28.01.2013 Views

Implicit-Explicit Runge-Kutta schemes for hyperbolic systems ... - utenti

Implicit-Explicit Runge-Kutta schemes for hyperbolic systems ... - utenti

Implicit-Explicit Runge-Kutta schemes for hyperbolic systems ... - utenti

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Joint work with<br />

Giovanni Russo<br />

HYP2002<br />

Ninth International Conference on Hyperbolic Problems Theory, Numerics, Applications<br />

University of Catania<br />

Pasadena, Cali<strong>for</strong>nia, March 25-29, 2002<br />

<strong>Implicit</strong>-<strong>Explicit</strong> <strong>Runge</strong>-<strong>Kutta</strong> <strong>schemes</strong><br />

<strong>for</strong> <strong>hyperbolic</strong> <strong>systems</strong> with relaxation<br />

Lorenzo Pareschi<br />

Department of Mathematics<br />

University of Ferrara, Italy<br />

pareschi@dm.unife.it<br />

http://www.unife.it/∼prl<br />

1


Hyperbolic <strong>systems</strong> with relaxation<br />

Introduction<br />

Many physical models are described by <strong>hyperbolic</strong> <strong>systems</strong> with relaxation of the <strong>for</strong>m<br />

∂tU + ∂xF (U) = 1<br />

R(U), x ∈ R,<br />

ε<br />

where U = U(x, t) ∈ R N , F : R N → R N , F ′ (U) has real eigenvalues and admits a basis of<br />

eigenvectors ∀ U ∈ R N and ε > 0 is called relaxation parameter.<br />

Examples<br />

Gas dynamics<br />

Shallow water<br />

Discrete kinetic models<br />

Extended Thermodynamics<br />

Hydrodynamical models <strong>for</strong> semiconductors<br />

Traffic models<br />

Granular gases<br />

...................<br />

Related problems: convection-diffusion-reaction, low Mach number/diffusive limits<br />

⊲ Purpose of the talk is to give an overview of <strong>Runge</strong>-<strong>Kutta</strong> time discretization methods<br />

<strong>for</strong> such <strong>systems</strong>, with particular emphasis on the treatment of stiff regimes.<br />

2


Example:<br />

A simple prototype example of relaxation system is given by<br />

∂tu + ∂xf1(u, v) = 0,<br />

∂tv + ∂xf2(u, v) = − 1<br />

(v − e(u)),<br />

ε<br />

which corresponds to U = (u, v), F (U) = (f1(u, v), f2(u, v)), R(U) = (0, e(u) − v).<br />

As ε → 0 we get the local equilibrium v = e(u) and setting G(u) = f1(u, e(u)) the reduced<br />

system of conservation laws<br />

Numerical requirements<br />

∂tu + ∂xG(u) = 0.<br />

• In most cases F (U) is non stiff and 1<br />

R(U) contains the stiffness. It is desirable to<br />

ε<br />

develop numerical <strong>schemes</strong> which are explicit in F and implicit in R.<br />

• It is essential that the numerical scheme is accurate <strong>for</strong> the reduced limit system of<br />

conservation laws. This property is related to L-stability.<br />

• The <strong>schemes</strong> should be high resolution shock capturing, yielding correct shock location<br />

and speed without numerical oscillations.<br />

3


Outline<br />

⊲ <strong>Implicit</strong>-<strong>Explicit</strong> (IMEX) <strong>Runge</strong>-<strong>Kutta</strong> <strong>schemes</strong><br />

– Splitting methods<br />

– IMEX-<strong>Runge</strong> <strong>Kutta</strong><br />

– Order conditions<br />

⊲ Asymptotic behavior<br />

– Zero relaxation limit<br />

– Asymptotic properties of IMEX <strong>schemes</strong><br />

⊲ Stability analysis<br />

– Stability matrix<br />

– Prototype equations<br />

⊲ Space discretizations<br />

⊲ Applications<br />

⊲ Conclusions<br />

4


We can consider the system of ode’s<br />

<strong>Implicit</strong>-<strong>Explicit</strong> <strong>Runge</strong> <strong>Kutta</strong> <strong>schemes</strong><br />

y ′ = f(y) + 1<br />

ε g(y),<br />

where y = y(t) ∈ R N , f, g : R N → R N .<br />

Splitting methods<br />

A simple splitting consists in solving separately the non-stiff problem<br />

y ′ = f(y),<br />

applying an explicit scheme and, using an implicit scheme, the stiff problem<br />

y ′ = 1<br />

ε g(y).<br />

Only first order accurate, but has several advantages:<br />

⊲ Some properties of the solution are maintained (e.g. positivity, strong stability perserving<br />

(SSP) property)<br />

⊲ Consistency with the stiff limit as ε → 0<br />

⊲ In many cases the implicit scheme <strong>for</strong> g can be explicitly solved<br />

Remark Higher order splitting methods (ex. Strang splitting) can be constructed. Tipically<br />

these extensions present a severe loss of accuracy when the g term is stiff.<br />

5


IMEX-RK methods<br />

An <strong>Implicit</strong>-<strong>Explicit</strong> (IMEX) <strong>Runge</strong>-<strong>Kutta</strong> scheme has the <strong>for</strong>m<br />

