109 0119<br />

0002 0023 002U 0037<br />

0035 0080 0092 0109<br />

000 2<br />

0003 0073<br />

0002 0022 0031 0035 OW4 0050 0058 OC60 0111 0126 0134<br />

0020 0100 0106 0106 0114 0115 0122<br />

0026 0043 0043 0044 0050 0052 OOSR 0103 0114 0115<br />

0011 0049 0049 OOSC 0052 0053 0054 OC56 0056 0058 0103 0104 0105 0136 0139<br />

0002 0008 0035 0076 0077 0079 0080 0082 0092 0169<br />

OOOR 0079 0080 OOe3 0085


IABEL DEPIUEC<br />

10 0031<br />

20 0049<br />

30 0056<br />

00 0060<br />

50 0067<br />

60 0075<br />

70 0095<br />

BO 0098<br />

90 0100<br />

100 0107<br />

110 0111<br />

120 0121<br />

130 0123<br />

140 0134<br />

150 0738<br />

160 0139<br />

10000 0141<br />

10100 0142<br />

EECEAEWCES<br />

0126 0129 0133<br />

0041<br />

0039<br />

0031<br />

0090 009Q<br />

0068<br />

0088<br />

0093<br />

0060<br />

0048 0055<br />

01 07<br />

0114 0117<br />

0111<br />

0123<br />

0137<br />

0134<br />

0027<br />

0029 0092 0109<br />

56


53<br />

CO l PXlER OPTTONS - BAU E= ti& IN , QPT=02 ,LX BECN T=60 ,SI Z F=000 OK,<br />

SODRCE ,EBCDIC, NOEXST, m CECK .LOAD, flap, NBEDXT, NOID, XBEP<br />

CDELT<br />

c..<br />

C,..SUBROUTINE DELTA IS THE BUBGE KUT'IA EGUATIQNS USED TO ADVANCE<br />

DEET<br />

D%LT<br />

CELT<br />

0<br />

5<br />

le<br />

C..,ONE 'IXFIE STEP FCfi THE SFECXFXED LIFE STAGE. IT IS CALLED BY<br />

C., .SUBROUT'XNE GROWTH. SUBaOUTIBE DELTI CALLS SUBROUTINE FUNC 1\T<br />

DELT<br />

DELT<br />

15<br />

20<br />

C. I .POUR POIHIS. CELT 25<br />

IS41 0002<br />

ISM 0003<br />

ISH OB04<br />

XSN 0005<br />

ISN 0006<br />

IS1 0007<br />

PSN OOCa<br />

ZSN 0009<br />

ISM 0010<br />

1SI Q0Il<br />

XSI oaia<br />

iSN 0013<br />

ISM 0014<br />

XSI 0095<br />

ISH 0016<br />

ISH 0018<br />

ISN a034<br />

xsw 0020<br />

ISN OQ21<br />

ISI 0022<br />

LSI 0023<br />

ISY 062Q<br />

IS# 0525<br />

ISS 0029<br />

ISI 0028<br />

IS1 0029<br />

Ish- 0030<br />

IS@ 0031<br />

C. DEL'r 31)<br />

S UBROUTINE DELTA (UDIH e IN, ISTAGE ,I YR .K NA T L, KPLART RATIO PS N, PSI?, DELT '3 5<br />

1 EST) nriv ---_ urr .-<br />

C<strong>of</strong>lHbHpLSTAGE/AKX(5) ,AKXO (51 ,AYS(5) ,DE(5) ,CTE(5) .PI(ILL(S) ,TX+EFT(5) DEL? 45<br />

1 ,IRIGflT (5) .KX 15) I KXO IS), YS (5) DELT 50<br />

CORMON /SKTTA/Y (1) ,DEBY (1) .BUY( 16,l) DELT 55<br />

REAL KNATL,KPLABT DELT 60<br />

c THIS ROUTINE PERFORBS THE RUNGE KUTTA CaLCuL~~IoWs. OELT et;<br />

H DElISTAGEl DELT 70<br />

CALL PUNC (IN, SSTACE,IWR, KIATI, KPIAIT,RBTIO,PSW. FSP,PST) OEZT 15<br />

DC 10 I=l,NDIF DELT 80<br />

AUX 11,I) =Y (L) DELT 85<br />

90 &OX (PSI) *DERY[I] OELT YO<br />

20 CONTINUE DELT 95<br />

C HONGE-KUTTA EQUATION$ POLLOW<br />

n E m 100<br />

30 DO QO I=l,Nr?IPI DELT 305<br />

Z=fl+AUY (R,X] DELT 110<br />

aox 9 5 ~ =z )<br />

DELT 115<br />

Y(I)=AUW~1,~)*.4*Z UELT 120<br />

IF {Y~I) .IT.c.) x(x)=a. DELT 125<br />

40 CCB'XINUE DELT 130<br />

C z=x*. 4+H DELT a35<br />

caLL FDIC (IN, ISTAGE~IYB KBAT L, KPXA NT,~APIO,PS N, GSP,PSTI TJELT le0<br />

DC 50 x=i,Hmr DELT I45<br />

Z=H1DPBY (I) DELT 750<br />

AllX (6.1) =Z DECT 155<br />

Y (I)=AUX(1,I)+.296977~~AU~~5~~)4~~587596*2 CELT 160<br />

IF QT(1) .LT,O.) I [I) 50. DECT 165<br />

50 CCNPTBUE DELT 170<br />

c EEL? 175<br />

C z=x+. 455737~~ DELT 180<br />

CALL PUIC (IN I ISTILGE,IPR KNATI, KPIAB'I. RATIO ,PS N, FSP,PST) DELT 985<br />

DO 60 I=I,HCIH<br />

DEL? 190<br />

Z=H+DERY (I) DEL" 195<br />

AWX {9,1) -2<br />

DELT 200<br />

91 (X)=AUX (1 ,I) e. 2181004*IUX ( 5,1)-3.0509€5*AMX (6,I) b3.832865WZ DELT 205<br />

LSN 0032<br />

ISN OQ3Y<br />

SSbl 0035<br />

ISW 0036<br />

ISI 0037<br />

IP (I (I) "L.T.0.) Y (I)=O,<br />

60 COWTPNUE<br />

C z-xatd<br />

CALL PUNC (IN, XSTAGE,IYR, KIRILTL, RPLA ET. RATIO,PSN, ESP, esr)<br />

DO 70 I==3,NCIE<br />

Y (X) =AUX (1, I) *.17476O3*AUW (5,9 1 - a 55 1 U@C7*AUX (6, I) 4 1,205536.<br />

DELT 210<br />

DELT 245<br />

DELT 220<br />

CELT 225<br />

DELT 230<br />

DELT 235<br />

ISN 0038<br />

ISH 0040<br />

SSB 0041<br />

ISH 0042<br />

1 aoX(7.I)+.17~l8Q8*e*DEBY (I)<br />

IF ~Y(I).LT.o.) r(I)=o.<br />

70 CONTINUE<br />

80 BETULIN<br />

EID<br />

DELT 2UO<br />

DELT 245<br />

DELT 250<br />

DELT 255<br />

DELT 260


SYEBOL<br />

H<br />

Y<br />

z<br />

DB<br />

IN<br />

KI<br />

YS<br />

Am<br />

A OX<br />

A IS<br />

0 Tt.<br />

In<br />

KIO<br />

PSK<br />

PSF<br />

PbT<br />

Am0<br />

Om x<br />

PfhC<br />

N U E<br />

onn<br />

PKlLL<br />

ILEPT<br />

KYAT L<br />

EAT10<br />

IPIGHT<br />

I SI ACE<br />

58<br />

*****F 0 R T R A N C R 0 S S P E P E R E N C E I I S T I N Gat***<br />

IIIPERNAL STILTEMENT NOUEERS<br />

0006 0013 0021 0029 0037<br />

OOOe COO9 0009 0010 0010 0012 0013 0014 OC15 OC15 0016 0016 0020 0021 0022 0023 C023 0023 0024<br />

0024 0028 0029 003C 0031 0031 0031 0031 OC32 OC32 0036 0037 0037 0037 0037 0037 0037 0038 0038<br />