Yi =<br />

�i−1<br />

ν� 1<br />

y0 + h ãijf(t0 + ˜cjh, Yj) + h aij<br />

ε g(t0 + cjh, Yj),<br />

y1 = y0 + h<br />

j=1<br />

ν�<br />

i=1<br />

˜wif(t0 + ˜cih, Yi) + h<br />

j=1<br />

ν�<br />

i=1<br />

1<br />

wi<br />

ε g(t0 + cih, Yi).<br />

à = (ãij), ãij = 0, j ≥ i and A = (aij): ν × ν matrices.<br />

Coefficient vectors: ˜c = (˜c1, . . . , ˜cν) T , ˜w = ( ˜w1, . . . , ˜wν) T , c = (c1, . . . , cν) T , w = (w1, . . . , wν) T .<br />

Double Butcher tableau:<br />

˜c Ã<br />

˜w T<br />

c A<br />

Sufficient condition to guarantee that f is always evaluated explicitly: the scheme <strong>for</strong> g<br />

is diagonally implicit (DIRK) and the first raw and first column of A are zero.<br />

Remarks<br />

• Similarly to splitting methods IMEX <strong>schemes</strong> can be applied as a sequence of single<br />

explicit steps <strong>for</strong> f and implicit steps <strong>for</strong> g. This property is important in applications.<br />

• Previously developed <strong>Runge</strong>-<strong>Kutta</strong> methods <strong>for</strong> similar problems can be cast in the<br />

IMEX <strong>for</strong>malism (Zhong methods, splitting methods).<br />

w T<br />

.<br />

6


Some References:<br />

• F.Coron, B.Perthame, SIAM J. Numer. Anal., (1991)<br />

• R. Pember, SIAM J. Sci. Stat. Comp. and SIAM J. App. Math., (1993)<br />

• P. Roe, M. Arora, Num. Meth. PDEs, (1993).<br />

• S. Jin, J. Comp. Phys., (1995)<br />

• R. E. Caflisch, S. Jin and G. Russo, SIAM J. Numer. Anal., (1997).<br />

• U. Ascher, S. Ruuth, B. Wetton, SIAM J. Numer. Anal., (1995)<br />

• U. Asher, S. Ruuth, and R. J. Spiteri, Appl. Numer. Math., (1997)<br />

• X. Zhong, J. Comp. Phys., (1996)<br />

• G. Akridis, M. Crouzeix, C. Makridakis, Num. Math., (1999)<br />

• J. Frank, W. H. Hudsdorder, J. G. Verwer, App. Num. Math., (1997)<br />

• C. A. Kennedy, M. H. Carpenter, App. Num. Math., (2003)<br />

• L.P., G.Russo, Adv. Th. Comp. Math. (2000), preprint (2003)<br />

• M.L.Minion, Comm. Math. Sci. (to appear)<br />

• S.F.Liotta, V.Romano, G.Russo, SIAM J. Numer. Anal., (2001)<br />

• L.P., SIAM J. Numer. Anal, (2001).<br />

• M.K.Banda, A.Klar, L.P., M.Seaid, App. Math. Lett. (2003), preprint (2002)<br />

7


Order conditions<br />

Assume<br />

˜ci = �<br />

j ãi,j, ci = � �<br />

j<br />

ai,j,<br />

i ˜wi = 1, �<br />

i wi = 1.<br />

then the analysis can be limited to autonomous <strong>systems</strong> and the first order conditions<br />

are automatically satisfied.<br />

Second order:<br />

�<br />

i ˜wi˜ci = 1/2, �<br />

i wici = 1/2, �<br />

i ˜wici = 1/2, �<br />

i wi˜ci = 1/2,<br />

Third order:<br />

�<br />

ij ˜wiãij˜cj = 1/6, �<br />

i ˜wi˜ci˜ci = 1/3, �<br />

ij wiaijcj = 1/6, �<br />

i wicici = 1/3,<br />

Mixed conditions:<br />

�<br />

ij ˜wiãijcj = 1/6, �<br />

ij ˜wiaij˜cj = 1/6, �<br />

ij ˜wiaijcj = 1/6,<br />

�<br />

ij wiãijcj = 1/6, �<br />

ij wiaij˜cj = 1/6, �<br />

ij wiãij˜cj = 1/6,<br />

�<br />

i ˜wicici = 1/3, �<br />

i ˜wi˜cici = 1/3,<br />

�<br />

i wi˜ci˜ci = 1/3, �<br />

i wi˜cici = 1/3.<br />

Remark If wi = ˜wi and ci = ˜ci, then mixed conditions are automatically satisfied. This is<br />

not true <strong>for</strong> higher that third order accuracy<br />

8


Higher order: IMEX <strong>schemes</strong> can be considered as a particular case of additive <strong>Runge</strong>-<br />

<strong>Kutta</strong> methods and there<strong>for</strong>e higher order conditions can be derived as well using a<br />

generalization of Butcher 1-trees to 2-trees. However the number of coupling conditions<br />

increase dramatically with the order of the <strong>schemes</strong>.<br />

IMEX-RK Number of coupling conditions<br />

order General case ˜wi = wi ˜c = c ˜c = c and ˜wi = wi<br />

1 0 0 0 0<br />

2 2 0 0 0<br />

3 12 3 2 0<br />

4 56 21 12 2<br />

5 252 110 54 15<br />

6 1128 528 218 78<br />

9


Examples of IMEX <strong>schemes</strong><br />

Notation: SCHEME(s, σ, p)<br />

s implicit stages, σ explicit stages, p order. <strong>Explicit</strong> tableu (left), <strong>Implicit</strong> tableu (right).<br />

SP(1,1,1)<br />

Midpoint(1,2,2)<br />

Jin(2,2,2)<br />

0 0<br />

1<br />

0 0 0<br />

1/2 1/2 0<br />

0 1<br />

0 0 0<br />

1 1 0<br />

1/2 1/2<br />

,<br />

,<br />

1 1<br />

1<br />

0 0 0<br />

1/2 0 1/2<br />

0 1<br />

−1 −1 0<br />

2 1 1<br />

1/2 1/2<br />

,<br />

10


CJR(3,2,2)<br />

β =<br />

LRR(3,2,2)<br />

ARS(2,2,2)<br />

0 0 0 0 0<br />

˜α ˜α 0 0 0<br />

˜α ˜α 0 0 0<br />

1 η˜α η ˜β 0 0<br />

1 η˜α η ˜β 0 0<br />

2µ − 1<br />

2(µ − 1) , γ = −2µ2 − 2µ + 1 1<br />

, ˜α =<br />

2µ(µ − 1) 2µ ,<br />

0 0 0 0 0<br />

1/2 1/2 0 0 0<br />

1/3 1/3 0 0 0<br />

1 0 1 0 0<br />

0 1 0 0<br />

0 0 0 0<br />

γ γ 0 0<br />

1 δ 1 − δ 0<br />

δ 1 − δ 0<br />

,<br />

,<br />

0 0 0 0<br />

γ 0 γ 0<br />

1 0 1 − γ γ<br />

0 1 − γ γ<br />

0 0 0 0 0<br />

0 0 0 0 0<br />

γ γ 0 β 0<br />

1 γη 0 βη µ<br />

1 γη 0 βη µ<br />

1<br />

˜β = − , η = −2µ(µ − 1)<br />

2(µ − 1)<br />

0 0 0 0 0<br />

1/2 0 1/2 0 0<br />

1/3 0 0 1/3 0<br />

1 0 0 3/4 1/4<br />

1 0 0 3/4 1/4<br />

, γ = 1 −<br />

√ 2<br />

2<br />

, δ = 1 − 1<br />

2γ<br />

11


Asymptotic behavior<br />

Relaxation operators and zero-relaxation limit<br />

Let us consider an <strong>hyperbolic</strong> system with relaxation<br />

∂tU + ∂xF (U) = 1<br />

R(U), x ∈ R.<br />

ε<br />

The operator R : R N → R N is said a relaxation operator if there exists a constant n × N<br />

matrix Q with rank(Q) = n < N such that<br />

QR(U) = 0 ∀ U ∈ R N .<br />

This gives n independent conserved quantities u = QU that uniquely determine a local<br />

equilibrium U = E(u), such that R(E(u)) = 0.<br />

We obtain a system of n conservation laws which is satisfied by every solution of the<br />

relaxation system<br />

∂t(QU) + ∂x(QF (U)) = 0.<br />

As ε → 0 we get R(U) = 0 which implies U = E(u). In this case the relaxation system is<br />

well approximated by the reduced system<br />

where G(u) = QF (E(u)).<br />

∂tu + ∂xG(u) = 0,<br />

12


Asymptotic properties of IMEX <strong>schemes</strong><br />

An IMEX scheme <strong>for</strong> an <strong>hyperbolic</strong> system with relaxation has the <strong>for</strong>m<br />

U (i)<br />

i = U0<br />

�i−1<br />

+ h<br />

U1 = U0 + h<br />

j=1<br />

ν�<br />

i=1<br />

ãijF (U (j) ) + h<br />

˜wiF (U (i) ) + h<br />

ν�<br />

j=1<br />

ν�<br />

i=1<br />

1<br />

aij<br />

ε R(U (j) ),<br />

1<br />

wi<br />

ε R(U (i) ).<br />

Definition 1 We say that an IMEX scheme <strong>for</strong> an <strong>hyperbolic</strong> system with relaxation<br />

is asymptotic preserving (AP) if in the limit ɛ → 0 the scheme becomes a consistent<br />

discretization of the limit system of conservation laws. We use the notation APk if the<br />

scheme is of order k in the limit ɛ → 0.<br />

Note that this definition does not imply that the scheme preserves the order of accuracy<br />

in t in the stiff limit ɛ → 0. In the latter case the scheme is said asymptotically accurate.<br />

Examples: Scheme SP(1,1,1) is clearly AP1. Scheme Jin(2,2,2) is AP2, but it is not<br />

uni<strong>for</strong>mly valid in ε. Schemes Midpoint(1,2,2) and CN(2,2,2) are not AP even if both<br />

implicit parts of the <strong>schemes</strong> are A-stable. On the contrary, <strong>schemes</strong> CJR(3,2,2) and<br />

LRR(3,2,2) are AP and uni<strong>for</strong>mly valid in ε, but only scheme LRR(3,2,2) is AP2.<br />