0004 0009 0015 0016 0016 0023 0024 0024 0031 0032 0032 0037 0038 0038<br />

0013 CO14 0015 0021 0022 0023 0029 0030 0031<br />

0003 0006<br />

0002 0007 0019 0027 0035<br />

0003<br />

0003<br />

000 3<br />

0004 0009 0010 0013 0014 0015 0022 0023 OC23<br />

000 3<br />

0003<br />

0002 0007 0019 0027 0035<br />

0003<br />

0002 0007 0019 0027 0035<br />

OC30 0031 0031 0031 0037 0037 0037 C037<br />

0002 CCC7 0019 0027 0035<br />

0002 0007 0019 0027 0035<br />

000 3<br />

0004 0010 0021 0029 0037<br />

0007 C019 0027 0035<br />

0002 0008 0012 0020 0028<br />

OOOi<br />

000 3<br />

0003<br />

0036<br />

0002 0005 OC07 0019 0027 0035<br />

0002 OOC7 0019 0027 0075<br />

000 .~.. 3<br />

0002 COO6 0007 0019 0027 0035<br />

KPLAUT 0002 0005 0007 0019 OC27 0035


LISEL DEPIWED REFERENCES<br />

10 0010 oaca<br />

20 0011<br />

30 a012<br />

40 0018 0012<br />

50 0026 0020<br />

60 0034 0028<br />

70 0040 00 36<br />

80 0041<br />

59


COllPILER OPTIONS - NAHE= HAIN,OPT=02,LIHECNT=6O,SIZE=OOOOK,<br />

SOURCE, ESCDIC , NOLIST, WGDECK ,LOAD, PAP, NOEDIT, NOID, XREP<br />

CPUPC<br />

c...<br />

PUNC<br />

PIPNC<br />

0<br />

5<br />

C...SVBROUTINE PUNC CALCULATES TCE CHANGE I N STANDING CPOP FOR PUK 10<br />

C...THF SPECIFIED LIFE STAGE DUE TO NATURAL HOFIALITP AND, I F THE Pmc 15<br />

C...POYER PLANT is mCEls I N TAE BODEI, DOE TO PLANT RORTALITY. PONC 20<br />

C... PONC 25<br />

ISN 0002<br />

ISH 0003<br />

ISN 0004<br />

SOBBOUTINZ PUNC(IH,ISTAGE,IIR,KNA~L,KFLAU~,RATIO,FSN,PSP,PST) PIPNC 30<br />

COB?TON/ ISTAG3/AR1(5) , AhXO (5). AY S (5) ,DE (5) ,DTE (5) ,FRILL (5) ,ILEFT (5) PONC 35<br />

1 .TRIGHI (5),KX (5) ,KYO (5) ,IS ( 5) Fufl- 40<br />

COM RON /P AR/IEND ,ISKP, ISH. KSTP ,N N, F. CP, TE , 1 PUYC 45<br />

IS1 0005 COHMON /RKTTA/ U1,DNXCT PUNC 50<br />

ISN 0006 REAL KNATL, kPLANT.RTOTAL FTlNC 55<br />

ISN 0007<br />

ISN 0008<br />

REAL KX,KXO,YX<br />

I S = IS'IAGE<br />

PUNC<br />

PUNC<br />

60<br />

65<br />

ISN 0009 BUP = 0. IUNC 70<br />

ISN 0010 IF (YS(IS).LT.I.) GO TO 10 POMC 15<br />

ISN 0012 BOF = (KX(IS)-KYO(IS))*((Nl-~S(IS))/~S(IS))**3 PUNC 80<br />

ISN OD13<br />

ISU 0015<br />

IF (NX.L~.~S(IS).AND.ILEP~(I~).EQ.~) BOP = 0.<br />

IF (NX.CT.~S(~~).AND.IRIG~T(~S) .EC. 1) BUF = 0.<br />

PUNC<br />

PUYC<br />

85<br />

90<br />

ISU 0017 10 KNATL = KX(1S) + BUP PUNC 95<br />

ISN 0018<br />

ISN 0019<br />

ISN 0021<br />

KPLANT = ISP*PKILL(IS)*QP/V<br />

I F (IYR.EQ.0) KPLANT = 0.<br />

KTOTAL = KNATL + KPLAMT<br />

PUK 100<br />

FONC 105<br />

FUNC 110<br />

ISW 0022 RATIO = KPLANT/KTOTBL PONC 115<br />

ISN 0023 PSN = EXP(-KNAIL*DTE(IS))<br />

FUNC 170<br />

ISN 0024 PSP = EXP(-RPLINTID'lE(1S)) FUNC 125<br />

ISN 0025<br />

ISH 002.5<br />

PST = rXP(-KTOTAL*DTE<br />

DNXDT = -RTOTAL*HI<br />

(IS)) PUWC 130<br />

PUNC 135<br />

ISN OC27 RETURN<br />

PONC l6tO<br />

ISN 0028 END PUNC 145


61<br />

*****F o B T E A N c B o s s R E P E R I n c E L I s T I N G*****<br />

IYTBRNAL STATEHENT NU8IBEES<br />

coo 4<br />

0004 0018<br />

0003<br />

000 2<br />

0008 0010 0012 0012 0012 0012 0013 0013 .0015 CC15<br />

0003 0007 0012 0017<br />

000 4<br />

OC17 0018 0023 0024 0025<br />

QOOS ooc7 0012 on13 onis 0026<br />

0004 0018<br />

coou<br />

COO3 0010 0012 OOli 0013 0015<br />

000 3<br />

000 3<br />

COOS 0012 0013 0015 0017<br />

0003 0023 00211 0025<br />

0023 0024 0025<br />

0004 0018<br />

0002 0019<br />

0003 0007 0012<br />

0002 0023<br />

0002 0024<br />

0002 DO25<br />

000 3<br />

000 2<br />

000 4<br />

0004<br />

000 4<br />

000 0026<br />

0003 0018<br />

COO3 GO13<br />

0002 0006 0017 0021 0023<br />

OD02 0022<br />

0003 0015<br />

0002 COO8<br />

0002 no06 0018 0019 0021 0022 00241<br />

0006 GO21 0022 0025 0026


UBEL DBEIUEC REPEitZNCES<br />

10 0017 0010<br />

62


COUFILER CPTTONS - NAN E= HATN.OPT=02.LIRECN'I~60~SI2I=000OK.<br />

SOURCti,~BCDIC,WOLIST, BOOCECK,LOAD, !4AP,#OEDIT,NOID,XB<br />

C EQQ<br />

c...<br />

C.. .SUBROUTINE EQUAL CALCULATES A FIRST ORDER IICBTALITX RATE<br />

C,.,COEPFICIENT FOB ADOLT CLASSES 4-13 FOfi YEAR ZERO. TRXS<br />

C,..CBLCULATION XS DONE USING A NEUMN EHAPHSON TECHNIQUE AND<br />

C..,IS CESIGNED TO GEYERALTE AN ADULT. AGE CISTRIEUTIQN THAT UILL<br />

C.,,PRODOCTICN THE SAHE NUMBER OF EGGS AS SPECIFIED BY ONE OF<br />

C. ,THE INPUT PARAflETERS.<br />

c*,*<br />

EP<br />

ISN 0002<br />

ISN 0003<br />

ZSN 0004<br />

SUBBOUTlNE EQUAL (bDOLf,ADOLTS. DCYO ,NEO. PEQUAL ,BHFI BO)<br />

cOaacR/sDULTT/~CY(20) .FX(20) .SfiAT{20),SMAT[20)<br />

cOHnoN/PAR/IEnD ,ISKP .ISW * KSTP ,N 1, F, QP,TE, V<br />

ISN 0005<br />

DIHENSION ADULT(20) ,ADULTS(ZO), DClU (20) ,FCF(JO)<br />

ISH 0006<br />

REAL BEO,BS,KO,KB<br />

ISN 0007<br />

DO 10 K=1,3<br />

1.58 OGC8<br />

ISN ocos<br />

ISH 0070<br />

XSN 0011<br />

ISN 0012<br />

10 DCTO(K)=DCY (K)<br />

R O=PEQ QAL/NEO<br />

DO 20 K=l,IEID<br />

20 RllF (K)=SBAT (K)*SHAT (Kf * E X (K)<br />

S1=RHF (1)<br />

ISM 0013<br />

ISM 0014<br />

ISN 0015<br />

XSN 0016<br />

ISH 0017<br />

AXP=1.<br />

DO 30 K=2,4<br />

AXP=BXP*EXP (-DCYU(K-1)<br />

30 S1=51*Rt!P(K) *AXP<br />

D= {RO-Sl)/AXP<br />

*365.)<br />

xs1 0018<br />

ISN 0019<br />

ISH 0020<br />

ISN 0021<br />

XSN 0022<br />

ISH a023<br />

ISH 0024<br />

ISH 0025<br />

ISN 0026<br />

ISH 0027<br />

ISY 0028<br />

IS1 0029<br />

ISM 0030<br />

ISN 0031<br />

ISH 0032<br />

xsw 0033<br />

ISN 0034<br />

ISM 0035<br />

IS% 0036<br />

ISH 0037<br />

LSN 0039<br />

ISN 0041<br />

WRITE( 12,10000)<br />

WRITE (P2,lO 100) ROIS 1, AXP, C<br />

DPEST=. 1E-7<br />

X TE B X= 20<br />

ITER4<br />

KO= 1.89903B-3<br />

c...<br />

C.. .START ITERATION LOOP<br />

c, m.<br />

40 PPK=O.<br />

PK=D<br />

PX=l*<br />

DO 50 K=S,I'EID<br />

AK= R<br />

PX=EXP (-KO* [AK-4.)*365.)<br />

FK=PK-RHP(K) *PX<br />

50 FEK=FPK+365.* (AK-U.)*G?lP (K)* PX<br />

QUO T= P I( / FPU<br />

K N-KO-F UOT<br />

DF=ABS (KN-KO)<br />

WRITE( 12,10200) RQ,KN,DP,XTER<br />

X T E B=I E R + 1<br />

IP (1TER.EQ.ITERX) GO TO 60<br />

IP {DP.LE.DTEST) GO TC 60<br />

I Y (Kla.LT,o.) K#=.5*KO<br />

ISN 0043<br />

KO=KN<br />

ISH 0044<br />

GC TO a0<br />

ISN 0045 60 KK=4<br />

XSN 0046<br />

DO 70 K=KK,IEID<br />

XSN 0047<br />

70 DCYW (K)=KN<br />

ISH 0048<br />

ORITE( 12,10200) KO,Kl,DP,XT€R<br />

63<br />

%QUA 0<br />

EQUA 5<br />

EQUA 10<br />

EQUA 15<br />

EQUA 20<br />

EOUA 25<br />

EQOA 30<br />

EQUA 35<br />

EQU 40<br />

EQUA 45<br />

EQfJA 50<br />

ZQUA 55<br />

EQUA 60<br />

EQUA 65<br />

EQUA 70<br />

EQUA 75<br />

EQUA ao<br />

EQUA 85<br />

EQUA 90<br />

EQUA 95<br />

EQUA 100<br />

EQUA 105<br />

EQUA 110<br />

EQUA 115<br />

PQTJA 120<br />

EQUA 125<br />

EQUA 130<br />

EQUA 135<br />

EQOA 140<br />

EQUA 145<br />

EQUA 150<br />

EQUA 155<br />

EQUA 160<br />

EQUA 165<br />

EQUA 170<br />

EQIJA 175<br />

EQUA 180<br />

EQUA 190 185<br />

EQUA 195<br />

EQUA 200<br />

EQUA 285<br />

EQUA 210<br />

EQUA 215<br />

EQUA 220<br />

EQUA 225<br />

$QUA 230<br />

EQUA 235<br />

EQUA 240<br />

EQUA 245<br />

EQUA 250<br />

EQUA 255<br />

EQUA 260<br />

EQUA 265<br />

EQUA 270<br />

EQUA 675


D<br />

K<br />

P<br />

V<br />

AX<br />

rl?<br />

PL<br />

RK<br />

Kbl<br />

KO<br />

I(#<br />

NS<br />

Pll<br />

UP<br />

BO<br />

S?<br />

TP<br />

ABS<br />

A XP<br />

DCY<br />

EYY<br />

PB:<br />

P PK<br />

1 sn<br />

NSa<br />

i( ?IP<br />

UCI a<br />

i?itiD<br />

ISKP<br />

ITER<br />

RbT P<br />

QmT<br />

SMT<br />

SaA T<br />

AOULT<br />

DMST<br />

EWAL<br />

ITERX<br />

AWLTS<br />

soot(<br />

0028<br />

a034<br />

0025<br />

004 5<br />

000 6<br />

000 6<br />

000 u<br />

COO6<br />

0026<br />

0004<br />

0002<br />

oaa 2<br />

000 4<br />

003 4<br />

6011 3<br />

0003<br />

001 5<br />

000 3<br />

0024<br />

GO64<br />

000 2<br />

000 2<br />

060 2<br />

000U<br />

0004<br />

002 2<br />

0004<br />

C032<br />

000 1<br />

0003<br />

000 2<br />

c02 c<br />

000 i<br />

002 1<br />

000 i<br />

0029 0071<br />

0035 0039<br />

0030 0030<br />

0046<br />

0033 0034<br />

0023 0029<br />

0029 003c<br />

0009 0017<br />

0016 0016<br />

0015 OC15<br />

coca<br />

0029<br />

0011<br />

0031 0031<br />

0006 0009<br />

0005 0011<br />

0005 0coe<br />

COlO 8027<br />

0035 OC76<br />

0033<br />

0011<br />

0011<br />

0005<br />

0039<br />

0037<br />

0005<br />

oo4a<br />

003i<br />

0035 0041 0041 0043 0047 OC38<br />

00.31 0034 0035 ODUl 0043 OOl8H<br />

0031<br />

0019<br />

0017 0019<br />

0016 0617 8Q19<br />

0032<br />

0032 0016 0030 0031<br />

0015 0011.9<br />

0046<br />

0036 0017 0040


UBhL<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

10000<br />

10100<br />

10200<br />

10300<br />

DE FI ti Er<br />

00 C8<br />

0011<br />

00 16<br />

00 24<br />

0031<br />

00 45<br />

0047<br />

0051<br />

0052<br />

00 53<br />

0054<br />

BEFBRENCll<br />

0007<br />

0010<br />

0014<br />

OOUU<br />

0027<br />

0037 OC39<br />

0046<br />

00 18<br />

0019<br />

003s ooue<br />

0049<br />

66


67<br />

APPENDIX B<br />

INPUT DATA CARDS FOR SAMPLE<br />

1 13 OUO 0010 128. 335, 1<br />

01 uo 01 01<br />

4.6957E-3<br />

.5 .r .5 .5 ,029<br />

100.0E? 45. 0.2 0.7 0.7 1.4 1.0<br />

08 7. 14. 21. 28. 34. U2. 49.<br />

RUN<br />

.029 40<br />

.0536 .0243 .236l .4482 .2365 .Q000 .0013 .0000<br />

.O02510 .001tl00 .000Fll 0. C . O . Q . 0 . 0 . 0 . 0 . 0 .<br />

1.<br />

.50 .52 .54<br />

.o .o .0<br />

.o .o<br />

.94096 1.1476<br />

1. 1. 2.<br />

.56<br />

.o .e<br />

.o<br />

1.36ES<br />

.60 .62<br />

1.0 1.<br />

.205E6<br />

1.56E6<br />

.6u .h6 .6a<br />

1. 1. 1.<br />

.297E6 .42@"6<br />

1.76E6<br />

-70 -70<br />

1. 1.<br />

.57226<br />

EGG ST4GE<br />

1.151<br />

0.00YO 2.<br />

1.0 1.0 1.0<br />

T APVAG STAGE<br />

0.16115<br />

0 0<br />

1.U7EQ 28.<br />

1.0 O.R 1.9 0 0<br />

JUVENIff: I ST4GF<br />

0,05115<br />

2.55??7 30.<br />

1.0 0.8 1.0 0 0<br />

JlJVENVLE: 2 STAGE<br />

0.0 12a5<br />

1.0 0.8 1.@<br />

JrlVFNrLT 3 STAG*<br />

0. Q 097 20<br />

0<br />

A.98E5<br />

0<br />

2.29E6<br />

100.<br />

tSa.<br />

1.0 0.9 1.0 0 0<br />

0.<br />

.70<br />

1.<br />

747P6


...<br />

... f4 ... II)<br />

. ... . .I . .O . .. .<br />

. . *I .<br />

... . .<br />

r;l<br />

.I. ...<br />

P<br />

0<br />

0<br />

0<br />

3<br />

0<br />

0<br />

ku .........................<br />

4<br />

& 0 0 0 0 0 0 0 0 0 0 0 w 0 0 (3 0 0 0 0 0 0 0 -0 v<br />

c<br />

X e<br />

II. 0 0 0 0 0 0 0 CI 0 0 0 c3 a 0 I2 o 0 0 0 0 0 0 0 0 0<br />

h 0 0 0 0 0 i: G 0 0 0 0 0 CJ 0 0 0 0 0 0 0 0 0 0 0 0<br />

*.I 0<br />

e .........................<br />

0 0 c> 0 '> 0 9 0 c, 0 0 0 u 0 0 0 0 i, c. ,.> 0 3 c, c3 0<br />

00 0 c ;o n n c: 0 c 0 c c1 c. c2 0 0 0 0 c) 0 c, c 0 0<br />

0 0 0 r3 0 0 a 0 0 0 0 0 0 0 0 0 C' 0 0 * c e 0 0 4<br />

e3 o o L== nu r, o o o c o 3 o o o ci o o 3 3 v o o v o<br />

Lo .........................<br />

c4 P i r r r ,-. r v- - c r r r r r r r r c r r 7 r- .--<br />

.-<br />

70


STAGE 2 IAfVAL STAGE<br />

KX(l/DALI)a 0.16UQ999981E 00<br />

KXO (l/OALI)= 0.73159996278 00<br />

YS(blUNBER)= 0.1469999872E 10<br />

LIFE PERIOD (DAY) f 28.0000<br />

R a I a or TRI xr VALUE USED IN THIS RON TO THE *SIANDAAD- RX VAZOE GIVEN AEOVE = 4.000<br />

RATIO OF THE KXO VALUE OSXD I N TBTS BUN TC TEE KX V&UE USED IN THIS RUN = 0.800<br />

RATIO or TRE IS V ~LUP OSEO 18 ~ R X S RUY TO THE *STANCARD* TS PALOE GIVEN ABOVE = 1.000<br />

LEPT LIlE OF COMPEISATION PURCTION DISABLED... IC<br />

RIGHT LIKB OF COBPENSATION PUICTION DISABLED... NO<br />

TINE( ) FOPULATTCNf-) TGANSFER PRODUCTXON POPULATION (+) KNlTL KPLANT<br />

2.00<br />

Y. 00<br />

16.00<br />

23.00<br />

30.00<br />

37.00<br />

44.00<br />

.o<br />

.26393 09<br />

.2375E 09<br />

.9725E 09<br />

.2050E 10<br />

.2238E 10<br />

.1594E 10<br />

.a<br />

.o<br />

.c<br />

.o<br />

.21792 06<br />

.5095E 06<br />

.2005E 06<br />

.1532f OB<br />

-45972 08<br />

.2CBUE 08<br />

.2025E 09<br />

.3844E 09<br />

.2028E 09<br />

.61OOE 01<br />

.lf32Z 08<br />

-30991 09<br />

.2584E 09<br />

.1175f 10<br />

.243EE 10<br />

.2Q40E 10<br />

.1594E io<br />

-1463E 00 .O<br />

.1451E 00 .o<br />

.1632E 00 .O<br />

.1665E OC .O<br />

.1692E 00 .O<br />

.1645'3 00 .O<br />

51.00 -50631 09 .1854E 07 .892OE 06 .5Or(4E 09 -15528 00 -0<br />

58.00 .l62OE 09 .3975E 07 .1115E 07 .1580E 09 .1U13E 00 -0<br />

65.00 -39591 oa .2769E 07<br />

.O .3682I 08<br />

.1342B 00 .o<br />

72.00 .1357E 03 .8258E 01 .a .927@E 03 .I3162 00 -0<br />

79.00 -29133 02 .o "0 .2913E 02 .I3162 00 -0<br />

TOTAL PRODOCTION INTO THIS LIFE STkGB<br />

TaPAL TBAIISEEB INTO THE NEXT LlPE STAGE =<br />

X SURVIVAL 1HROOGH PHIS LIFE STAGE =<br />

0.1002105651E 11<br />

0.1126tC656CE 09<br />

1.1<br />

BAXILIUN STAIDIIG CROP POR THIS LIFE STAGE = C.2836734976E 10<br />

RATIO OP RAXIOIIB STILRDIRG CECP TO EQUILIBRIUPl STANDING CROP (NRAX/YS) = 3.9298<br />

REDUCTION Ib IOMEER OF ORGANISRS ENTERING THIS LIFE STAGE DUE TC THE POWER PLANT...<br />

I REDUCTION In NU~BER or ORGIINISRS ENTERING THIS LIFE STAGE DUE TO THE POYER PLANT...<br />

.....................................<br />

0.0<br />

0.0<br />

STAGE 3 JUVENILE 1 STAGE<br />

RS( ?/DALI}= 0.51149997863-01<br />

KIO (l/DAlj= 0.40919993C7E-81<br />

XS(NUlEEB)- C.2650000000E 08<br />

LIFE PERIOD (DAT) = 30.0000<br />

RATIO DP fRE KI VALUE OSED IR THIS RUB TO THE mSTANDARD* RX VALUE GIVIN ABOVE = 1.000<br />

RATIO Of TU8 1110 fhLUE USED I N THIS RUN TO THE RX VdLUE USED IN TRIS RUN = 0.800<br />

RUIO Of' TAE YS VALUE USED I N THIS RUN TO 'I8E *SlAWDABDn Y.5 VAIOE GIVEN A3OV2 = 7.000<br />

LgPl' LIMB OP CORPEISAIICN PUICTION fZSABLEE... NC<br />

RIGHT LIMB OF COBPEISATIOI FUNCTION DISABLED... RO<br />

TIME( ) FCPULATICN (-) TRARSFER PRODUCTION POPULATION (+) KWATL KPLANT RATIO<br />

30.00 .o .a .2179E 06 .2179E 06<br />

R &TI0<br />

0.0<br />

0.0<br />

0. (I<br />

0.0<br />

0.0<br />

0.2<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.3<br />

P SN<br />

0.0166<br />

0.0772<br />

0.0104<br />

5.009Q<br />

O.00Re<br />

0.0100<br />

O.St30<br />

0.0191<br />

0.0233<br />

0.0251<br />

0.9251<br />

PSI<br />

P SP<br />

1.0000<br />

?.GOO0<br />

1.cocc<br />

1.0000<br />

1 .coo0<br />

1.n00<br />

1.0000<br />

1.0000<br />

~.OOOO<br />

1.0000<br />

1.0000<br />

FSF<br />

PSI<br />

0.0166<br />

9.0172<br />

C.il1OQ<br />

3.0094<br />

0.0088<br />

0.0100<br />

0.0130<br />

0.0191<br />

0.0233<br />

0.0251<br />

0.0251<br />

PST<br />

U<br />

d


37.00<br />

44-00<br />

51.00<br />

58.00<br />

45.00<br />

72.00<br />

79.00<br />

86.00<br />

93.00<br />

1 GO. 00<br />

f07.i)O<br />

.U573E<br />

-55363<br />

-1478E<br />

-33972<br />

-53993<br />

.529UE<br />

-34898<br />

07<br />

07<br />

08<br />

08<br />

08<br />

08<br />

ce<br />

.2101E OR<br />

.e5103 07<br />

.7218E 07<br />

-1916E 02<br />

.o<br />

.o<br />

.o<br />

.o<br />

.179?1 06<br />

-4058~ c5<br />

.33781! 06<br />

.59392 06<br />

-56671 06<br />

.7037E C6<br />

.1857E 01<br />

.SO958 06<br />

.2005I 06<br />

.I8543 09<br />

.3975~ a7<br />

,27691 G?<br />

.a2588 01<br />

.0<br />

.o<br />

.o<br />

.o<br />

.0<br />

.5062E 07<br />

.5736E 07<br />

-1663B 08<br />

.3795€ 08<br />

-5464~<br />

oe<br />

.5290E 08 ,<br />

. N ~ K E oe<br />

.x132~ 38<br />

.7943F 07<br />

.5144E 04<br />

.1630E 02<br />

.0535~-01 .a<br />

.46093-01 -0<br />

.50262-01 .0<br />

.5138E-01 .0<br />

.60262-01 .0<br />

.S132E-01 .O<br />

.S148B-31 .o<br />

.5106E-01 .0<br />

.4795E-O1 -0<br />

.4227E-01 .O<br />

.4092E-01 .O<br />

TOTAL PRODUCTION IHTO THIS LIFE SThGE = 0.11261C6560E 09<br />

TMAL TBAWSPER iHTO TRB NEXT IIFE STAGE = 0.2165459200E OB<br />

0 SUBVIIAL THFOUGB TAIS LIP? STAGE = 19.2<br />

axxnun SLAWDING CROP PCR anrs LIFT STAGZ = 0.5835945t00E Of<br />

blATI0 OP HAXI?IUf! STANDING CROP ?Po EQUILXBRLUfl SlAWDIWG CROP (NEsX/TS) = 2.2022<br />

itkDUCTIOH I# bUXBZK OY OAGAHISHS ENTEaIhG THIS LIFE S1A6E CUE TC T9E POWEP PLART...<br />

b REDUCTIC3 ik XOflUER OF OFiG1815NS ElTEBIRG TRlS LIFE STAGE DU2 TO THE POUEE PLRNI.<br />

STAGE U JUVENILE 2 STAGE<br />

KX ( 1/DAY 1 = 0.12 4 499 98 4 1E- 0 1<br />

KXo(l/DAFj=<br />

ns(~uaaxn)=<br />

0.9959995747E-02<br />

o.egaooaoocor 07<br />

LXPL PERIOD (DAY)= 190.0000<br />

BAT10 OP THE KX VALUE USED IW THIS RON TO THE "SSAMDBED" XX VALUE GIVEN dBOYE = 1.000<br />

SAT10 OF TWE RXO VALUE USED ZW THIS EUI TO TBE KI VALUE USED IN THIS ROW = 0.800<br />

HAT10 OF THE \1S VALUE USED IH THIS BUM TO TBE "STBWCAPD" 1S VALUE GIVZN ABOVE = 4.000<br />

LaPT LXX3 Of CORPEHSA?IO# PUHSTION DISABLED...<br />

RIGHT LIE18 OF CONPENSATIOB PUHCTICN CISABLZC...<br />

WC<br />

WO<br />

TIflB( 1<br />

60.00<br />

74.00<br />

88-00<br />

'1 02.00<br />

123.00<br />

137.00<br />

151 .OO<br />

165.00<br />

179.00<br />

193.00<br />

a 07.00<br />

FOPULATIDN (-1 TRAWSPSR<br />

.o<br />

.iui9~ a7<br />

.8153E 07<br />

.1789E C8<br />

.1390E 08<br />

-3148E 08<br />

.o<br />

-0<br />

.a<br />

.o<br />

.a<br />

.o<br />

.9642E 07<br />

.eosse G?<br />

.63053 07<br />

-51222 07<br />

.43382 07<br />

.0<br />

.o<br />

.c<br />

.o<br />

.u<br />

YBOD UCTI ON<br />

.52C$L 05<br />

-7526: 05<br />

.lq76E 07<br />

.4258E 01<br />

.o<br />

.o<br />

.o ." R<br />

.c<br />

.o<br />

.i)<br />

POPULB"0N<br />

.5208k OS<br />

.'155SI 07<br />

-96292 137<br />

.1789E 08<br />

.1306E 08<br />

.?I288 08<br />

.9475E 07<br />

.?959E 07<br />

.6668I 07<br />

.562(cE 07<br />

.4?3?E 37<br />

{t) KWATL<br />

3.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0 . 0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.C<br />