13


Lemma 1 If all diagonal element of the triangular coefficient matrix A that characterize<br />

the DIRK scheme are non zero, then<br />

Proof:<br />

In the limit ɛ → 0 we have<br />

lim<br />

ɛ→0 R(U i ) = 0.<br />

i�<br />

aijR(U j ) = 0, i = 1, . . . , ν.<br />

j=1<br />

Since the matrix A is non-singular, this implies R(U i ) = 0, i = 1, . . . , ν.<br />

Remarks<br />

• As a consequence the vectors of c and ˜c cannot be equal. In fact ˜c1 = 0 whereas<br />

c1 �= 0. Note that the condition c = ˜c is commonly used by several authors since it<br />

simplifies the analysis of the <strong>schemes</strong>.<br />

• If c1 = 0 then the corresponding scheme may be inaccurate if the initial condition is<br />

not “well prepared”. In this case the scheme is not able to treat the so called initial<br />

layer problem and degradation of accuracy in the stiff limit is expected.<br />

Theorem 1 If det A �= 0 then in the limit ɛ → 0, the IMEX scheme applied to an <strong>hyperbolic</strong><br />

system with relaxation becomes the explicit RK scheme characterized by (Ã, ˜w, ˜c) applied<br />

to the limit system of conservation laws.<br />

14


Remark<br />

• Clearly one may claim that if the implicit part of the IMEX scheme is A-stable or<br />

L-stable the previous theorem is satisfied. Note however that this is true only if the<br />

tableau of the implicit integrator does not contain any column of zeros that makes<br />

it reducible to a simpler A-stable or L-stable <strong>for</strong>m.<br />

• Finally we observe that this result does not guarantee the accuracy of the solution<br />

<strong>for</strong> the N − n non conserved quantities. In fact, since the very last step in the scheme<br />

it is not a projection towards the local equilibrium, a final layer effect occurs.<br />

It is easy to show that<br />

Corollary 1 If det A �= 0 and wj = aνj, j = 1, . . . ν then in the limit ɛ → 0, the IMEX<br />

scheme is asymptotically accurate, that is it provides the order of accuracy of the explicit<br />

RK scheme characterized by (Ã, ˜w, ˜c) <strong>for</strong> both conserved and non conserved variables<br />

We recall that the additional condition wj = aνj, j = 1, . . . ν makes an A−stable method<br />

L−stable. Usually these methods are referred to as stiffly accurate.<br />

15


Theorem guarantees that in the stiff limit the numerical scheme becomes the explicit<br />

RK scheme applied to the equilibrium system, and there<strong>for</strong>e the order of accuracy of the<br />

limiting scheme is greater or equal to the order of accuracy of the original IMEX scheme.<br />

In particular this implies that if the explicit part of the IMEX scheme is SSP then, in<br />

the stiff limit, we will obtain an SSP method <strong>for</strong> the limiting conservation law. This<br />

asymptotic SSP property is essential to avoid spurious oscillations in the limit scheme <strong>for</strong><br />

the limiting system of conservation laws.<br />

We recall that if U n represents a vector of solution values (<strong>for</strong> example obtained from a<br />

method of lines approach) we recall the following<br />

Definition 2 A sequence {U n }n∈N is said to be strongly stable in a given norm ||·|| provided<br />

that ||U n+1 || ≤ ||U n || <strong>for</strong> all n ≥ 0.<br />

The most commonly used norms are the T V -norm and the infinity norm.<br />

16


Examples of IMEX-SSP <strong>schemes</strong><br />

In all these <strong>schemes</strong> the implicit tableau corresponds to an L−stable scheme, that is<br />

w T A −1 e = 1, e being a vector whose components are all equal to 1, whereas the explicit<br />

tableau is SSPk, where k denotes the order of the SSP scheme.<br />

IMEX-SSP2(2,2,2) L-stable scheme<br />

0 0 0<br />

1 1 0<br />

1/2 1/2<br />

IMEX-SSP2(3,2,2) stiffly accurate scheme<br />

0 0 0 0<br />

0 0 0 0<br />

1 0 1 0<br />

0 1/2 1/2<br />

IMEX-SSP2(3,3,2) stiffly accurate scheme<br />

0 0 0 0<br />

1/2 1/2 0 0<br />

1 1/2 1/2 0<br />

1/3 1/3 1/3<br />

γ γ 0<br />

1 − γ 1 − 2γ γ<br />

1/2 1/2<br />

1/2 1/2 0 0<br />

0 −1/2 1/2 0<br />

1 0 1/2 1/2<br />

0 1/2 1/2<br />

γ = 1 − 1<br />

√ 2<br />

1/4 1/4 0 0<br />

1/4 0 1/4 0<br />

1 1/3 1/3 1/3<br />

1/3 1/3 1/3<br />

17


IMEX-SSP3(3,3,2) L-stable scheme<br />

0 0 0 0<br />

1 1 0 0<br />

1/2 1/4 1/4 0<br />

1/6 1/6 2/3<br />

IMEX-SSP3(4,3,3) L-stable scheme<br />

0 0 0 0 0<br />

0 0 0 0 0<br />

1 0 1 0 0<br />

1/2 0 1/4 1/4 0<br />

0 1/6 1/6 2/3<br />

γ γ 0 0<br />

1 − γ 1 − 2γ γ 0<br />

1/2 1/2 − γ 0 γ<br />

1/6 1/6 2/3<br />

γ = 1 − 1<br />

√ 2<br />

α α 0 0 0<br />

0 −α α 0 0<br />

1 0 1 − α α 0<br />

1/2 β η 1/2 − β − η − α α<br />

0 1/6 1/6 2/3<br />

α = 0.24169426078821, β = 0.06042356519705 η = 0.12915286960590


Stability analysis<br />

When studying the A-stability of a RK scheme, one considers a scalar equation of the<br />

<strong>for</strong>m<br />

y ′ = λy, y(0) = 1<br />

with y : R + → R, and λ ∈ R, ℜλ ≤ 0. Such test problem is sufficient to characterize the<br />

stability property of a <strong>Runge</strong>-<strong>Kutta</strong> scheme when applied to a linear system of the <strong>for</strong>m<br />

with y ∈ R m , and B ∈ R m×m .<br />

y ′ = By, y(0) = y0<br />

In the case of IMEX-RK, and in general <strong>for</strong> additive <strong>Runge</strong>-<strong>Kutta</strong> methods, such a stability<br />

analysis has a limited validity. In fact, consider a generic linear system of the <strong>for</strong>m<br />

y ′ = B1 y + B2 y<br />

with y ∈ R m , and B1, B2 ∈ R m×m , and apply an IMEX scheme which is explicit in B1y and<br />

implicit in B2y. The stability of the numerical solution depends on the two matrices B1<br />

and B2, and not only on their eigenvalues since in general the two matrices do not share<br />

the same eigenvectors, and there<strong>for</strong>e they can not be diagonalized simultaneously.<br />

18


Stability matrix <strong>for</strong> a linear system<br />

Let us apply a <strong>Runge</strong>-<strong>Kutta</strong> scheme defined by A and w to the linear system<br />

with y ∈ R m . Then one has<br />

y1 = y0 + h<br />

ν�<br />

i=1<br />

y ′ = By, y(0) = y0<br />

wiBY (i) , Y (i) = y0 + h<br />

ν�<br />

aijBY (j)<br />

Let e ≡ (1, . . . , 1) T ∈ R m denote a column vector whose components are unitary and let us<br />

define the Kronecker products<br />

⎛ ⎞<br />

e ⊗ y n =<br />

⎜<br />

⎝<br />

y n<br />

y n<br />

.<br />

y n<br />

⎟<br />

⎠ , A ⊗ B =<br />

⎛<br />

⎜<br />

⎝<br />

j=1<br />

a11B a12B · · · a1νB<br />

a21B<br />

.<br />

a22B · · ·<br />

...<br />

a2νB<br />

.<br />

aν1B aν2B · · · aννB<br />

After some manipulation the scheme can be conveniently written as<br />

y n+1 = Ry n<br />

where the m × m matrix of absolute stability R is given by<br />

with Z ≡ h B.<br />

R(Z) = Im + w T Z ⊗ (Iνm − A ⊗ Z) −1 e ⊗ Im,<br />

⎞<br />

⎟<br />

⎠<br />

19


The corresponding scalar function<br />

R(z), z ∈ R<br />

is said the function of absolute stability. The eigenvalues of the matrix of absolute<br />

stability are given by the absolute stability function evaluated at the eigenvalues of the<br />

matrix Z<br />

λ(R(Z)) = R(λ(Z))<br />

and there<strong>for</strong>e the spectral radius of the matrix of absolute stability is given by<br />

ρ(R(Z)) = m<br />

max<br />

j=1 |R(λj(Z))|.<br />

Similarly <strong>for</strong> a partitioned <strong>Runge</strong>-<strong>Kutta</strong> scheme applied to the system<br />

one obtains<br />

y ′ = B1y + B2y<br />

y n+1 = R(Z1, Z2)y n<br />

where Z1 = h B1, Z2 = h B2, and the matrix of absolute stability is given by<br />

R(Z1, Z2) = Im + ( ˜w T ⊗ Z1 + w T ⊗ Z2)(Iνm − Ã ⊗ Z1 − A ⊗ Z2) −1 e ⊗ Im.<br />

At variance with the standard case, the spectral radius of the matrix does not depend only<br />

on the eigenvalues of the matrices Z1 and Z2, since the two matrices B1 and B2 in general<br />

do not have a common set of eigenvectors, they can not be diagonalized simultaneously.<br />

20


Prototype problem<br />

A simple non trivial 2 × 2 relaxation system is given by<br />

ut + vx = 0<br />

vt + ux = −µ(v − bu)<br />

In the stiff limit µ → ∞ <strong>for</strong> 0 < b < 1 the system relaxes to the equation<br />

ut + bux = 0<br />

We look <strong>for</strong> a Fourier solution u = û(t)e iξx , v = ˆv(t)e iξx . One obtains<br />