0.0<br />

.1100B-O'! .ci 0.0<br />

.12058-0 1 .o 0. 0<br />

-14 BEE-0 1 .o 0.0<br />

. 128lE-01 .0 0.0<br />

.125'3E-0'1 .a 0.0<br />

.1245E-04 .o 0.0<br />

. i2h5E-07 .o n.p<br />

. ?2U;E-Ol .c a. c<br />

.1233P-@4 .F 0.0<br />

.1220E-U1 .u 0.0<br />

T ~ A PSODOCTICN L<br />

INTO THIS LIFE STRGI = 0 . 2 ~ ~ 5 ~ ~ a8 9 2 0 ~ ~<br />

TOTAL TBAHSlEh IBTO TEE NEXT LIP?. STAGE = 0.45780U70003 07<br />

% SURVIVAL IHIOUGH T~IS Elm STAGE = 21.9<br />

MAXShll3 STANDING CROP BOB THIS LIFE STAGE = 0. 1827956eOOP OE<br />

SATLO Of HAXldULI STAXDlHG CROP TC. EQUXLIBdfUfl STIINDIUG CRCP (NRAX/YS) = 2.3347<br />

aZDUCTdON Xh bCR3Eii 08 OPGJYISIIS ENTEEZEG THIS IIFB SPACE D:'Z S'C THE POIIZR PLAMT...<br />

X BEDUCTIC)i IN NOHEEX OF ORGAHISRS ENTEEING THXS LKFE STAGE DiII 'to THP POWEP DLXX'I...<br />

0.0<br />

0.0<br />

IURBdB 01 Y'JYIBILP 2 KILLED ET It',P:NGEflENT...O.O<br />

0.2565<br />

0.2509<br />

0.2214<br />

0.2147<br />

0.1640<br />

0.1539<br />

0.2135<br />

0.2962<br />

G.2373<br />

0.2814<br />

0.2930<br />

1.0000<br />

1.0000<br />

1.0000<br />

1.000c<br />

l.r)OOO<br />

1 .oooo<br />

1.0030<br />

1. COD0<br />

1.0003<br />

1.QOC.O<br />

1.0000<br />

P SN FSP PST<br />

0.2565<br />

0.2509<br />

0.2214<br />

0.2141<br />

0. 1640<br />

0.3589<br />

0. i135<br />

0. 2152<br />

0.2373<br />

0.2814<br />

0. 2930<br />

0.3329 1.0000 0. 3329<br />

0.28ao 7.oooc O.:HEO<br />

0.2 25 8 .I . no oc 0.22 5 F;