ût + iξˆv = 0<br />

ˆvt + iξû = −µ(ˆv − bû)<br />

The system can be written in vector <strong>for</strong>m as<br />

where<br />

U =<br />

� û<br />

ˆv<br />

�<br />

, C1 = −iξ<br />

dU<br />

dt = C1U + C2U<br />

� 0 1<br />

1 0<br />

�<br />

, C2 = −µ<br />

� 0 0<br />

−b 1<br />

The boundary of the region of absolute stability is given by the relation<br />

ρ(R(Z1, Z2)) = 1<br />

where ρ denotes the spectral radius, and Z1 = hC1, Z2 = hC2.<br />

�<br />

21


ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SP−111<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6<br />

ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

Midpoint−122<br />

Relaxation stability region <strong>for</strong> scheme SP-111 and Midpoint-122 in the ξh–µh plane.<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6<br />

22


ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

LRR−322<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6<br />

ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SSP2−222<br />

Relaxation stability region <strong>for</strong> scheme LRR-322 and SSP2-222 in the ξh–µh plane.<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6


ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SSP2−322<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6<br />

ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SSP2−332<br />

Relaxation stability region <strong>for</strong> scheme SSP2-322 and SSP2-332 in the ξh–µh plane.<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6


ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SSP3−332<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6<br />

ξ h<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

10 −2<br />

−5<br />

10 −1<br />

10 0<br />

10 1<br />

SSP3−433<br />

Relaxation stability region <strong>for</strong> scheme SSP3-332 and SSP3-433 in the ξh–µh plane.<br />

10 2<br />

μ h<br />

10 3<br />

10 4<br />

10 5<br />

b = 0.1<br />

b = 0.3<br />

b = 0.5<br />

b = 0.7<br />

b = 0.9<br />

10 6


Numerical test<br />

Prototype of stiff system<br />

u ′ = −v,<br />

v ′ = u + 1<br />

(e(u) − v).<br />

ε<br />

(Note: eigenvalues of the explicit part are ±i)<br />

Convergence plot, obtained by different values of time step h (starting with h = 0.05). ε<br />

ranges from 10 −5 to 1.<br />

L2 norm of the relative error versus ɛ using a log-scale on the x-axis.<br />

Equilibrium data<br />

Non-equilibrium data<br />

u(0) = π/2, v(0) = sin(u(0)) = 1.<br />

u(0) = π/2, v(0) = 1/2.<br />

23


Convergence rates of some second and third order IMEX <strong>schemes</strong> <strong>for</strong> equilibrium initial<br />

data (dashed: v component, continuous: u component).<br />

Convergence rate<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −5<br />

−0.5<br />

10 −5<br />

10 −4<br />

10 −4<br />

10 −3<br />

SSP2−222<br />

10 −3<br />

Epsilon<br />

ARS−222<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

Convergence rate<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

10 −5<br />

10 −5<br />

10 −4<br />

10 −4<br />

SSP3−332<br />

10 −3<br />

Epsilon<br />

SSP2−322<br />

10 −3<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

Convergence rate<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

10 −5<br />

10 −5<br />

10 −4<br />

10 −4<br />

SSP3−443<br />

10 −3<br />

Epsilon<br />

SSP2−332<br />

10 −3<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

24<br />

10 0


Convergence rates of some second and third order IMEX <strong>schemes</strong> <strong>for</strong> non equilibrium<br />

initial data (dashed: v component, continuous: u component).<br />

Convergence rate<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −5<br />

−0.5<br />

10 −5<br />

10 −4<br />

10 −4<br />

10 −3<br />

SSP2−222<br />

10 −3<br />

Epsilon<br />

ARS−222<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

Convergence rate<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

10 −5<br />

10 −5<br />

10 −4<br />

10 −4<br />

SSP3−332<br />

10 −3<br />

Epsilon<br />

SSP2−322<br />

10 −3<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

Convergence rate<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

Convergence rate<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 −6<br />

−0.5<br />

10 −5<br />

10 −5<br />

10 −4<br />

10 −4<br />

SSP3−443<br />

10 −3<br />

Epsilon<br />

SSP2−332<br />

10 −3<br />

Epsilon<br />

10 −2<br />

10 −2<br />

10 −1<br />

10 −1<br />

10 0<br />

25<br />

10 0


Space discretizations<br />

We consider the case of the single scalar equation<br />

ut + f(u)x = 1<br />

ε g(u).<br />

We have to distinguish between <strong>schemes</strong> based on cell averages (finite volume approach<br />

as in most <strong>schemes</strong>) and <strong>schemes</strong> based on point values (finite difference approach).<br />

Let ∆x and ∆t be the mesh widths. We introduce the grid points<br />

xj = j∆x, xj+1/2 = xj + 1<br />

∆x,<br />

2<br />

j = . . . , −2, −1, 0, 1, 2, . . .<br />

and use the standard notations<br />

Finite volumes<br />

u n j = u(xj, t n ), ū n j = 1<br />

∆x<br />

� xj+1/2<br />

xj−1/2<br />

u(x, t n ) dx.<br />

Integrating the equation on Ij = [x j−1/2, x j+1/2] and dividing by h we obtain<br />