STAGE 5 JUPBlXIE 3 STAGE<br />

RI( ?/Dli I) = 0.971 99976 rl4E-0 2<br />

KX0 (l/DAY)= 0.7775995880E-02<br />

YS(SUBBER)= 0.22900000COL 07<br />

LUOB PEBIOD (Day)= 158.0000<br />

RATIO OP TBE KX VALUE USED IN THIS RUB TO THE *STANEAEB~ RX VALUE ~r9m ABOVE = ?.GOO<br />

Bm'iO OF TKI 110 VALUP USED IN THIS RON TO THE KX YALIIE USED 18 THIS SUN = 0.8GO<br />

RULO OP THB YS PALOE USED IS TRIS RUN TO THE WS'IANDARO" IS VALUE GIVEN ABOVE = 1.000<br />

LEIT LfLl13 01 COOPElSAlICH PUKCTION fXSABLBC...<br />

RXGHT LIUB CP COBPEISATION PULiCTION DISABLED...<br />

HO<br />

NO<br />

TIffE( ) EOPULATION(-) TRANSFER FRODIICTION POPULATION I+) KUATL KPLANT RATiO<br />

209.00 .O .e .4578L 07 .4578P 07<br />

223.00 -39822 07 .5 .o -392413 07 -1050E-01 .O<br />

2 37.00 ,34513 07 .o .0 .3Q03E 07 .99?3E-01 .O<br />

251.00 .3006E 07 .o .o ,29653: 07 ,9779E-02 .O<br />

265.00 .2622E 07 .a .o ,2587I c3 .Y726E-02 .O<br />

279.60 -22893 07 .o .0 .2258E 07 .Y?20E-02 .a<br />

293.00 .1Y97E 07 .a .o .1Y7OE 07 .9716E-02 .O<br />

307.00 .174r(E 07 .a -0 .I7205 07 ,96993-02 .O<br />

321.00 -15233 07 -0 -0 .1S32E 07 .96U7E-02 .O<br />

335.00 -1331E 07 .o -0 .t313F 07<br />

. .9577E-02 .O<br />

349.00 -116SE 07 .o .o ,1149E 07 .9489E-ti2 .O<br />

363.00 .1020Z 07<br />

.o .o ,1009E 07 .9389E-02 .O<br />

TOPAL PPODUCTICN INTO THIS LIFE STAGE = 0.4578097COCE 07<br />

TOTAL TBANSPBR INTO THB NEXT IIFZ STAGE = '2.9808884375E 06<br />

X SUBPIPAL THROUGH TBIS LIFE STAGE = 21.4<br />

flAXIRUA STANDING CROP FOB THIS LIPE STAGE = 0.4578047COOE 07<br />

RAP10 OF RAX1)IUB STANCING CROP TO BQUILIBBIUR STANDING CRCP (B!!AX/YS) = 1.9491<br />

dEDUCTLO60W I N KURBER OF GRGANISlS ENTEBING THIS IIPE STACE DUE TO TPE POPEF PLANT... 0.3<br />

% REDUCTICN PL( NUKBEB OF GRGANISRS GNTEBING THIS LIFE STAGE DUE. TO THE POUER PLRF?... 0.0<br />

NURBEB OF JfJVPNILE 3 RILLFC €!Y IFlPIBGEHENT...0.0<br />

TOTAL NUUBEB GP JUVENILES KILLED 91 IOPINGEBEUT. ..O.O<br />

CU~UEAT~VE EBCEAEILITY OP SURVIVAL PROA EGG THRBIXH JUVENILE 3 = Q . ~ ~ O R B ~ Y Y E - O ~<br />

EXPECTED NUBBER OP YEARLINGS = 0.98088688E 05<br />

ADULT OISTi3TBUTION BT AGE CLASS<br />

AGE WURB38S AGB RUKBEBS ACE RBKBEBS AGE WOJBEBS A.CB RUOBERS<br />

3 960EBB. 2 392411. 3 235405. U 168348. 5 91787'.<br />

6 73766, 7 461611. e 28890. 9 1BQEQ. 10 1131C..<br />

I? 7681, f2 8431. 13 2773.<br />

TaAL AOfdL'l'5 2 10 74 17.<br />

PBRCEUT AGE DISTkXBUTION RELATIPK TO YEAR ZERO<br />

AGB PBECBKT AGE PERCENT A6E PERCENT AGE PERCEW? AGE PERCENT<br />

1 46.595 2 18.620 3 11.170 4 8.933 5 5.593<br />

6 3.500 7 2.191 8 1.371 9 0.858 13 0.5?7<br />

11 0.336 12 0.210 13 0.132<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

0.0<br />

?S N<br />

0.2008 0.?902<br />

0.2133<br />

c.2151<br />

0.2153<br />

0.2154<br />

0,2162<br />

0.2178<br />

0.2202<br />

9.2233<br />

0.2269<br />

FSF<br />

1 * COOC<br />

1.0000<br />

1.0ODO<br />

1 .eo00<br />

1.00co<br />

1 .c000<br />

1 .coo0<br />

1 .0000<br />

i.C090<br />

1.0000<br />

?.@090<br />

PS T<br />

0.1Y02<br />

0.2068<br />

0.21 33<br />

0.21 51<br />

ti. 2153<br />

0.2154<br />

a. 21 62<br />

0. 2179<br />

0.2202<br />

0.2233<br />

c. 2269<br />

U<br />

c3


-lx<br />

1 m I.<br />

NPN<br />

r<br />

r<br />

ElbJ cl<br />

Yiu<br />

mmm<br />

r<br />

.--0<br />

s-<br />

r m r<br />

err4<br />

I.I.m<br />

...<br />

XH<br />

w YI<br />

a0<br />

0 n. Id<br />

N<br />

rnm -H<br />

c<br />

-x 1w<br />

X k<br />

EO<br />

w<br />

w x<br />

w<br />

isr.<br />

aw<br />

ux<br />

w<br />

L ?.<br />

w<br />

U<br />

ffi w<br />

P<br />

74


.......... * ....... ..... .........<br />

..CUEBBYT YEAR....... - 1- ..<br />

...................... * ..... *.<br />

STAGE 1 STAGE<br />

KI{l/DlY)=<br />

RXO ( 1/DAY) =<br />

YS(NUHBER)=<br />

0.1150999069E 01<br />

0.115C999069E 01<br />

0.0<br />

LIFE PERIOD IDAY)= 2.0000<br />

RATIO OF THE RX VALUE USED IN THIS RON TO THE "S'IAMDABD" KX VAIDE GIVEN ABOVE = 1,000<br />

XATIO OF THE RXO VALUE USED IN THIS BUN TO THE KX VLLUE USED IN THIS RaN = 1.000<br />

RATIO OF THE 15 VALUE USEE I N THIS BUM TO THE *STANCARD" YS VALUE GIVEN ABOVE = 7.000<br />

LEFT LIHB OI COHPENSITION FUNCTION DISABLED... NO<br />

BXGRT LIKB GP COBPENSLTIOU FUNCTION CISABLEC.. . NO<br />

TIME( 1<br />

0.0<br />

2.00<br />

4.00<br />

6.00<br />

8.00<br />

10.00<br />

12.00<br />

14.00<br />

16.00<br />

18.00<br />

20.00<br />

22.00<br />

24.00<br />

26.00<br />

28.00<br />

30.00<br />

32.00<br />

34-00<br />

36.00<br />

38.00<br />

40.00<br />

92.00<br />

uu.00<br />

46.00<br />

40.00<br />

50.00<br />

FCFUIBTICN (-)<br />

.a<br />

.5306B 09<br />

-53061 09<br />

.53063 09<br />

.3363E 09<br />

.2905E 09<br />

.24C5E 09<br />

.2Q05B 09<br />

-22773 10<br />

.2337E 10<br />

.2337E 10<br />

.3743& 10<br />

.4437E 10<br />

-44373 10<br />

.49371 10<br />

.i401E 10<br />

-23413 10<br />

.2341B 10<br />

.7733E 09<br />

.O<br />

.o<br />

-0<br />

.12sox 08<br />

.i2m a8<br />

.i287~ a8<br />

.3081E 07<br />

TEANSPER<br />

.o<br />

.1518B 08<br />

.1518E 08<br />

.1518E 08<br />

-1518E C8<br />

-68821 07<br />

-68828 07<br />

.6882E 07<br />

.6882E 07<br />

.6687E 08<br />

-66878 08<br />

.6687E 08<br />

.i269~ a9<br />

.i269~ as<br />

.$2693 09<br />

.1269E 09<br />

.6698E 08<br />

.669BB 08<br />

.669BE 08<br />

.o<br />

.o<br />

.o<br />

"0<br />

.3682E C6<br />

.36821 06<br />

.3682E 06<br />

PRODUCTION<br />

.15311 09<br />

-1531E 09<br />

.1531E 09<br />

.1531E 09<br />

-69432 08<br />

.6943~ a8<br />

.69Y3E 08<br />

.6943~ a8<br />

.6746E 09<br />

.6746E 09<br />

.6796E 09<br />

.1281E 10<br />

.1281E 10<br />

.1281E 10<br />

-12811 10<br />

,6757E 09<br />

.6757L 09<br />

.67573 09<br />

.o<br />

.O<br />

.o<br />

.o<br />

.3714E 07<br />

-37142 07<br />

.371(IE 07<br />

.O<br />

POPULATION (+) , KblhTL<br />

-15311 09<br />

.6685E 09<br />

.66BSE 09<br />

.6SB5E 09<br />

.390CE 09<br />

.3031E 09<br />

.3031E 09<br />

.3031E 09<br />

.2945E 10<br />

.2949E 10<br />

.2945E 10<br />

.4957E 10<br />

-55908 10<br />

.5590E 10<br />

.5590€ 10<br />

.295OE 10<br />

.2950f 10<br />

.295CE 10<br />

.7063E 09<br />

.o<br />

.o<br />

.o<br />

,1621E 08<br />

-1621E 08<br />

.1621E 08<br />

-27131 07<br />

.1151E 01<br />

.1151E 01<br />

.1151E 01<br />

.1151E 01<br />

.1151E 01<br />

.1151E 01<br />

.I15173 01<br />

.115tE 01<br />

.115lE 01<br />

.1151E 01<br />

.1151E 01<br />

.1151E 01<br />

.1151E .11SlE 01<br />

-1151% 01<br />

.1151E 01<br />

.1151E 01<br />

.115lE 01<br />

-1151E 01<br />

.11512 01<br />

.11§1E 01<br />

.1151E 01<br />

-1151E 01<br />

.1151E 01<br />

.1151E 01<br />

KPLANT XATIO<br />

.4696E-02 0.004 1<br />

.4696E-02 0.0041<br />

.0696'?-02 0.0041<br />

.46968-02 0. 004 1<br />

.4696E-02 0.0041<br />

-46962-02 0.0041<br />

.4696B-02 0. @O* 1<br />

,U696E-02 0.0041<br />

-4696E-02 0.00Ul<br />

.46963-02 0.0041<br />

.1(6963-02 0.00Crl<br />

.4696P-O2 0 -0041<br />

.4696E-O2 0.0041<br />

.4696E-32 0.0041<br />

-46961-02 O.OOU1<br />

.4696E-02 0.0041<br />

.46962-02 0.0041<br />

.U696'E-O2 0.0041<br />

.U696E-O2 0.0041<br />

.4696E-02 0.0041<br />

-4696E-02 0.0041<br />

-46962-02 0.0041<br />

.46961-02 O.OOU1<br />

.4696E-02 0.0041<br />

.U696+02 0.C047<br />

TmAL FBODUCTIOU INTO THIS LIFE STAGE = C.99999612933 11<br />

TOTAL TBAllSIBR IllTO TBB NBXT fI?B STAGE = 0.9927446528E 10<br />

% SUEVIVAL TBBOU6B THIS LICE STACE = 9.9<br />

HUIMUR STABDXNG CROP FOR TRIS LIFE STAGE = 0.5590171648E 10<br />

RAT10 O? llkXIHUE STARDING CBCP TO EQOILfBEIUH STAUDIlG CROP (%RAX/XS) s 0.0<br />

REDUC?IOU IY UUHBER 01 OE6AlIISHS 8If'lBBIIIG TNXS LIFE SllGE DOE TC THE POSER PLANT... 0.32768OOOOOE 06<br />

X RBDIICTIOX IN NDHBER OF CRGAlIISIS EUTERING THIS LIFE STACE DUE TO TRE POWER PLANT... 0.00<br />

P SN<br />

5.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0,1001<br />

0.100t<br />

0.1001<br />

0.1007<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

J.lOC1<br />

0.1007<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.1001<br />

0.7001<br />

P 9P<br />

0.9907<br />

C.0907<br />

C.99Cl<br />

0.9907<br />

c.9907<br />

0.99 07<br />

0.9909<br />

0.4907<br />

0.9907<br />

C.9907<br />

C. $907<br />

0.9907<br />

C.5907<br />

0. 99c7<br />

0.9907<br />

c.99c7<br />

0.9907<br />

c.9907<br />

C. 9907<br />

0.9907<br />

0.9907<br />

0.9907<br />

0.9907<br />

c. 9907<br />

0.9907<br />

PST<br />

0.3991<br />

0.0997<br />

0.C991<br />

0. oq91<br />

0.8991<br />

0. 0991<br />

0.C991<br />

3. c991<br />

0.0941<br />

0.C991<br />

0.0991<br />

0.0991<br />

0.0991 0. C991<br />

0.0991<br />

0.0991 0. C991<br />

0.0991<br />

0.0991<br />

0.0991<br />

0.0991<br />

9.0991 0.0991<br />

0.0997


STAGH 2 LhFVIL STAGE<br />

KX[l/OI1)= 0.16449999BlE 00<br />

RX0 I Y/DAT)= 0,131 5999627E 30<br />

rSfl4UK&lSII)= 0. 34699998721 10<br />

LUX ?EgiOD (3bY)= 28.0090<br />

BAT10 OP THE XX YALUB USED IN THIS RUN TO TAE "STAXDARD" KX VAI02 GII'.'H ABOVE = 1.003<br />

iUlIO OP THE RAO PAIOE CSED I N THIS BUN TC TtiE B1 VCLUE USE3 IN THIS RUN = 9.800<br />

BUIJ OP ZBE TS VALUE USED IX THIS RUN TO THE "STAHCARB" YS BRLUF GIVEN ABOVE = 1.000<br />

LEFT ELK8 UP CONP&XSATIO!4 FUNCTIOX DISABLED... NO<br />

RIGHT LIflB OF CONPENSITION PCNCTION CISABLEC... NO<br />

TINE4 1 EOPULATICNI-) TEANSPER PBODDCTIOA FOPUIILTIO): (+I KNATL KPLANT RATIO<br />

2.00<br />

9.00<br />

16.00<br />

2J.00<br />

30.00<br />

37.00<br />

44-00<br />

5 1.00<br />

58.00<br />

65-00<br />

7 2.00<br />

79.00<br />

.\.<br />

.257a~ OY<br />

-22QOE 05<br />

.9493E 09<br />

.lYY7E 90<br />

.2180E 10<br />

-1535E 30<br />

.4738E 09<br />

-1482~ 09<br />

.351iul? 08<br />

.'1250E 03<br />

.3134E 02<br />

.o<br />

.o<br />

.c<br />

.o<br />

.1906E 36<br />

.U512E C6<br />

.I7791 06<br />

.1647E C7<br />

.3549E ca<br />

.24&7E O?<br />

.1414E 01<br />

.o<br />

.1578E 08<br />

.4551e3 OB<br />

.2C65E 08<br />

.2006E 09<br />

-380BE 09<br />

.2009P 09<br />

-0<br />

.@@37E 06<br />

.1105€ 03<br />

.o<br />

-0<br />

.D<br />

.1518E OR<br />

.3034E 09<br />

-24962 05<br />

.1461E 30 .46963-02<br />

.1447E 00 .U696?-02<br />

0.0311<br />

0.0314<br />

,145CI YO .I6303 00 -46962-02 0.0280<br />

.2378E 10 .16bOI 00 -46962-02 (1.0275<br />

.2381E 10<br />

.1682E 00 ,4696E-02 0.0272<br />

.15351 10 -16458 00 .U6963-02 0.0278<br />

.4?22Z 09 .1543F 00 .46965-02 0.0295<br />

.1446€ 09 .1406E 00 .46965-02 0.0323<br />

.3299E 08 .1339E 00 .4696E-02 9.033')<br />

.1236E 03 .1316E 00 .4696E-02 0.0345<br />

.3134E 02 .1316B 00 .4696E-02 0.03C5<br />

TCAl PaOCiiCTiOX INTO ?3lS LIP2 STAGE = 0.99274465288 10<br />

T ~ A TBllXSIE8 L<br />

IWPO THE PEXT LIP3 STAGE = 0.999476100CF 08<br />

I 5UBYIVAL THBOOGH IRIS LIFE STAGE = 1.0<br />

"IgxLIJd STANDING CROP PO8 Ti115 LIFE STAGE = C.2374163056E 10<br />

l'h4i0 OF MAXIMU!! SThNDINb CRCF TO ECUIL33BIUO SThkDING CROP (NRAx/YS) = 1.8872<br />

#&DUCTION Ik hU8BER OP ORGANISHS ENTERING THIS LIFE STAGE DUE TC THE POdEB PI.INT... 0.936'39984005<br />

1 LEDSCTION i h NUOBER OF OYGlNISflS ENPERPHI; THIS LIFE SaAGE 3UE TO TPE POWER PLART... 0.93<br />

STAGE. 3 JUVIBILE '1 STAGE<br />

KX{?/DBY)= 0.57749997862-01<br />

XI4 (I/DB1)= 0.40919993C7E-01<br />

YS(NUPiBIB]= 0.2450000300E 08<br />

LIFE P26XOD 1DdI)= 30.0000<br />

RblIO OF THE XI YAiUZ OSED I3 THIS 63W TO THE "STANEAPD" RX VALUE "U:V?A ABOVZ = 1.000<br />

BAT13 OF THE ICY0 VALUE USED Zbl THIS SOX TO TRE Xk! 88LUE USSD I# THIS BUN = 3.803<br />

BAT10 OP THE YS YALUE 3SED I N TXPS RUM TO THE: "STAHDIRD" YS YATCE GIVEN AEOYE = 1.903<br />

LEFT LIWB OP COBEBNSATICN PilKCPZOil EISAUZEC... NC<br />

RlGidT LIMB OP COflPBNSdTlOW PUHCTIOH DISABLID... MO<br />

? SN<br />

0.0167<br />

0.0774<br />

0.0104<br />

3.0096<br />

C.0090<br />

0.3100<br />

C.0'33<br />

0.0195<br />

0.0235<br />

0.0251<br />

3.0251<br />

PSP<br />

0.8769<br />

0.8768<br />

0. F76P<br />

0.8768<br />

C.8763<br />

0.8768<br />

0.8768<br />

c. R7h8<br />

0.8766<br />

0.P768<br />

0. "768<br />

TLBEi ) FCPVLRTION I-) TRANSFER ERODUCTIO&' POPffL$TION {+I KNdTL XPLANr RATIO PSN DS I PST<br />

30.00 .o .c .490QP 06 .'lYOfE 06<br />

PSP<br />

0.0147<br />

0.0152 0.0091<br />

C.OOEri<br />

0.0074<br />

0.3CER<br />

0.0117<br />

0.017'1<br />

0.J2O6<br />

0.0220<br />

0.0220


37.00 .3962E 07<br />

44.00<br />

51.00<br />

58.00<br />

65.00<br />

.4726E 07<br />

-12771 08<br />

.2944E 08<br />

.U565B 08<br />

72.00 .4t20~ a8<br />

79.00 .3059E C8<br />

86-00 .1789E 08<br />

93.00 .7013E 07<br />

100.00 .9671E 06<br />

107.00 -36832 01<br />

.o<br />

.o<br />

.o<br />

.o<br />

.9512E 05<br />

.3387E C5<br />

.2845E 06<br />

.5868E 06<br />

.4720E 06<br />

.5595E 06<br />

.o<br />

.4512E 06 .liG33E 07<br />

.t779I 06 .4904€ 07<br />

.16U7E 07 .1442% 08<br />

.3549E 07 .3299E 08<br />

.2417E 07<br />

.1U14B 01<br />

.o<br />

.o<br />

.4800E 08<br />

.4716E 08<br />

-3029~ ae<br />

.173GE 08<br />

.c ,65473: a7<br />

.o .407EE 06<br />

.o .3683E 01<br />

.4896E-01 .4646E-'J2 9.0948<br />

.4546E-O1 .4696E-O2 n.0936<br />

.8973E-01 .4696E-02 0.0863<br />

.5116E-01 .4696E-02 0,08* 1<br />

.5 50 lE-0 1 .4 6 9613- 02 0,37 86<br />

.5603E-01 e Q696E-02 0. C773<br />

.5119E-01 .4696E-02 0.0840<br />

.50801-01 .4696E-02 0.0846<br />

.4708E-01 .4696E-02 0.0907<br />

.4200E-01 .4696E-O2 0.1006<br />

.4092E-01 .46961-02 0.1029<br />

TOTAL PRODUCTION INTO THIS LIFE STAGE = 0.99947616002 OB<br />

WAL TRAYSPER INTO THE NEXT IIPE STAGE = 0.1795907200E 09<br />

I SUBVIVAL THEOUGH THIS LIPE STAGE = 1e.o<br />

NAXiYUtl STANDING CROP FOR THIS LX?E STAGS = 0.5179577€00E OE<br />

RATIO OP nAXInun STAWCING CRCP TO EQUILIBRIUPI STANDING CRCP (Nnrx/rs) = 1.9546<br />

REDUCTION I N WUNBBR OP GRG&NISnS ENTERING THIS LIPE STAGE DUE 'IO THE POWER PLANT... 0.1266304OCOE 08<br />

% LLDUCTICY I N NUBBER OF QRGANTSKS ENTEKING THIS LIFE S'IRGE DUE TO THE POWER PLAN4...11.24<br />

STAGE 4 JUPENItE 2 STAGE<br />

KX(l/DAT)= 0.1244999841E-01<br />

KXO [ l /DlY)= 0.9959995747E-02<br />

TS[NUPIBBR)= 0.89800000COE 07<br />

LLPa PERIOD (DAY) = 100.0~00<br />

Bur0 OF THE KX VALUE USED I N THIS RUN TO THE "STANDARDn KK VAICF GIVEN ABOVE = 1.000<br />

8ATIO OF THE RXO VALUE USED I N THIS ROW TO THE RK VALUE USED I N THIS RUN = 0.800<br />

~ATTIC OF THE PS V ~LUE USED IN THIS RUB TO THE -STANCARD* PS VALUE GIVEN ABOVE = 1.000<br />

LEFT LIMB OI CCOPENSITION FUNCTION DISABLED... NC<br />

HIGBT 1188 OF CONPEHSATION FUNCTICN CISABLEC... NO<br />

0.2604<br />

3.2556<br />

0.2250<br />

0.2155<br />

3.1920<br />

O.lR62<br />

0.2153<br />

0.2178<br />

0.2435<br />

0.2837<br />

0.2930<br />

:.ficF!6 0,2251<br />

ii.56dh 0.2220<br />

0.3686 0. ?954<br />

C,e680 3.1572<br />

0.8686 0. 7668<br />

0.~~6136 0.3hia<br />

0.e6~6 0.1870<br />

0.8686 0.1692<br />

C.8680 0.2115<br />

0.8686 0.2464<br />

0.~086 0. 2545<br />

TIRE( ) POPULATICI{-) TRANSFER PROD UCTI ON POPUIATION(+) RNATL P SN PJB PST<br />

KPLAIT RATIO<br />

60.00 .o .o<br />

.4012E 05 .4012€ 05<br />

74.00 .1181E c7 .o<br />

.6325P 05 .1244E 07 .10R2B-O1 .2630E-03 0,6237<br />

88.00 .6817B 07 .o<br />

.1220E 07 .8067f 07 .1242E-01 .26301-03 0.0207<br />

102.00 .1492E C8 .o<br />

.4410E 01 .1492E 08 .1317E-01 -2630E-03 G.Cl96<br />

123.00 .1156E 08 .o<br />

.a .1136E 08 .1251E-Ol ,2630E-03 F.0206<br />

137. OQ .96763 07 -0 -0 .9505€ 07 .1245~-01 ,2630~-03 0,0207<br />

151.00 -80982: 07 .o .O -79551 07 .1245!!-01 .2630E-03 0.0207<br />

165.00 .6779E 07 .o .o .666OE 07 .1241E-O1 .2630F-03 0.C207<br />

179.00 .5679E 07 -0 .o .5580€ 07 .1233E-O1 .2630E-O3 0.0209<br />

193.00 -47663 07 .o .O .4663E 07 .1219E-0 1 .2630B-03 0.021 1<br />

207.00 .4007P 07 .o .o .3939E 07 .1203E-01 .2h30E-03 0.9214<br />

TOTAL PRODU~IOR INTC THIS LIEB STAGE f<br />

TOTAL TRANSFER INTO THE NEXT LIFE STAGE =<br />

0.17959C7200E 08<br />

0.3805661 COCE 07<br />

X SURVIVAL TISO1IGH THIS LIFE STAGE = 21.2<br />

YAKIYU8 Sl'ANDIHG CXOP FOR THIS LIFE STAGE f 0.1520892000E OE<br />

BIT10 OF NAXIflUO STANDING CROP TO EQUILIERIO8 STAUDIUG CRCP (NRlll/YS) = 1.6936<br />

EKDUCTIOU IU NUIIBER OF CRGANISYS ENTERING THIS LIFE STAGE CUE TC THE POWER PLANT... 0.3695520COOE<br />

% RBDUCTICY I N AUHBIR OP ORGANISOS ENTERING THIS LIFE STAG8 DUE TO THE POWER PLANT...17.07<br />

07<br />

WUlBEE O? JOYtWILE 2 KILLED El I!tPINGEHENT...O. 292753B 06<br />

0.3390 0.9740 0. 3302<br />

C.ZR8Y t.9740 0.2814<br />

C.2679 C.C7110 0.2609<br />

0.2862 6.9740 0.2788<br />

0,2879 C.C7UO 0.2804<br />

0.2880 0.9'10 0.2805<br />

0.2890 0.97413 ?. 2315<br />

0.2915 C.97UC C.2840<br />

0.2954 0.9740 3.2378<br />

0.3004 C. 9740 0.2Y 26<br />

U


0' LO ZBS95'<br />

OC'E6Z<br />

C' LO ZL36L' 00'6LZ<br />

0'<br />

LO ZC6bZ' 00'592<br />

0' LO XLZSL' 00'5SZ<br />

0' LO E036Z' OO'LE?<br />

0' L3 BOhEE' 00-E z 7<br />

3' 0' 00'607<br />

hO I L3 fl LI 3 E i<br />

NOT J;k"IndOd<br />

OOO'L = XAORY H 1<br />

OOY'O = NDd<br />

20-a sz z6'<br />

ZO-PBEE 6'<br />

ZO-ZShhb'<br />

20 -ZZ h56 *<br />

ZO-k2Z 96'<br />

23-26i06'<br />

ZC-BLlLb'<br />

Z O-ZOZL6'<br />

zc-azzL6'<br />

ZO-BiSL6'<br />

ZO-6 8066'<br />

9970'0 EC-30E9Z'<br />

hYt0'0 EO-ZOE9Z'<br />

trQ70'0 EC-ZOEOZ'<br />

E9Z3.0 EO-ZOE92'<br />

1YZO'O ir,-ZOE92'<br />

z9zo.o cc-aoigz-<br />

8570'0 FO-20492'<br />

Hgzo-u to-aoE9z-<br />

LLZO'O IEC-3QF9Z'<br />

prLZO.0 EO-kOF92'<br />

LLZO'O FO-3OF9Z'<br />

3.53 XSd<br />

tuS6'0 ii2fZ'O<br />

EbS6.0 LhZZ'C<br />

E656'3 bhZZ.0<br />

E6Sb'O hlZ2.O<br />

1656'0 L8lZ'O<br />

5656.3 LYLZ'C<br />

EbS6.3 9517'0<br />

Eb56'? EiLZ'O<br />

Ctr56.C 7512'0<br />

ibi6.0 OhtZ'O<br />

Eb5b.3 3bCZ'O<br />

,I Sd<br />

EC7Z'O<br />

'16 L Z -0 LSLZ'O<br />

trztz-0<br />

dbOZ'0<br />

bLCZ'C<br />

d9 OZ '(J<br />

5YOZ.C<br />

S93Z'O<br />

CSOZ'C<br />

SOC2'O


PZBCEUT AGE DISTRIBUTION RELATIVE TO CUBBENT YEAR<br />

AGE PERCEBT AGX PERCENT AGE CIRCEBT AGE PERCENT AGE PPRCERT<br />

1 41.691 2 20.311 3 12.184 4 9.749 5 6.1C1<br />

6 3.818 7 2.389 8 1.495 9 0.936 10 0.5M<br />

11 0.367 12 0.229 13 0.144<br />

SIZE OF POPOLITION (YEAR CLASSES 1-13) FOR THE<br />

CUPBENT YEAR AS A PERCERTACE OF TRE SIZB OF TAE<br />

POPULATXOR II YEAR ZEI(O... 0.917<br />

kEDUCTIOll I N )10!!8SR OP YElRLiNGS DUE TO PLANT... 175407.<br />

‘4 RECUCTIOM IW NUHBLR OP YEARLINGS DUE TO PLANT...17.88<br />

BBDUCTIOR I11 TOTAL NURBEE OF LCULTS CUE TO PLANT... 175406.<br />

X REDUCTION IN TOTAL WUHBER OF ADULTS DUE TO PLANT... 6.32<br />

NUBBBU OF EGGS EXPECTED TO BE PROKUCIC BY<br />

‘la NUBBBR OF ONE-PEAR OLD SIPXPEC BASS FOR THE CURRENT<br />

PEAa DURING TREIR LIFE TIfiE AS A PERCENTAGE OF ?HE WOllBER<br />

OF EGGS PRODUCED IN PEAR ZERC..... 0.821


.............. * .................<br />

..COBfiZ14T YEAR.. .. . . . - co- ..<br />

.... i..I.....*<br />

STAG3 1 STAGE<br />

..................<br />

KX[I/DAY)= 0.115C99906YE 01<br />

xXO(t/Dafj= 0.135C999369E 01<br />

KS [ NllflSERj- 3.0<br />

LiPE PERIOD {DaYj- 2.0000<br />

in10 OF TSl XK VALUE IJSFD IN TRIS RUN TO THE "S2AHCARD" KX VAZOE GiVIl ABOVE 5 1.030<br />

2kXO OF THE SZC YALUE USED I N TI4I.S RUN TC THE KX V%LUZ USfD :H THIS RUti = 1.000<br />

BAYIO OF TXE IS VKUE ~ S E O IN THIS su?i ~3 THE -STANCARD" rs VAL'JE GIVEN ABOVE = ;.coo<br />

LET? ;SBB 09 CO3P3RSAT:OY PUlCTlOk UISAYLED...<br />

NIGHT ilnB OF COflPENSATION PUliCTIOH 2ISABIEC...<br />

NC<br />

HO<br />

TIHE[ 1<br />

c. 0<br />

2.50<br />

4.30<br />

6.03<br />

a.ao<br />

'80.30<br />

13.00<br />

'14.00<br />

16.03<br />

18. GCI<br />

23.00<br />

22.00<br />

2u.09<br />

26.3G<br />

28.00<br />

30.00<br />

32.00<br />

34.00<br />

36.00<br />

36.00<br />

4b.00<br />

42.03<br />

44.00<br />

46. OS<br />

48.00<br />

5C.00<br />

FCPULATICN I-)<br />

.c<br />

.3762E 09<br />

.37621 09<br />

.37623 09<br />

.23F151: 09<br />

.'9706E 09<br />

.i7C6E 09<br />

.1706E 09<br />

.1615)! 1C<br />

.1557E :c<br />

-15579 I0<br />

.2654S :O<br />

.31451 15<br />

.3f46E 70<br />

.3loSE I O<br />

.'1703E YO<br />

,166CE 10<br />

.966OE 70<br />

.5484E 09<br />

.1406& 02<br />

.o<br />

.o<br />

.~BBQB 37<br />

.9725E 07<br />

.93252 07<br />

.2?E5E 07<br />

TI; ANS FER<br />

.a<br />

.:076E 08<br />

.10:6E CE<br />

.1076E 38<br />

.13JsB C8<br />

.(IBEOE C7<br />

.4AYOE 07<br />

.ueaor 07<br />

.4IJB0E 07<br />

.Q?42E 06<br />

.4742B CB<br />

.4742E OB<br />

.9001E ce<br />

.~OUTE ca<br />

.9OCIE 06<br />

.900m ua<br />

.4750E 08<br />

.4750E 08<br />

.475OP C8<br />

.o<br />

.L<br />

.o<br />

.i!<br />

.i61'IE C6<br />

.2617E 06<br />

.261?B 06<br />

PttOD UCTION<br />

.YOh6E 39<br />

.1086E i9<br />

.1C86E OS<br />

.?OEOE 09<br />

.b923€ 08<br />

.lr923f 08<br />

-49231 38<br />

.4923i: 06<br />

.4783E 09<br />

.4783? 39<br />

.U782E 09<br />

.90JGI 39<br />

.908CE os<br />

.yia31 09<br />

.90SCf 09<br />

.U791E 09<br />

-4791-5 09<br />

.4791E 09<br />

.o<br />

.o<br />

.o<br />

.o<br />

.263YE 07<br />

.2634E 07<br />

.2534E 07<br />

.c<br />

POPULATION (+)<br />

.IO861 09<br />

.4740€ 09<br />

.4740E 33<br />

.47UOi 09<br />

.27701: 39<br />

.2t49E 09<br />

.29U9E 09<br />

.211)9E OY<br />

.2ORBF 10<br />

.20884 30<br />

.2088f 10<br />

.35151 13<br />

.3964E ic<br />

.3$642 10<br />

.3444E 13<br />

.2392E 10<br />

.2092'1 10<br />

.2092t 10<br />

.500qE 09<br />

.1406t 02<br />

.o<br />

.o<br />

.1150E OR<br />

.7950E 08<br />

.1153E 05<br />

.1924€ 07<br />

KNA'IL RPLAYT<br />

.715iE 01 .4596?-02<br />

.i151!? 01 -46961-02<br />

.:I515 0; .3696+02<br />

.?I558 07 .S69bZ-02<br />

.!15TF 01 .h696P-02<br />

.11572 01 .lr696?-02<br />

.?151E 01 .46968-02<br />

.?151E 01 .46964-0?<br />

.1151E 01 ,46963-02<br />

.7157E 01 .4696E-02<br />

.1157is 5'1 .U696E-02<br />

.1357E 31 .U696E-32<br />

.Y3518 01 .46968-02<br />

.9154E 01 .4696E-02<br />

.I1558 01 .4696E-32<br />

.1151E 01 .0696F-52<br />

.1151E 01 .46?6?-02<br />

.315'lE 01 .4696E-32<br />

.1151E 01 .06968-62<br />

.1157B 01 .4696E-02<br />

.115lE 01 .46962-32<br />

.1151E 01 .4696?-02<br />

.li5YE O! .U696?-02<br />

.1151E 3: .i(G96E-32<br />

.t151E 01 .4696':-32<br />

SATTO<br />

0.0041<br />

1.OO;rl<br />

0.004:<br />

9.004:<br />

0.0041<br />

0. i,34 3<br />

0.0041<br />

0.0041<br />

0..)041<br />

0.0OQ1<br />

0.00crl<br />

0. 304 i<br />

0.004 I<br />

0.0oct<br />

0.0041<br />

3. @Ob1<br />

0.004 1<br />

0.0041<br />

0. oolii<br />

0. 0041<br />

0.004'<br />

o.on1ai<br />

0.004c'i<br />

c. 004:<br />

c.0041<br />

? c\i<br />

O.?Oc!l<br />

O.100'1<br />

c. 10i1<br />

S.:Or;<br />

0.1O')l<br />

0.'100?<br />

0.1001<br />

0.1001<br />

0.1OC1<br />

3.'00'<br />

o.io01<br />

S.:OC,l<br />

O.iL7O:<br />

0.7OC1<br />

0.103'1<br />

a.iooi<br />

c. 'I 03 Y<br />

0.~00l<br />

0.1001<br />

0.i061<br />

0.7301<br />

0. l"0 1<br />

3.10:11<br />

0.100:<br />

3.1c01<br />

?FF<br />

0.9977<br />

C. Q9Pl<br />

2. $967<br />

0.99117<br />

2.0997<br />

A. '907<br />

0.9Y0'7<br />

c.9907<br />

0.0Q?7<br />

3.9907<br />

c. 90Cl<br />

i. 9907<br />

C. 9907<br />

0,YcJO'<br />

9.99n7<br />

~.q9r7<br />

2.