�<br />

dū�<br />

�<br />

dt<br />

� j<br />

= − 1<br />

∆x [f(u(x j+1/2, t)) − f(u(x j−1/2, t)) + 1<br />

ε∆x g(u)|j<br />

As usual the key step is the reconstruction step necessary to reconstruct the function<br />

u(x, t) at the grid points (required to evaluate the right hand side) starting from its cell<br />

average u(x, ¯ t).<br />

26


IMEX <strong>schemes</strong> cannot be applied straight<strong>for</strong>wardly since on the right hand side we have<br />

the average of the source term g(u) instead of the source term evaluated at the average<br />

of u, g(ū). This makes it difficult to construct IMEX-like <strong>schemes</strong> of order higher than<br />

two (in fact g(u) = g(u) + O(∆x 2 )).<br />

Finite differences<br />

In the position x = xj we obtain<br />

duj<br />

dt = −f(u)x|j + 1<br />

ε g(uj)<br />

where f(u)x|j is an approximation of f(u)x at the grid point x = xj.<br />

Clearly in this latter case IMEX <strong>schemes</strong> can be applied directly without any additional<br />

difficulty due to the presence of the source term.<br />

Remark An essential feature in all these <strong>schemes</strong> is the ability of the <strong>schemes</strong> to handle<br />

with discontinuous solutions. To this aim it is necessary to use non-oscillatory interpolating<br />

algorithms, in order to prevent the onset of spurious oscillations (like WENO methods).


Applications<br />

Broadwell model<br />

∂tρ + ∂xm = 0,<br />

∂tm + ∂xz = 0,<br />

∂tz + ∂xm = 1<br />

ε (ρ2 + m 2 − 2ρz),<br />

where ε is the mean free path. The dynamical variables ρ and m are the density and the<br />

momentum respectively, while z represents the flux of momentum.<br />

We per<strong>for</strong>m an accuracy test <strong>for</strong> <strong>schemes</strong> ARS(2,2,2) and IMEX-SSP2(2,2,2) with smooth<br />

initial data and periodic b.c. The space discretization is carried out on a staggered grid<br />

using Nassyahu and Tadmor central <strong>schemes</strong> strategy.<br />

27


Accuracy Test, Convergence Rates<br />

ε 1.0 10 −1 10 −2 10 −3 10 −5<br />

Convergence Rates <strong>for</strong> ρ N<br />

ARS(2,2,2) 2.04134 1.55946 1.39357 1.39515 1.39479 100-200<br />

2.01855 1.51302 1.15942 1.16581 1.16539 200-400<br />

IMEX-SSP2(2,2,2) 2.07772 2.11211 1.96649 2.04715 2.06860 100-200<br />

2.04453 2.07418 2.00709 1.98219 2.04030 200-400<br />

Convergence Rates <strong>for</strong> z<br />

ARS(2,2,2) 1.92939 1.36074 1.24543 1.25382 1.25448 100-200<br />

1.95090 1.43807 1.11493 1.12162 1.12197 200-400<br />

IMEX-SSP2(2,2,2) 2.06926 2.23039 1.60070 1.85409 2.08532 100-200<br />

2.03151 2.17488 1.76238 1.59695 2.04047 200-400<br />

28


Initial layer fix<br />

Next, we test the <strong>schemes</strong> with following two Riemann problems<br />

ρ(x,t)<br />

2.05<br />

2<br />

ρl = 2, ml = 1, zl = 1, x < 0.2,<br />

ρr = 1, mr = 0.13962, zr = 1, x > 0.2,<br />

ρl = 1, ml = 0, zl = 1, x < 0,<br />

ρr = 0.2, mr = 0, zr = 1, x > 0.<br />

ε=1e−008, t=0.50, N=200<br />

1.95<br />

−0.2 −0.15 −0.1 −0.05 0<br />

x<br />

0.05 0.1 0.15 0.2<br />

−1<br />

−2<br />

−3<br />

−4<br />

x<br />

ε=1e−008,<br />

10−3<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

t=0.25, N=200<br />

−5<br />

0.2 0.25 0.3 0.35<br />

x<br />

0.4 0.45 0.5<br />

Initial layer <strong>for</strong> ρ in problem 1 (left) and departure from equilibrium z − zE in problem 2 (right) <strong>for</strong> ε =<br />

10 −8 . Left problem: ARS(2,2,2) (∗), ARSF(2,2,2) (◦), IMEX-SSP2(2,2,2) (×). Right problem: IMEX-<br />

SSP2(2,2,2) (+), IMEX-SSP2F(2,2,2) (×), ARS(2,2,2) (◦).<br />

z(x,t)−z E (x,t)<br />

29<br />

(1)<br />

(2)


Monatomic gas in Extended Thermodynamics<br />

U =<br />

⎛<br />

⎜<br />

⎝<br />

ρ<br />

ρv<br />

1<br />

2ρv2 + 3<br />

Ut + F (U)x = 1<br />

ɛ R(U)<br />

2 p<br />

2<br />

3 ρv2 + σ<br />

ρv 3 + 5vp + 2σv + 2q<br />

F =<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

⎛<br />

⎟<br />

⎜<br />

⎟<br />

⎜<br />

⎟ , R = − ⎜<br />

⎠<br />

⎝<br />

ρv<br />

ρv2 + p + σ<br />

vp + σv + q<br />

2<br />

3<br />

0<br />

0<br />

0<br />

ρσ<br />

ρ(2q + 3vσ)<br />

1<br />

2ρv3 + 5<br />

2<br />

2<br />

3ρv3 + 4 7 8<br />

vp + vσ + 3 3 15q ρv4 + 5 p2<br />

32<br />

+ 7σp + ρ ρ 5 qv + v2 (8p + 5σ)<br />

ρ: density, u: velocity, p: pressure, σ: stress, q: heat flux<br />

As ɛ → 0 ⇒ σ → 0, q → 0 we obtain the Euler equations <strong>for</strong> monatomic gas.<br />