STAGE 2 KB%VLL STAGE<br />

KX(l/DiiT)=<br />

KXO(l/DAI)-<br />

3. 16449999818 00<br />

0.13153996271 00<br />

t?(YUIBBB)= 0,1469999872E 10<br />

ILPPE PSRIOD (DAY)= 28.0000<br />

iiAN0 O? TRE KI VALUE USED I N THIS RUfl TO TRE aSUBDARD* FX YAZUX GIVEN ABOYZ = 1.000<br />

iiATXO OP TEE KXO VALUE USED IR THIS ILUN TC TRE KX V&OE USED IR TBIS BOW = 0.800<br />

RATIO OF THE 1s PALDE USEE IN THIS BUN TO THE "STIIDABD- rs VALUE GIVEN ~~BOVE = 1.000<br />

liWT LIME OP COEPEXOITIOR PUHCTIOK DISABLED... NO<br />

BIGHT LIHB OF COHPENSATICN FUNCTION CISABLEC... SO<br />

TINE( J POPUIATICN(-) TBllNSPER PIIODUCTION POPULATION (+) KNATL KPLANT RATIO P sx P S? PST<br />

2.0c .c .o .lo761 08 .1076Z 08<br />

9.00 .38U62 09 .o -32291 08 .21691 09 .1&25L 00 .9696E-02 0.0319<br />

16.00 .16598 09 .G .1464E 06 .1806E 09 .1415E 00 .Q696E-02 0.0321<br />

23.00 .6819~ a9 .o .1423E 09 .82rri~ a9 .1591)0 00 .1(696E-02 0.0286<br />

30.00 .1U27E 10 .l4b5E 06 .27oa~ 09 .lh96E 10 .16452 00 -4696723-02 0.0278<br />

37.00 .1621t 10 .3656E C6 .1425E 09 .IY~UZ: io .1645E CO .9696E-0,2 0.0277<br />

44.00 .1121E 10 .142SE 06 ,42203 01 .1120E 10 .1691E 00 -4696E-02 0.0278<br />

51.00 .3534S 09 .1313E C7 .62663 06 .3S21E 09 -1S01E GO .96961-02 0.0303<br />

58.00 ,1122E 09 .2859E 07 .78338 06 .1093E 09 .1386B 00 -4696E-02 0.0325<br />

6 5.00 .2661l! 08 -38553 07 .a .24751 08 .13342 00 .4696&-02 0,03UO<br />

72.00 .9709B 02 ,32682 01 .o .93e2~ a2 .131bE 00 .9696E-02 0.0345<br />

79.00 .2197E 02 .o .o .219?I 02 .1316E 00 .4696B-02 0.0345<br />

TOTAL PRODUCTIOY INTO THIS LIFE STAGE 5<br />

TOTAL TIAIISIES INTO PBB NEXT LIPE STAGE =<br />

0.7039401984E 10<br />

0.7e42RC480CE 08<br />

X SURVIVAL IHEOUGA THIS LIFE STAGE f 1.1<br />

HUIHUH S'PANDIBG CROP POR THIS LIPE STAGE = C.2C25001972E 10<br />

hATIO OP NAXIHBH STANDING CRCP TO EQUIfIBEIUA STANDING CROP (N#AX/YS) = 1.3716<br />

#LDUCTIOM I# PUllBBR OF ORGINISllS BNTERINC THIS IIPE STAGE DUE TC TRE POPER PLANT... 0.238165452EE<br />

J HEDUCTION I11 NUKBGB OF ORGAHISRS ENTERING THIS LIFE SZAGE DUE TG THE PCUEB ?LINT...29.?5<br />

STAGE 3 JUVENILE 1 STAGE<br />

6X


0 0 0 0 0 0 0 0 c) 0 La<br />

OOQOoOOUOaO<br />

P - c^ n in N m w m o P<br />

-ltmIn*r-l-mmoo<br />

r c<br />

...........<br />

w<br />

m<br />

f<br />

4<br />

H u)<br />

w 3<br />

3<br />

L<br />

w i-<br />

3<br />

7<br />

0. CJ<br />

f<br />

*<br />

t<br />

* U<br />

1. 1R<br />

0<br />

U<br />

N<br />

u) z<br />

w<br />

*<br />

a<br />

*<br />

t<br />

9<br />

e<br />

.<br />

w<br />

U<br />

e H<br />

vi<br />

2<br />

0<br />

u<br />

t.<br />

re<br />

t<br />

t<br />

*<br />

t *<br />

4<br />

Q<br />

b *<br />

.............<br />

Vl<br />

PI<br />

X<br />

E<br />

cs<br />

W P,<br />

Lc<br />

2 4<br />

ffi ooooooouoou<br />

vi<br />

3 Y<br />

........... u<br />

"<br />

rl<br />

m<br />

e<br />

11<br />

r<br />

N<br />

W W P P ~ ~<br />

000000<br />

w w liI &.I k2 w<br />

wwmmmm<br />

InN-r-InmW<br />

w<strong>of</strong>mmrn~<br />

m FP-N rmo oc> 00<br />

-0 .In<br />

O .<br />

c3<br />

n 0000 F<br />

P<br />

;c-<br />

0 InInP'<br />

.v W<br />

w<br />

O1<br />

In N<br />

rrJ<br />

0<br />

W8.l<br />

Prn W N<br />

-0<br />

ff<br />

..<br />

- r.<br />

r r. 4<br />

m5a<br />

Lo--<br />

Lnam<br />

. w<br />

9<br />

sa ea 0<br />

II 0<br />

Drw<br />

2<br />

r. c<br />

d<br />

1 1 1 I 1 I 1 1 0<br />

W w 111 w cr'w w bl el w<br />

OlilmInm-NmNS<br />

WPimfJ2fOPOCD<br />

0NNNNNNNN.r<br />

-e- C - C F T - r C F r<br />

..........<br />

7-r<br />

00<br />

I 1<br />

.z<br />

E.<br />

.C<br />

F.-TFI-FPPFP<br />

0000000003<br />

............<br />

f ~ f f l U * f J S f<br />

m 0. m 0. m 0 cn Ln rn 01 i7~<br />

10 Lo 9 G w IO v, w 10 w io<br />

..<br />

0<br />

m<br />

-<br />

rr C c1 M SV


SaGB S JUVENILE 3 STAGE<br />

RX( l/DkY)=<br />

KXO {l/D&Y)=<br />

0.97?9997644E-02<br />

0.77759 95 88OI-02<br />

YS(UDIIBEB)= 0.2290000000L 07<br />

LIFE PFAIOD(DBT)= 158.oooa<br />

RATIO OF THE KX VALOE USED IN THIS RUN TO THE 'SIANtAfiD" KX VhLDE G:VE!I 6B0VE = 1.000<br />

BYPSO OF !ME KXO VALUE USED I W TRIS RUN TO THE KX VALUE USED IU THIS RUN = 0.800<br />

RATXO O? THE IS YALUE llSE0 I N THIS RUN TO THE "SIANOARD" 1s YhICE GIVEN BEOVE = 1.000<br />

LEPT LIMB OF CORPENSAIICN PU8CTION CISABLEO... NC<br />

RIGHT LIME CP COOPENSATION PUNCTIOW DISABLED... NO<br />

TXME( j FOPULATICN (-1 TRANSFER FRODUCTION POPULATION (+I KNATL KPLANT RATIO PS?: EST P5 'I<br />

209.00 .a .o .3198E 07 .319eE. c7<br />

223.00 .28173 07 .a .o .2778E c7 .9744E-02 .263OF-O3 3.0263<br />

237.00 .2449B 07 .o .a ,24751 07 -97213-02 .26303-03 0.0263<br />

251.00 .2130E 07 .a .a .21OOE 07 .9719P-O2 .2630E-03 0.0283<br />

265.00 .1852E 07 .0 .u .1827E 07 .97063-02 .26332-03 0.02b4<br />

179.00 .1611E 07 .o .o . ~ 5 8 4 07 ~ -96693-02 .26308-03 0.0265<br />

293.00 .1403E 07 .a .0 .I3831 07 -9607E-02 -2530n-03 10.0266<br />

3 C7.00 .12223 07 .a .o .1206E 07 .9523E-02 .2630E-OJ 0.0269<br />

321.00 .1066B 07 .O .o .lo521 07 .9423B-02 .2630F-03 0.0271<br />

335.00 -93183 06 .a .a .9193E 06 .9314E-02 .2630E-03 0.0275<br />

349.00 .815YE 06 .o .a .8047E 06 -9201E-02 .26307-03 0,027~<br />

363.00 .7147E 06 .0 .o .7059E 06 .90871-02 .2630P-03 0.6281<br />

TOTAL PRODUCTICR INTO THIS LIFE STAGE = 0.3157542CCCE 07<br />

TOTAL TRANS€El IhTO THX NEXT LIFE STAGE = 0.6872511E75E 06<br />

L SORVTVAL 'IHOOUGH THIS LIFE STAGE = 21.5<br />

aAXIMUM STANDING CROP POI! THIS L IFE STAGE = 0,31975U2COOE C7<br />

R U i O OF MAXIRUE STINCING CROP Ti3 EQUILIBBTUB STANDING C4CP (NCAX/YS) = 1.3963<br />

EDUCTION I11 NZIPBER OF CRGINISRS ENTLBING THIS IIFE STAGE DUE TC THE POWBa PLANT... 0.1380505000E<br />

% REDUCTION I N WUOBEB OF OEGlNISMS ENTEBING THIS LI€E ST4GE DUt TO THE POWER PLAN:...30.15<br />

NULIBEP OP JUVfllILE 3 KILLEC El! IBPXNGERENT...0.661230E 05<br />

TOTAL UOHBER CF JUVENILES KILLED BY IKPINGE~ERT...0.307SlUE 06<br />

CUIIULATIVE EBCEAEXLITY OF SUBVIVAL PEOR EGG THROUGH JUlENILB 3 = 0.96920257E-05<br />

EXPECTBD NORBEE OF TEARLIRGS = 0.68725025B 06<br />

ADULT DISTPIBflEIOI RT AGE CLASS<br />

AGE NURBERS AGE NWMBEBS AGE NUf3BERS AGE NURBE6S AGE NOHBERS<br />

1 687251. 2 275272. 3 165345. 4 1324'13. 5 83023.<br />

6 52037. 7 32618. E 20448. 9 12@20. 10 8039.<br />

I1 5041. 12 3162. 13 1983.<br />

TOIPAL ADULTS 147 9506.<br />

PBUCENT AGE DISTRIBUTION RELATIVE TO IEAB ZERO<br />

AGE PBBCEUT AGE FERCENT AGE PERCBRT AGE PXECENT AGB PERCENT<br />

1 32.bll 2 13.062 3 ?.En6 Q 6.286 5 3.9'40<br />

6 2.U69 7 1.548 8 0.970 9 0.608 10 0.383<br />

11 0.239 12 0.150 13 0.094<br />

37<br />

0.2145<br />

3.2153<br />

0.2153<br />

0.245e<br />

0.2170<br />

0.2192<br />

0.2221<br />

0.2256<br />

0.2295<br />

0.2337<br />

0.2379<br />

c.9543 0.2058<br />

0.9593 0.2365<br />

3.9593 0.2066<br />

C.9593 0.2070<br />

0.9593 0.2082<br />

C.9593 0.2133<br />

c.5593 0.213?<br />

0.9593 3.2154<br />

c.5593 0.2292<br />

0.9593 c. 2242<br />

C.9SYJ 3.22R2<br />

m<br />

w


85<br />

ff'<br />

.,<br />

I:<br />

v)<br />

Y<br />

I<br />

tn<br />

0.<br />

U<br />

-<br />

it<br />

CY<br />

w<br />

0<br />

Lo<br />

5:<br />

0<br />

e:<br />

0<br />

bn '3<br />

m n<br />

XYl<br />

JI%<br />

pi<br />

0<br />

&<br />

a<br />

R,<br />

d<br />

u. I<br />

D.<br />

w<br />

f-<br />

m<br />

t;?<br />

NO<br />

a*<br />

3.<br />

-a'<br />

4<br />

La<br />

.a 0<br />

F4<br />

wa<br />

wz<br />

ffi4<br />

W<br />

.f<br />

E,


C O r l f J 3 3a-f***<br />

7 CC G2 07 01 CCQODWWCU<br />

V)erT)NNNN NNNNNN<br />

N.-O"-.r*.- F *- r - r 7-<br />

OOGOOOC) 000000<br />

0000000 000B00<br />

. . . . . . .<br />

0000000 000000<br />

......<br />

- 0<br />

.............<br />

0000000000000<br />

86


STOCK RECRUITREHI TABLE<br />

DWlNXTIOlS OP CCLUIIN AEADIIIGS<br />

I = YEAR + 1<br />

SQ) = YUHBER CF SPAPNERS<br />

a(1) = NUOBER 01 RECRUITS (3-YEAR OLDS)<br />

a3(q = NU~EEE OF RECRUITS AT 143 SPAWNED IT x<br />

93s (1) = RECRUITIENT RATE (RECRUITS PER SPAWNER)<br />

SB(1) = NUMBER OP SPIlNERS EEIATIVE TO NUOEER OF SPAiilEES AT 1=1<br />

RBfI) = NUNEEF OF RECRUITS RELATIVE 'IO NUNBEB OF RECPUI'IS AT X=1<br />

R3R(I) = NUOBiR OF RECRUITS AT 1+3 REIATIVE TC TAE RUMSEX OP RECRUITS AT 1=4 (R3(1)/83(1))<br />

B3&SE(X) = RELATIVE RECFUITOEN? RATE (R3R (I)/SR (I) 1<br />

I<br />

1<br />

i<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

1u<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

14<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

w<br />

35<br />

36<br />

37<br />

38<br />

39<br />

UI)<br />

41<br />

S (I)<br />

17568 9.<br />

175689.<br />

17 568 9.<br />

175684.<br />

175685.<br />

165908.<br />

151954.<br />

152875.<br />

14 956 4.<br />

147435.<br />

14567C.<br />

143955.<br />

1422812.<br />

340646.<br />

139316.<br />

138010.<br />

136753.<br />

13556 3.<br />

134437.<br />

13 350 0.<br />

132693.<br />

131958.<br />

131263.<br />

13059U.<br />

12995 8.<br />

129365.<br />

128813.<br />

128316.<br />

127848.<br />

12741 1.<br />

127003.<br />

126622.<br />

126267.<br />

12593 4.<br />

12 562 2.<br />

125328.<br />

12505 2.<br />

12479U.<br />

124552.<br />

124325.<br />

124113.<br />

R (1)<br />

235405.<br />

235405.<br />

235405.<br />

193309.<br />

193 30 9.<br />

19 3 30 9.<br />

193309.<br />

193309.<br />

191632.<br />

189 4 4 2.<br />

187251.<br />

185199.<br />

183387.<br />

183762.<br />

180246.<br />

178 8 5 ld.<br />

177551.<br />

176813.<br />

176007.<br />

175162.<br />

174301.<br />

173445.<br />

172667.<br />

171973.<br />

171348.<br />

170770.<br />

170229.<br />

169717.<br />

169237.<br />

168789.<br />

168371.<br />

167974.<br />

167601.<br />

167251.<br />

166922.<br />

166617.<br />

166330.<br />

166062.<br />

165809.<br />

165570.<br />

165345.<br />

R 3 (11<br />

193309.<br />

193309.<br />

193309.<br />

193309.<br />

193309.<br />

191632.<br />

1 8 9 842.<br />

181251.<br />

185199.<br />

183387.<br />

181762.<br />

186246.<br />

178854.<br />

177551.<br />

776813.<br />

176007.<br />

175162.<br />

174301.<br />

173465.<br />

172667.<br />

171 973.<br />

17 1398.<br />

17 0770.<br />

17C229.<br />

16 9717.<br />

165237.<br />

168189.<br />

166371.<br />

167974.<br />

167601.<br />

167251.<br />

166922.<br />

166617.<br />

166330.<br />

166062.<br />

165809.<br />

16 5570.<br />

165305.<br />

0.<br />

0.<br />

0.<br />

83s (I)<br />

1.1003<br />

1.1003<br />

1.1003<br />

1.1003<br />

1.1003<br />

1.1551<br />

1.1990<br />

1.2269<br />

1.2382<br />

1.2438<br />

1.2478<br />

1.2521<br />

1.2571<br />

1.2624<br />

1.2692<br />

1.2753<br />

1.2809<br />

1.2858<br />

1.2902<br />

1.2934<br />

1.2960<br />

1.2985<br />

1.3010<br />

1.3035<br />

1.3059<br />

1.3082<br />

1.3103<br />

1.31 22<br />

1.3139<br />

1.3154<br />

1.3169<br />

1.3183<br />

2.3196<br />

1.3208<br />

1.3219<br />

1.3230<br />

1.3240<br />

1.32U9<br />

0.0<br />

0.0<br />

0.0<br />

SR(I)<br />

1.0000<br />

1.0080<br />

1.0000<br />

1 .GOO0<br />

1,0000<br />

0.9443<br />

c. 8993<br />

L1.8701<br />

0.8513<br />

0.8392<br />

0. e29 I<br />

C.8194<br />

o.ae9E<br />

C.8005<br />

0.7930<br />

C.78S5<br />

G.7784<br />

0.7716<br />

0.7652<br />

c.7599<br />

c. 7553<br />

C.7511<br />

0.7971<br />

c*7433<br />

0.7397<br />

0.7363<br />

0.7332<br />

C.73OU<br />

0.7277<br />

0.7252<br />

0.7229<br />

0.7207<br />

c. 71 87<br />

0.7168<br />

0.74 50<br />

0.7134<br />

C.7118<br />

0.71 03<br />

0.7089<br />

0.7076<br />

0.7064<br />

?iB(I)<br />

f.0000<br />

1 .0000<br />

1 .00@0<br />

0.8212<br />

0.8272<br />

0.8212<br />

0.8212<br />

0.8212<br />

0.8141<br />

0.8047<br />

0.7954<br />

0.7867<br />

0.7790<br />

0.7721<br />

0.7657<br />

0.7598<br />

0.7542<br />

0.751 1<br />

0.7477<br />

0.7441<br />

0.7408<br />

0.7368<br />

0.7335<br />

0.7305<br />

0.7279<br />

0.7259<br />

0.7231<br />

0.7210<br />

0.7189<br />

0.7170<br />

0.7152<br />

0.7136<br />

3.7120<br />

0.7105<br />

0.7091<br />

0.7078<br />

0.7066<br />

0.7054<br />

0.7049<br />

0.7033<br />

0.7024<br />

B3P (I]<br />

1.0000<br />

1.0000<br />

1.000G<br />

1.GD00<br />

1.0000<br />

0.9913<br />

0.9800<br />

0.96 87<br />

0.9580<br />

0.9487<br />

0.9403<br />

0.F324<br />

0.9252<br />

0.9185<br />

0.9147<br />

0.9:05<br />

0.9061<br />

0.90 17<br />

0.8972<br />

0.8932<br />

0.8896<br />

0.8864<br />

0.8834<br />

0.8806<br />

(3,8780<br />

0.8755<br />

0.8732<br />

0.87 10<br />

0.8689<br />

0.8670<br />

0.8652<br />

0.86 35<br />

0.85 19<br />

0.8604<br />

0.8591<br />

0.8577<br />

0.8565<br />

0.8553<br />

0.0<br />

0.0<br />

0.0<br />

1.<br />

1.<br />

1.<br />

I.<br />

1.<br />

1.<br />

1.<br />

1.<br />

1.<br />

1.<br />

938SS (I)<br />

1.0000<br />

1.0000<br />

1 .0000<br />

1.0000<br />

1. OOOO<br />

1.0418<br />

1 .a898<br />

1.1132<br />

1.125ii<br />

I. 1335<br />

1.1343<br />

1.1379<br />

1.1425<br />

1. I473<br />

1.1535<br />

1.1591<br />

1.1641<br />

1.1686<br />

1.1726<br />

1.1755<br />

779<br />

80 9<br />

824<br />

R47<br />

ea9<br />

a9 o<br />

908<br />

926<br />

90 1<br />

955<br />

1.1969<br />

1.19R1<br />

1.1993<br />

1.2004<br />

1.2014<br />

1.2024<br />

7.2033<br />

1.2042<br />

0.0<br />

0.0<br />

0.0


89<br />

APPENDIX D<br />

TABULATION OF DETAILED RESULTS FROM THE VARIOUS SENSITIVITY ANALYSES


T-i<br />

p!<br />

d<br />

h<br />

w<br />

m<br />

w<br />

.4<br />

&?<br />

x 4<br />

c?<br />

N<br />

".<br />

ri<br />

N<br />

CJ &?<br />

a<br />

3 m<br />

r- r- W m<br />

4 w w W<br />

4<br />

- 4 m c.3 r- W W<br />

w w FT? w w<br />

L o w<br />

L r l w<br />

z 2 oo r- W W<br />

w w w w w W<br />

m<br />

2<br />

w w w W w<br />

- 0<br />

r l i<br />

cd r- W W<br />

w<br />

m w


Table D2. Summary <strong>of</strong> model runs for <strong>the</strong> <strong>sensitivity</strong> <strong>analysis</strong> for KX, <strong>the</strong> first order mortality rate coefficient<br />

7: AKX = 1.3<br />

Level 1: AKX = 0.5 Level 2: AKX = 0.75<br />

Level 3: AKX = 0.9 Level 4 : AKX = 1 .OO Level 5: AKX = 1.1<br />

Level 6: AKX = 1.2<br />

output<br />

_-<br />

Life<br />

varlable<br />

Plant Plant on Plant Plant on Plant Plant on Plant Plant on Plant<br />

stage<br />

Plant on<br />

Plant Plant on Plan1 Plant on<br />

code <strong>of</strong>f, <strong>of</strong>f, Year I Year 40 J.'ear Off, Year i Year40 year^ <strong>of</strong>f, Year 1 Year40 year^ <strong>of</strong>f, Year 1 Year40 vearO <strong>of</strong>f, Year 1 Year40 year^ <strong>of</strong>f, Year 1 Year40<br />

year 0 'ear 1 'I'ar40 yea o<br />

~ ~~ ~~<br />

~ ~ ~ Level<br />

1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

I0<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

62<br />

64<br />

66<br />

68<br />

70<br />

73<br />

72<br />

73<br />

74<br />

Egg 1.00 Ell<br />

Egg 10.0%<br />

Larvae 1.00 E10<br />

Larvae 2.56<br />

Larvae 7.4%<br />

Juvenile 1 7.37 E8<br />

Juvenile 1 5.40<br />

Juvenile 1 5.3%<br />

Juvenile 2 3.93 E7<br />

Juvenile 2 4.06<br />

Juvenile 2 31.2%<br />

Juvenile 3 1.22 E7<br />

Juvenile 3 5.35<br />

Juvenile 3 24.0%<br />

Yearlings<br />

<strong>and</strong> adults<br />

2.94 E6<br />

YearLings<br />

snd adults<br />

5.82 E6<br />

YeUliIIgs 50-20-12<br />

<strong>and</strong> adults<br />

Yearlings<br />

<strong>and</strong> adults<br />

0.439<br />

Eggs<br />

Larvae<br />

Juvenile 1<br />

Juvenile 2<br />

Juvenile 3<br />

Yearlings<br />

Yearlings<br />

Adults<br />

Adults<br />

1.00 Ell<br />

9.9%<br />

9.93 E9<br />

2.51<br />

6.7%<br />

6.67 E8<br />

5.21<br />

5.4%<br />

3.63 E7<br />

3.75<br />

32.6%<br />

1.18 E7<br />

5.16<br />

24.0%<br />

2.84 E6<br />

5.72 E6<br />

50-21 -12<br />

0%<br />

0.7%<br />

9.5%<br />

7.6%<br />

3.3%<br />

1.0 E5<br />

3.4%<br />

1.0 E5<br />

1.7%<br />

9.67 E10<br />

9.976<br />

9.60 E9<br />

2.47<br />

6.9%<br />

6.63 E8<br />

5.20<br />

5.5%<br />

3.63 E7<br />

3.75<br />

32.5%<br />

1.18 E7<br />

5.16<br />

24.0%<br />

2.S4 E6<br />

5.63 E6<br />

50-20-12<br />

3.3%<br />

4.0%<br />

10.0%<br />

7.6%<br />

3.3%<br />

1.0 E5<br />

3.4%<br />

1.9 E5<br />

3.3%<br />

1 .OO EL 1<br />

10.0%<br />

1.00 E10<br />

2.21<br />

2.9%<br />

2.91 E8<br />

3.12<br />

11.0%<br />

3.20 E7<br />

3.09<br />

25.5%<br />

8.17 E6<br />

3.57<br />

23.4%<br />

1.91 E6<br />

3.89 E6<br />

49-20-1 2<br />

0.514<br />

1.00 Ell<br />

9.9%<br />

9.93 E9<br />

2.17<br />

2.6%<br />

2.61 E8<br />

3.55<br />

11.3%<br />

2.95 E7<br />

2.85<br />

26.2%<br />

7.71 E6<br />

3.37<br />

23.6%<br />

1.82 E6<br />

3.80 E6<br />

48-20-12<br />

0%<br />

0.7%<br />

10.3%<br />

7.8%<br />

5.6%<br />

9.0 E4<br />

4.7%<br />

9.0 E4<br />

2.3%<br />

9.51 E10<br />

9.9%<br />

9.44 E9<br />

2.09<br />

2.7%<br />

2.56 E8<br />

3.54<br />

1 1.5%<br />

2.95 E7<br />

2.85<br />

26.1%<br />

7.71 E6<br />

3.37<br />

23.6%<br />

1.82 E6<br />

3.70 E6<br />

49-20-12<br />

4.9%<br />

5.6%<br />

12.0%<br />

7.8%<br />

5.6%<br />

9.0 E4<br />

4.796<br />

1.9 E5<br />

4.9%<br />

1.00 E1 1<br />

10.0%<br />

1.0 E10<br />

2.04<br />

1.4%<br />

1.65 E8<br />

2.78<br />

16.4%<br />

2.70 E7<br />

2.54<br />

22.6%<br />

6.10 E6<br />

2.66<br />

22.6%<br />

1.38 E6<br />

2.87 E6<br />

48-19-12<br />

0.570<br />

1.00 E11<br />

9.9%<br />

9.93 E9<br />

I .99<br />

1.5%<br />

1.47 E8<br />

2.5?<br />

16.3%<br />

2.40 E7<br />

2.27<br />

23.0%<br />

5.53 E6<br />

2.42<br />

22.7%<br />

1.25 E6<br />

2.74 E6<br />

46-20-12<br />

0%<br />

0.7%<br />

10.6%<br />

11.1%<br />

9.3%<br />

1.2 E5<br />

8.9%<br />

1.2 E5<br />

4.3%<br />

9.06 E10 1.00 Ell 1.00 Ell<br />

9.9% 10.0% 9.9%<br />

8.99 E9 1.00 El0 9.93 E9<br />

1.84 1.93 1.89<br />

1 .6% 1.1% 1.0%<br />

1.40 E8 1.13 E8 9.99 E7<br />

2.49 2.20 1.95<br />

17.0% 19.2% 18.0%<br />

2.38 E? 2.17 E7 130 E7<br />

2.25 2.03 1.69<br />

23.1% 21.1% 21.2%<br />

5.48 E6 4.58 E6 3.81 E6<br />

2.39 2.00 1.66<br />

22.7% 21.4% 21.2%<br />

1.25 E6 9.81 E5 8.05 E5<br />

2.60 E6 2.11 E6 1.93 E6<br />

48-19-12 47-19-11 42-20-12<br />

9.0%<br />

10.0%<br />

15.3%<br />

12.0%<br />

10.1%<br />

0.626<br />

Impact variables<br />

0%<br />

0.7%<br />

11.6%<br />

17.1%<br />

16.8%<br />

1.3 E5 1.76 E5<br />

9.4% 17.9%<br />

2.7 E5 1.80 E5<br />

9.4% 8.5%<br />

7.09 E10 1.00 Ell<br />

9.9% 10.0%<br />

7.04 E9 1.00 E10<br />

1.38 1.83<br />

1.1% 0.8%<br />

7.84 E7 7.66 E7<br />

1.56 1.55<br />

19.0% 1X.O%<br />

1.49 E7 .1 .44 E7<br />

1.40 1.35<br />

21.5% 19.4%<br />

3.20 E6 2.79 E6<br />

I .40 1.22<br />

2i.5% 19.6%<br />

6.87 E5 5.47 E5<br />

1.48 E6 1.26 E6<br />

46-19-1 1 44-17-10<br />

29.3%<br />

29.6%<br />

30.6%<br />

31.3%<br />

30.1%<br />

2.94 E4<br />

30.0%<br />

6.30 E5<br />

29.9%<br />

0.719<br />

l.00El1<br />

9.976<br />

9.93 E9<br />

1.79<br />

0.7%<br />

6.78 E7<br />

1.32<br />

16.6%<br />

1.13 E7<br />

1.05<br />

19.2%<br />

2.16 E6<br />

0.94<br />

19.4%<br />

4.18 E5<br />

1.13 E6<br />

37-19-12<br />

0%<br />

0.7%<br />

11.5%<br />

21.9%<br />

22.6%<br />

1.30 E5<br />

23.7%<br />

1.30 E5<br />

10.3%<br />

5.72 E10<br />

9.9%<br />

5.68 E9<br />

1.05<br />

0.8%<br />

4.41 E7<br />

0.86<br />

17.1%<br />

7.55 E6<br />

0.71<br />

20.0%<br />

1.51 E6<br />

0.66<br />

20.2%<br />

3.04 E5<br />

7.03 E5<br />

43-17-10<br />

42.8%<br />

43.2%<br />

42.470<br />

47.6%<br />

46.0%<br />

2.43 E5<br />

44.4%<br />

5.55 E5<br />

44.1%<br />

1.00 Eli 10.076<br />

1.00 E10<br />

1.74<br />

0.5%<br />

5.19 E7<br />

1.02<br />

16.8%<br />

8.71 E6<br />

0.81<br />

17.8%<br />

1.55 E6<br />

0.68<br />

18.3%<br />

2.83 E5<br />

7.26 E5<br />

39-16-9<br />

0.821<br />

1 .OO El 1<br />

9.9%<br />

1.00 E10<br />

1.70<br />

0.5%<br />

4.58 E7<br />

0.87<br />

14.8%<br />

6.79 E6<br />

0.63<br />

17.8%<br />

1.21 E6<br />

0.53<br />

18.2%<br />

2.20 E5<br />

6.62 E5<br />

33-1 7-1 0<br />

0%<br />

0.9%<br />

11.7%<br />

22.0%<br />

21.9%<br />

6.35 E4<br />

22.4%<br />

6.35 E4<br />

8.8%<br />

6.18 E10<br />

9.9%<br />

6.13 E9<br />

1.07<br />

0.5%<br />

3.16 E7<br />

0.60<br />

15.4%<br />

4.87 E6<br />

0.45<br />

18.5%<br />

9.04 E5<br />

0.39<br />

18.8%<br />

1.70 E5<br />

4.39 E5<br />

39-16-9<br />

38.2%<br />

38.8%<br />

39.2%<br />

44.0%<br />

4 1.6%<br />

1.13 E5<br />

39.8%<br />

2.87 E5<br />

39.5%<br />

1.00 Ell<br />

10.0%<br />

1.00 El0<br />

1.65<br />

0.4%<br />

3.51 E7<br />

0.67<br />

15.2%<br />

5.34 E6<br />

0.49<br />

16.7%<br />

8.89 E5<br />

0.39<br />

17.3%<br />

1.54 E5<br />

4.56 E5<br />

34-1 3-8<br />

0.915<br />

1.00 El1<br />

9.9%<br />

9.93 E9<br />

1.62<br />

0.3%<br />

3.10 E?<br />

0.57<br />

13.5%<br />

4.18 E6<br />

0.39<br />

16.7%<br />

6.99 E5<br />

0.31<br />

17.1%<br />

1.19 E5<br />

4.22 E5<br />

28- 15-9<br />

0%<br />

0.9%<br />

11.9%<br />

21.6%<br />

21.4%<br />

3.42 E4<br />

22.3%<br />

3.42 E4<br />

7.5%<br />

6.23 E10<br />

9.9%<br />

6.19 E9<br />

1.02<br />

0.3%<br />

2.15 E7<br />

0.40<br />

14.2%<br />

3.05 E6<br />

0.28<br />

17.3%<br />

5.28 E5<br />

0.23<br />

17.6%<br />

9.28 E4<br />

2.78 E5<br />

33-13-8<br />

37.6%<br />

38.2%<br />

38.9%<br />

42.8%<br />

40.6%<br />

6.08 E4<br />

39.6%<br />

1.78 E5<br />

39.0%


1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

15<br />

17<br />

18<br />

19<br />

62<br />

64<br />

66<br />

68<br />

70<br />

71<br />

72<br />

73<br />

74<br />

Egg 1.00 EI I<br />

Egg 10.0%<br />

hrvae 1.00 El0<br />

Larvae 1.64<br />

Larvae 1.7%<br />

Juvenile 1 1.75 E3<br />

Juvenile 1 2.72<br />

Juvenile i 11.1%<br />

J~iveiiiIe '2 1.94 E7<br />

Juvenile 2 1.89<br />

Juvenile 2 21 8%<br />

Juvenile 3 4.23 E6<br />

Juvenile 3 1.85<br />

Juvenile 3 21.8%<br />

Yearlings<br />

<strong>and</strong> adults<br />

9.22 E5<br />

Yearhngs<br />

<strong>and</strong> adults<br />

1.99 E6<br />

Yexling:, 46-1 9-1 1<br />

<strong>and</strong> adults<br />

Yearlings<br />

<strong>and</strong> adults<br />

0.636<br />

Egg<br />

Larvae<br />

Juvenile 1<br />

Juvenile 2<br />

Juvenile 3<br />

Yearlings<br />

Yearlings<br />

Adults<br />

AdiiItS<br />

1.00 E11<br />

9.91%<br />

9.93 E9<br />

1.81<br />

1.6%<br />

1.68 E8<br />

2.52<br />

11.0%<br />

1.77 E7<br />

1.72<br />

22.0%<br />

3.89 E6<br />

1 .70<br />

21.7%<br />

8.44 E5<br />

1.91 E6<br />

44-19-1 2<br />

0 56<br />

0.7%<br />

8.6%<br />

8.8%<br />

8.0%<br />

7.8 E4<br />

8.470<br />

8.U 64<br />

4.0%<br />

9.16 EL0<br />

9.9:;<br />

9.09 EY<br />

1.71<br />

! .7%<br />

1.58 E8<br />

2.5 5<br />

11.3%<br />

i."8 E7<br />

i.73<br />

21.9%<br />

3.90 E6<br />

1.70<br />

21.7%<br />

8.45 E5<br />

1.83 Eb<br />

46-19-1 1<br />

8.48<br />

9.i%<br />

9.7%<br />

8.2%<br />

7.8%<br />

7.4 E4<br />

8.4%<br />

1.6 E5<br />

8.0%<br />

1.00 El I<br />

10.0%<br />

1.00 6l(f<br />

1 .67<br />

I .?:A<br />

1.45 E8<br />

2.52<br />

14.2%<br />

2.G6 E7<br />

1.97<br />

21.3%<br />

4.36 E6<br />

1.91<br />

21.5%<br />

9.43 E5<br />

2.03 E4<br />

45-19-11<br />

0.633<br />

1.00 E li<br />

9.9%<br />

9.93 E9<br />

I .54<br />

i .3$5<br />

1.3; E8<br />

2.38<br />

14.1%<br />

1.85 E?<br />

1.77<br />

2 I .4%<br />

3.94 E6<br />

1.73<br />

21.4%<br />

8.46 E5<br />

1.93 E6<br />

44-19-12<br />

0%<br />

0.7%<br />

9.7%<br />

10.2%<br />

9.2%<br />

9.4 E4<br />

10.0%<br />

1.0 E5<br />

4.9%<br />

8.09 El0<br />

9.9%<br />

8.92 E9<br />

1.70<br />

14%<br />

1.27 E8<br />

2.33<br />

14.57;<br />

1.85 E7<br />

1.77<br />

2 I .4%<br />

3.96 E6<br />

1.73<br />

2 1.415<br />

8.45 E5<br />

i.82 E6<br />

46-19-1 1<br />

10.1%<br />

10.8%<br />

12.4%<br />

10.2%<br />

9.2%<br />

9.5 E4<br />

10.1%<br />

2.1 E5<br />

10.3%<br />

1.00 Eli<br />

1 O.&h<br />

1.00 E10<br />

1.93<br />

1.1%<br />

1.13 L8<br />

2.20<br />

19.2%<br />

2.17 F7<br />

2.03<br />

21.1%<br />

4.58 E6<br />

2.00<br />

2 I .4%<br />

9.81 b5<br />

2.11 E6<br />

47-19-1 I<br />

0.626<br />

1.30 Ell<br />

10.im<br />

Y.93 E9<br />

1.89<br />

I .O%<br />

3.99 F?<br />

1.95<br />

i 8.G%<br />

1.89 E7<br />

1.69<br />

21.2%<br />

5.81 E6<br />

1.66<br />

21.270<br />

8.05 E5<br />

1.53 E6<br />

42-21- L 2<br />

Inrpact variables<br />

0%<br />

0.7%<br />

1 1 .6%<br />

17.1%<br />

16.8%<br />

1.6 E5<br />

17.9%<br />

1.3 E5<br />

8.5%<br />

7.G9 EL3<br />

9.9%<br />

7.04 69<br />

1.38<br />

1.1%<br />

7.84 E?<br />

1.55<br />

i9.W<br />

1.49 E7<br />

1.40<br />

28.570<br />

2.20 E6<br />

1.43<br />

21.5:'~<br />

6.8.: E5<br />

i .48 E6<br />

44-19-1 1<br />

29.1%<br />

29.6%<br />

30.6%<br />

31.3%<br />

30.1%<br />

2.9 E5<br />

30.046<br />

6.3 E5<br />

23.9%<br />

92<br />

1.30 E ll<br />

1O.G%<br />

1.00 El0<br />

I .96<br />

I .O%<br />

1.05 E8<br />

2.09<br />

20.5%<br />

Lis E7<br />

z.u.2<br />

21 2%<br />

4.60 E6<br />

2.01<br />

21.6%<br />

4.92 E5<br />

2.13 E6<br />

47-19-11<br />

0.624<br />

1.00 Ell<br />

9.9%<br />

9.93 E9<br />

1.91<br />

Tr.970<br />

9.25 E7<br />

I .83<br />

i8.5


93<br />

Table D4. Summary <strong>of</strong> model runs for left limb <strong>and</strong> right limb <strong>of</strong> <strong>the</strong> <strong>compensation</strong> <strong>function</strong> disabled at different levels <strong>of</strong> AYS at year 40<br />

Level 1: AYS = 0.2 Level 2: AYS = 0.5 Level 3: AYS = 0.75 Level 4: AYS = 1.00 Level 5: AYS = 1.50 Level 6: AYS = 2.00 Level 7: AYS = 5.00<br />