We use IMEX-SSP2(2,2,2) central scheme <strong>for</strong> a generalization of classical Sod’s problem<br />

U = Ul = (1, 0, 5, 0, 0), x < 0.5,<br />

U = Ur = (0.125, 0, 0.5, 0, 0), x > 0.5.<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠ ,<br />

30


ρ(x,t)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ε=1e−004, t=0.1, N=200<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

x<br />

0.6 0.7 0.8 0.9 1<br />

σ(x,t)<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

q(x,t)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

ε=1e−004, t=0.1, N=200<br />

−0.1<br />

0 0.1 0.2 0.3 0.4 0.5<br />

x<br />

0.6 0.7 0.8 0.9 1<br />

ε=1e−004, t=0.1, N=200<br />

−0.01<br />

0 0.1 0.2 0.3 0.4 0.5<br />

x<br />

0.6 0.7 0.8 0.9 1<br />

p(x,t)<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

x<br />

0.6 0.7 0.8 0.9 1<br />

u(x,t)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

ε=1e−004, t=0.1, N=200<br />

ε = 10 −4 , λ = 0.1, N = 200 at time t = 0.1.<br />

ε=1e−004, t=0.1, N=200<br />

−0.2<br />

0 0.1 0.2 0.3 0.4 0.5<br />

x<br />

0.6 0.7 0.8 0.9 1<br />

31


Lattice-Boltzmann models<br />

∂tf + v<br />

ɛ · ∇xf = 1<br />

ɛ 2 τ (f − f eq ), x, v ∈ R 2 ,<br />

v ∈ {c0, . . . , cN−1}, N = 9, ci ∈ {(0, 0), (0, ±1), (±1, 0), (±1, ±1)}.<br />

f eq �<br />

[ρ, u](v) = ρ 1 + 3u · v − 3<br />

2 |u|2 + 9<br />

�<br />

(u · v)2 f<br />

2 ∗ (v),<br />

ρ(x, t) =<br />

N−1 �<br />

i=0<br />

f(x, ci, t), ρu(x, t) =<br />

N−1 �<br />

i=0<br />

cif(x, ci, t),<br />

f ∗ (c0) = 4<br />

9 , f ∗ (ci) = 1<br />

9 , i = 1, ..., 4, f ∗ (ci) = 1<br />

, i = 5, ..., 8<br />

36<br />

As ɛ → 0 we obtain the incompressible Navier-Stokes equations with Reynolds number<br />

O(1/τ).<br />

shear layer<br />

(x, y) ∈ [0, 2π] 2 , ux(x, 0) = 0.05 sin(x), periodic b.c. and<br />

uy(x, y) = tanh(15(y − π/2)/π), y < π, uy(x, y) = tanh(15(3π/2 − y)/π), y > π.<br />

We test IMEX-SSP2(2,2,2) and IMEX-SSP3(3,3,2) <strong>schemes</strong> combined with second and<br />

third order upwind <strong>schemes</strong> based on CWENO reconstructions.<br />

32


Euler case (τ = 0): First order (left), Second order (center), Third order (right) at t=4<br />

with N = 64 (bottom) and N = 128 (top) <strong>for</strong> ε = 10 −6 .<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

33


Navier-Stokes case (τ = 0.01): First order (left), Second order (center), Third order<br />

(right) at t=10 with N = 64 (bottom) and N = 128 (top) <strong>for</strong> ε = 10 −6 .<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

h = 1/128<br />

h = 1/64<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0 1 2 3 4 5 6<br />

0<br />

0 1 2 3 4 5 6<br />

0<br />

34


Conclusions<br />

<strong>Runge</strong>-<strong>Kutta</strong> IMEX <strong>schemes</strong> represent a powerful tool <strong>for</strong> the time discretization of <strong>hyperbolic</strong><br />

<strong>systems</strong> with relaxation. In combination with finite volume <strong>schemes</strong> (up to second<br />

order) or finite difference <strong>schemes</strong> (of any order) they provide a new class of efficient<br />

underresolved <strong>schemes</strong> <strong>for</strong> the accurate solution of <strong>hyperbolic</strong> conservation laws with stiff<br />

source terms.<br />

Open problems and extensions:<br />

◦ 4th and 5th order IMEX-SSP <strong>schemes</strong><br />

◦ Higher order (more than third) finite volume <strong>schemes</strong> <strong>for</strong> <strong>hyperbolic</strong> <strong>systems</strong> with<br />

stiff relaxation<br />

◦ Less restrictive conditions <strong>for</strong> APk property<br />

◦ Development of well-balanced <strong>schemes</strong> that avoid numerical viscosity<br />

◦ Adaptive multi-modelling<br />

◦ Coupling with hybrid Monte Carlo strategies <strong>for</strong> multiscale problems.<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!