output<br />

variable<br />

code<br />

Life<br />

SPUe<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabled<br />

Right<br />

limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabbd<br />

Right<br />

limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabled<br />

Right<br />

limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabled<br />

Right<br />

limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

Bm b<br />

disa5led<br />

Right<br />

Limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabled<br />

Right<br />

limb<br />

disabled<br />

Nei<strong>the</strong>r<br />

limb<br />

disabled<br />

Left<br />

limb<br />

disabled<br />

Right<br />

limb<br />

disabled<br />

1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

62<br />

64<br />

66<br />

68<br />

70<br />

71<br />

72<br />

73<br />

74<br />

EW& 8.31 El0 7.91 E10 2.54 E10<br />

E= 9.9% 9.9% 9.9%<br />

Larvae 8.25 E9 7.85 E9 2.53 E9<br />

Larvae 3.74 3.67 2.47<br />

Larvae 0.2% 0.2% 1 .O%<br />

Juvenile 1 1.62 E7 1.28 E7 2.60 E7<br />

Juvenile 1 2.24 1.73 2.60<br />

Juvenile 1 17.7% 18.4% 18.9%<br />

Juvenile 2 2.87 E6 2.36 E6 4.92 E6<br />

Juvenile 2 1.49 1.21 2.32<br />

Juvenile 2 23.5% 22.9% 21.2%<br />

Juvenile 3 6.76 E5 5.42 E5 1.04 E6<br />

Juvenile 3 1.48 1.18 2.27<br />

Juvenile 3 21.4% 20.9% 21.0%<br />

Yearlings<br />

<strong>and</strong> adults<br />

1.45 E5 1.13 E5 2.19 E5<br />

Yearlings<br />

<strong>and</strong> adults<br />

4.15 E5 3.43 E5 4.85 E5<br />

Yearlings 35-14-8 33-13-8 45-18-1 1<br />

<strong>and</strong> adults<br />

Eggs 16.9% 20.9%<br />

Larvae 17.5% 21.6%<br />

Juvenile 1 4.1% 1.3%<br />

Juvenile 2 12.2% 13.6%<br />

Juvenile 3 14.8% 17.3%<br />

Yearlings 2.9 E4 2.9 E4<br />

Yearlings 16.7% 20.5%<br />

Adults 8.4 E4 8.9 E4<br />

Adults 16.8% 20.6%<br />

74.6%<br />

14.8%<br />

75.1%<br />

78.1%<br />

78.6%<br />

8.4 E4<br />

79.3%<br />

1.78 E6<br />

78.5%<br />

8.52 E10<br />

9.9%<br />

8.46 E9<br />

2.63<br />

0.6%<br />

5.45 E7<br />

2.21<br />

17.1%<br />

8.32 E6<br />

1.79<br />

21.4%<br />

2.00 E6<br />

1.75<br />

2 I .O%<br />

4.21 E5<br />

9.81 E5<br />

43-17-10<br />

14.8%<br />

15.4%<br />

6.0%<br />

12.1%<br />

13.4%<br />

7.3 E4<br />

14.8%<br />

1.7 E5<br />

14.7%<br />

8.02 E10<br />

9.956<br />

7.96 E9<br />

2.56<br />

0.6%<br />

4.53 E7<br />

1.84<br />

18.0%<br />

8.17 E6<br />

1.55<br />

21.2%<br />

1.73 E6<br />

1.51<br />

20.8%<br />

3.61 E5<br />

8.52 E5<br />

42-17-10<br />

19.8%<br />

20.6%<br />

5.3%<br />

14.6%<br />

17.4%<br />

8.92 E4<br />

19.8%<br />

2.11 E5<br />

19.8%<br />

3.13 E10<br />

9.956<br />

3.11 E9<br />

1.22<br />

1.1%<br />

3.54 E7<br />

1.42<br />

19.2%<br />

6.80 E6<br />

1.28<br />

21.6%<br />

1.47 E4<br />

1.29<br />

21.6%<br />

3.18 E5<br />

6.88 E5<br />

46-19-1 1<br />

68.7%<br />

69.0%<br />

68.2%<br />

71.7%<br />

71.8%<br />

8.19 E5<br />

72.0%<br />

1.72 E6<br />

71.5%<br />

8.22 E10<br />

9 .?%<br />

8.16 E9<br />

2.03<br />

1 .0%<br />

7.82 E7<br />

2.04<br />

17.7%<br />

1.38 E7<br />

1.74<br />

21.256<br />

2.92 E6<br />

1.70<br />

21.176<br />

6.17 E5<br />

1.36 E6<br />

45-18-1 1<br />

17.8%<br />

18.4%<br />

14.4%<br />

17.2%<br />

17.0%<br />

1.34 E5<br />

17.8%<br />

3.0 E5<br />

17.8%<br />

6.83 El0<br />

9.976<br />

6.78 E9<br />

1.74<br />

0.8%<br />

5.73 E7<br />

1.47<br />

18.5%<br />

1.06 E7<br />

1.32<br />

20.9%<br />

2.21 E4<br />

1.29<br />

20.9%<br />

4.62 E5<br />

1.04 E6<br />

45-18-1 1<br />

31.7%<br />

32.396<br />

24.6%<br />

29.8%<br />

31.1%<br />

2.25 E5<br />

32.8%<br />

5.00 E5<br />

32.6%<br />

3.61 E10<br />

9.9%<br />

3.53 E9<br />

0.94<br />

1.2%<br />

4.28 El<br />

1.15<br />

19.4%<br />

8.31 E6<br />

1 .05<br />

22.04<br />

1.82 E6<br />

1.06<br />

22.0%<br />

4.01 E5<br />

8.56 E5<br />

47-19-11<br />

63.9%<br />

64.2%<br />

63.146<br />

67.U%<br />

66.7%<br />

7.92 E5<br />

66.4%<br />

1.66 E5<br />

66.0%<br />

7.09 El0 3.66 E10<br />

9.9% 9.9%<br />

7.04 E9 3.63 E9<br />

1.38 0.7 i<br />

1.1% 0.9%<br />

7.84 E7 3.17 E7<br />

1.56 0.41<br />

19.0% 18.6%<br />

1.49 E? 5.90 E6<br />

1.40 0.55<br />

21.5% 20.9%<br />

3.20 E6 1.23 E6<br />

1.40 0.54<br />

21.5% 20.9%<br />

6.87 E5 2.56 E5<br />

1.48 E6 5.84 E5<br />

46-19-1 1 44-18-1 1<br />

Impact variables<br />

29.1% 64.3%<br />

29.6% 63.8%<br />

30.6% 65.8%<br />

31.3% 68.94<br />

30.1% 69.5%<br />

2.94 E5 6.1 E5<br />

30.0% 70.4%<br />

6.30 E5 1.3 E6<br />

29.9% 69.1%<br />

4.05 E10<br />

9.3%<br />

4.02 E9<br />

0.79<br />

1.2%<br />

4.99 E7<br />

1 .00<br />

19.5%<br />

9.75 E6<br />

0.92<br />

22.2%<br />

2.16 E6<br />

0.94<br />

22.2%<br />

4.80 E5<br />

1.02 E6<br />

44-19-1 I<br />

59.5%<br />

59.9%<br />

58.6%<br />

62.7%<br />

62.1%<br />

7.7 E5<br />

61.5%<br />

1.6 E6<br />

61.2%<br />

5.20 El0<br />

9.95<br />

5.16 E9<br />

0.68<br />

1.5%<br />

6.65 E7<br />

0.89<br />

19.7%<br />

1.31 E7<br />

0.83<br />

22.4%<br />

2.94 E6<br />

0.85<br />

22.4%<br />

6.58 E5<br />

1.38 E6<br />

48-19-1 I<br />

48.0%<br />

48.4%<br />

47.6%<br />

51.8%<br />

50.42%<br />

6.42 E5<br />

49.4%<br />

1.34 E6<br />

49.3%<br />

2.05 ELG<br />

9.9%<br />

2.04 E9<br />

0.21<br />

0.9%<br />

1.78 E7<br />

0.23<br />

18.6%<br />

3.31 E6<br />

0.21<br />

20.9%<br />

6.91 E5<br />

0.20<br />

20.9%<br />

1.44 E5<br />

3.311 E5<br />

43-1 8-1 1<br />

79.576<br />

79.7%<br />

82.2%<br />

84.5%<br />

85.0%<br />

8.55 E5<br />

85.6%<br />

1.81 E6<br />

84.5%<br />

4.74 ElG<br />

9.956<br />

4.70 E9<br />

0.6255<br />

i.3%<br />

6.20 E7<br />

0.83<br />

19.8%<br />

1.23 E7<br />

0.77<br />

22.6%<br />

2.77 E6<br />

0.81<br />

22.6%<br />

6.25 E5<br />

1.31 E6<br />

48-19-12<br />

52.6%<br />

53.1%<br />

5 1 .4%<br />

56.1%<br />

54.9%<br />

7.31 E5<br />

53.9%<br />

1.52 E6<br />

53.7%<br />

5.26 El0<br />

9.9%<br />

5.22 E9<br />

0.53<br />

1.4%<br />

7.21<br />

0.72<br />

20.0%<br />

1.45 E7<br />

' 0.6.8<br />

22.8%<br />

3.30 E6<br />

0.72<br />

22.8%<br />

7.54 E5<br />

1.57 E6<br />

48-19-1 2<br />

47.4%<br />

47.8%<br />

46.25'0<br />

50.8%<br />

49.5%<br />

7.06 E5<br />

48.4%<br />

1.46 E6<br />

48.2%<br />

2.01 E10<br />

9.9%<br />

1.99 E9<br />

0.19<br />

0.9%<br />

1.74 E7<br />

0.17<br />

18.6%<br />

3.23 E6<br />

0.15<br />

20.9%<br />

6.76 E5<br />

0.15<br />

20.9%<br />

1.41 E5<br />

3.25 E5<br />

43-18-11<br />

79.9%<br />

80.1%<br />

82.6%<br />

84.9%<br />

85.4%<br />

8.63 E5<br />

85.9%<br />

1.83 E6<br />

84.9%<br />

5.21 E10<br />

9.9%<br />

2.17 E9<br />

0.52<br />

1.4%<br />

1.16 E7<br />

0.42<br />

20.1%<br />

1.44 E7<br />

0.68<br />

22.9%<br />

3.28 E6<br />

0.72<br />

22.9%<br />

7.50 E5<br />

1.56 E6<br />

48-19-12<br />

47.9%<br />

48.4%<br />

44.6%<br />

51.54<br />

50.4%<br />

7.17 E5<br />

48.9%<br />

1.48 E6<br />

48.8%<br />

~~<br />

5.75 E10<br />

9.9%<br />

5.71 EY<br />

0.24<br />

1.7%<br />

9.60 E?<br />

0.39<br />

21.4%<br />

2.06 E7<br />

0.39<br />

24.34<br />

4.99 E6<br />

0.44<br />

24.2%<br />

1.21 E6<br />

2.44 E6<br />

49-20-1 2<br />

42.5%<br />

42.9%<br />

42.5%<br />

46.8%<br />

44.7%<br />

9.1 E5<br />

42.9%<br />

1.85 E6<br />

43.1%<br />

2.01 E10<br />

9.3%<br />

1.99 E9<br />

0.08<br />

0.9%<br />

1.74 E7<br />

0.07<br />

18.6%<br />

3.23 E6<br />

0.06<br />

20.9%<br />

6.76 E5<br />

0.06<br />

20.9%<br />

1.41 E5<br />

3.25 E5<br />

43-18-1 1<br />

79.9%<br />

80.1%<br />

82.6%<br />

84.9%<br />

85.4%<br />

8.63 E5<br />

85.9%<br />

1.S3 E6<br />

84.946<br />

5.75 E10<br />

9.9%<br />

5.71 E9<br />

0.24<br />

1.7%<br />

9.60 E7<br />

0.39<br />

21.4%<br />

2.06 E7<br />

0.39<br />

24.3%<br />

4.99 E6<br />

0.44<br />

24.2%<br />

1.21 E6<br />

2.44 E6<br />

49-20-12<br />

42.4%<br />

43.0%<br />

42.6%<br />

46.8%<br />

44.7%<br />

9.16 E5<br />

43.2%<br />

1.85 E6<br />

43.1%


I 1<br />

3<br />

4<br />

r<br />

6<br />

7<br />

8<br />

9<br />

IO<br />

ll<br />

; ' I<br />

I-<br />

13<br />

14<br />

15<br />

16<br />

i7<br />

I8<br />

19<br />

52<br />

64<br />

56<br />

68<br />

70<br />

7i<br />

72.<br />

73<br />

74<br />

9.67s IO<br />

;1.9yc<br />

9.60E9<br />

2.47<br />

6.9%<br />

6.63E8<br />

5.20<br />

5.556<br />

3.63E7<br />

3.75<br />

32.570<br />

1.18E7<br />

5.16<br />

24.0%<br />

2.84%<br />

5.63E.6<br />

50-20- I2<br />

0.435<br />

3.3%<br />

4.0%<br />

10.0%<br />

7.4%<br />

3.3%<br />

1 .OE5<br />

3.4%<br />

1.9E5<br />

3 3%<br />

Level 1. AKX = C.5<br />

9.67"0<br />

9.9%<br />

9.60k9<br />

2.47<br />

6 7%<br />

6.39S8<br />

5.26<br />

5.7%<br />

3.6457<br />

3.74<br />

32.4%<br />

1.18E7<br />

5.16<br />

24.3%<br />

2.b4Eb<br />

5.63%<br />

5c-20- I2<br />

0.439<br />

3.3%<br />

4.2%<br />

10.3%<br />

7.5%<br />

3.5%<br />

9.7%4<br />

3.3%<br />

i 9E5<br />

3 .I


...... . . .._...._. .................................................... __


1-8,<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

55.<br />

56.<br />

57.<br />

58.<br />

59.<br />

60 e<br />

61.<br />

62.<br />

63.<br />

64.<br />

65.<br />

66.<br />

67.<br />

68.<br />

S. I. Auerbach<br />

S. R, Blrmm<br />

R. W. Brocksen<br />

S. We Christensen<br />

C. C. Coutant<br />

D. DeAngelis<br />

A. H. Eraslan<br />

W. Ful kerson<br />

R. Gardner<br />

R. V. O'Neill<br />

H. Postma<br />

D. E. Reichle<br />

C. R. Richmond<br />

97<br />

21.<br />

22.<br />

23.<br />

24.<br />

25 B<br />

26.<br />

27.<br />

28-47 *<br />

48-49.<br />

50.<br />

51 -52.<br />

53.<br />

54.<br />

EXTERNAL DISTRIBUTION<br />

ORNL/ TM-5437<br />

T. H. Row<br />

R. M. Rush<br />

B. W. Rust<br />

R. D. Sharp<br />

H. W. Shugart<br />

E. G. Struxness<br />

G. U. Ulrikson<br />

W. Van Winkle<br />

Central Research Library<br />

Document Reference Section<br />

Laboratory Records Department<br />

La bora tory Records , ORNL-RC<br />

ORNL Patent Office<br />

R. L. Ballard, Division <strong>of</strong> Technical Review, U.S. Nuclear<br />

Regulatory Commission, Washington, DC 20555<br />

Y. M. Barber, National Marine Fisheries Service, 8505 Chapel<br />

Drive, Ann<strong>and</strong>ale, VA 22003<br />

G. Beckett, U.S. Dept. <strong>of</strong> Interior, Fish <strong>and</strong> Wildlife Service,<br />

Boston, MA 02109<br />

C. W. Billups, Environmental Specialists Branch, Directorate<br />

<strong>of</strong> Licensing, U.S. Nuclear Regulatory Commission, Washington,<br />

DC 20555<br />

J. W, Blake, United Engineers & Constructors, Inc., 1401 Arch<br />

St., Philadelphia, PA 79105<br />

S. Bledsoe, College <strong>of</strong> Fisheries, University <strong>of</strong> Washington,<br />

Seattle, WA 98101<br />

J. G. Boreman, National Power Plant Team, U.S. Fish <strong>and</strong> Wil<br />

Service, 1451 Green Rd., Ann Arbor!, MI 48107<br />

D. L. Bunting, Dept. <strong>of</strong> Zoology, University <strong>of</strong> Tennessee,<br />

Knoxville, TN 37916<br />

P. Campbell Texas Instruments, Buchanan, NY 10511<br />

T. Cannon, Ecological Analysts, Inc. , 600 Wyndhurst Ave.,<br />

Baltimore, MD 21210<br />

H. K. Chadwick, California Dept. <strong>of</strong> Fish <strong>and</strong> Game, 115 Gordova<br />

La. , Stockton, CA 95204<br />

S. Chassis, Natural Resources Defense Council, Inc., 15 West<br />

44th St., New York City, NY 10036<br />

J. R. C1 ark, The Conservation foundation, 171 7 Massachusetts<br />

Ave., Washington, DC 20013<br />

D. Col by, Atlantic Estuarine Fisheries Center, National Marine<br />

Fisheries Service, Bau Beaufort, NC 28516


-<<br />

0<br />

-5<br />

h<br />

v<br />

22<br />

-e<br />

Y<br />

' Y -50<br />

A<br />

0<br />

0<br />

3<br />

w<br />

z<br />

3<br />

T<br />

rf<br />

V<br />

TI<br />

v)<br />

CD<br />

-5<br />

5.<br />

3<br />

W<br />

2.<br />

8<br />

5 0<br />

X<br />

2.<br />

d


113.<br />

114.<br />

115.<br />

116.<br />

117.<br />

118.<br />

119.<br />

120.<br />

127 *<br />

122.<br />

123.<br />

124.<br />

125.<br />

126.<br />

127.<br />

128,<br />

129.<br />

130.<br />

131.<br />

132.<br />

133.<br />

134.<br />

135.<br />

136.<br />

137.<br />

138.<br />

99<br />

J. McFadden, School <strong>of</strong> Natural Resources, University <strong>of</strong><br />

Michigan, Ann Arbor, MI 48106<br />

I! e McKenzi e, Beak Consul tant Port? <strong>and</strong>, OR 97208<br />

P. Merges, New York State Dept. <strong>of</strong> Environmental Conser-<br />

vation, Albany, NW 12201<br />

C. W. Mortimer, Director, Center for Great Lakes Studies,<br />

The University <strong>of</strong> Wisconsin-Milwaukee, Milwaukee, WI 53203<br />

D. R, Muller, Division <strong>of</strong> Reactor Licensing, U.S. Nuclear<br />

Regulatory Commission, Washington, DC 20555<br />

I. P. Murarkas Argonne National Laboratory, 9700 South Cass<br />

Ave. Argonnes IL 60439<br />

J. O’Connor, Institute <strong>of</strong> Environmental Medicine, New York<br />

University, Sterling Forest, NY 10979<br />

F. Ossi<strong>and</strong>er, Northwest Fisheries Center, National Marine<br />

Fi s heri es Service a Seattl e, WA 981 12<br />

R. L, Patterson, Schaol <strong>of</strong> Natural Resources, University <strong>of</strong><br />

Michigan, Ann Arbor, MI 38104<br />

T. T. Polgar, Ma%rl”n Marietta Labaratories, 1450 S. Rolling<br />

Rd., Baltimore, MD 21227<br />

E. M. Portner, The Johns Hopkins University, Applied Physics<br />

Laboratory, 862% Georgia Ave., Silver Spring, MD 20910<br />

E. C. Raney4 Ichthyological Associates, Middletown, DE 19709<br />

H. A. Regier, Institute for Environmental Studies, University<br />

<strong>of</strong> Toronto, Toronto , Canada<br />

S. Saila, Dept. <strong>of</strong> Zoology, University <strong>of</strong> Rhode Isl<strong>and</strong>,<br />

Kingston, RT 02881<br />

R. S<strong>and</strong>ler, Natural Resources Defense Council, Tnc., 15<br />

West 44th St., New York, NY 10036<br />

R. H. Schafer, New York State Dept. <strong>of</strong> Environmental Conservation,<br />

Stony Brook, Long Isl<strong>and</strong>, MY 11790<br />

R. K. Sharma, Argonne National Laboratory, 9700 South Cass<br />

Ave. Argonne, IL 60439<br />

C. N. Shuster, Jr., Office <strong>of</strong> Energy Systems, Federal Power<br />

Commission, 825 N. Capitol St., Washington, DC 20013<br />

M. P, Sissenwine, Marine Experiment Station, University <strong>of</strong><br />

Rhode Isl<strong>and</strong>, Kingston, RI 02881<br />

P. Skinner, State <strong>of</strong> New York, Department <strong>of</strong> Law, Two World<br />

Trade Center, ew York, NY 10047<br />

G. Swartzman, Center for Quantative Science, University <strong>of</strong><br />

Washington, Seattle, WA 98195<br />

J. Swinebroad % Division <strong>of</strong> Biomedical <strong>and</strong> Environmental<br />

Research, U.S. Energy Research <strong>and</strong> Development Administration,<br />

Germantown, MI1 20767<br />

J. T. Tanner, Dept. <strong>of</strong> Zoology, University <strong>of</strong> Tennessee,<br />

Knoxville, TN 37976<br />

3. M. Thomas, Ecosystems Dept., Battelle Pacific Northwest<br />

Laboratory, Richl<strong>and</strong>, WA 99352<br />

F. J. Vernberg, Belle Baruch Marine Institute, University<br />

South Carol i na Columbia SC 29201<br />

C. Voigtl<strong>and</strong>er, TYA, Narris, TN 37828


100<br />

139. D. N. Wallace, Power Authority <strong>of</strong> <strong>the</strong> State <strong>of</strong> New York, 10<br />

Columbus Circle, New Yark, NY 10019<br />

140, K. Wich, New York State Beparkment <strong>of</strong> Environmental Conservatian,<br />

Albany, NY 12201<br />

141. George M. Woodwell , Marine Biologjcal Laboratory, Woods Hole,<br />

MA 02543<br />

142. Research <strong>and</strong> Technical Support Division, ERDA-OR0<br />

143-169. Technical Information Center<br />

U S GOVERNMENT PRINTING OFFICE 1976-748 189/62

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!