28.01.2013 Views

the florida state university college of arts and sciences evolution of ...

the florida state university college of arts and sciences evolution of ...

the florida state university college of arts and sciences evolution of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE FLORIDA STATE UNIVERSITY<br />

COLLEGE OF ARTS AND SCIENCES<br />

EVOLUTION OF THE BEACH RIDGE STRANDPLAIN ON ST. VINCENT ISLAND,<br />

FLORIDA<br />

By<br />

BETH M. FORREST<br />

A dissertation submitted to <strong>the</strong><br />

Department <strong>of</strong> Geological Sciences<br />

in partial fulfillment <strong>of</strong> <strong>the</strong><br />

requirements for <strong>the</strong> degree <strong>of</strong><br />

Doctor <strong>of</strong> Philosophy<br />

Degree Awarded:<br />

Spring Semester, 2007


The members <strong>of</strong> <strong>the</strong> Committee approve <strong>the</strong> dissertation <strong>of</strong> Beth Forrest defended on 04/02/2007<br />

Approved:<br />

_____________________________________________<br />

A. Leroy Odom, Chair, Geological Sciences<br />

_____________________________________________<br />

Joseph Travis, Dean, School <strong>of</strong> Arts <strong>and</strong> Science<br />

ii<br />

______________________________<br />

Joseph F. Donoghue<br />

Pr<strong>of</strong>essor Directing Dissertation<br />

______________________________<br />

Philip N. Froelich<br />

Outside Committee Member<br />

__________________________________<br />

Sherwood W. Wise<br />

Committee Member<br />

______________________________<br />

Sergio Fagherazzi<br />

Committee Member<br />

______________________________<br />

Stephen A. Kish<br />

Committee Member<br />

______________________________<br />

Alan W. Niedoroda<br />

Committee Member<br />

The Office <strong>of</strong> Graduate Studies has verified <strong>and</strong> approved <strong>the</strong> above named committee members.


ACKNOWLEDGEMENTS<br />

I would like to thank <strong>the</strong> many people who contributed to this study. First, I thank my advisor<br />

Dr. Joseph Donoghue for his continuous support in <strong>the</strong> PhD program. He was always available<br />

to provide advice. Without his encouragement <strong>and</strong> guidance, I could not have finished this<br />

dissertation. Many thanks to <strong>the</strong> late Jim Balsillie, <strong>of</strong> <strong>the</strong> Florida Geological Survey, <strong>and</strong> Dr.<br />

Frank Stapor, <strong>of</strong> Tennessee Tech University, for <strong>the</strong>ir field assistance <strong>and</strong> for <strong>the</strong>ir useful input<br />

throughout <strong>the</strong> course <strong>of</strong> this project. Thanks to Dr. Stephen Kish for assistance with GPS work<br />

<strong>and</strong> data h<strong>and</strong>ling <strong>and</strong> to Jim Sparr from <strong>the</strong> Florida Geological Survey, for running several GPR<br />

surveys on <strong>the</strong> isl<strong>and</strong> <strong>and</strong> processing <strong>the</strong> data. I’d like to acknowledge my colleagues from <strong>the</strong><br />

FDEP, Tom Watters, Bill Bordner <strong>and</strong> Guy Weeks, for taking time out <strong>of</strong> <strong>the</strong>ir busy work<br />

schedules to survey several <strong>of</strong> my sample sites. I am grateful to <strong>the</strong> Florida Geologic Survey for<br />

allowing me to use <strong>the</strong>ir vibracore equipment, core cutting facilities <strong>and</strong> GPR equipment. Matt<br />

Curren, from <strong>the</strong> FSU Antarctic Research Facility, allowed me to use <strong>the</strong> darkroom to prepare<br />

my samples <strong>and</strong> provided storage space for my numerous cores in <strong>the</strong> Antarctic Research<br />

Facility. Thanks also, to George <strong>and</strong> Fong Brooke, <strong>of</strong> <strong>the</strong> University <strong>of</strong> Georgia for <strong>the</strong>ir<br />

assistance with analyzing <strong>the</strong> luminescence data. I am very grateful for <strong>the</strong> cooperation <strong>and</strong><br />

interest <strong>of</strong> <strong>the</strong> staff at <strong>the</strong> St. Vincent Isl<strong>and</strong> National Wildlife Refuge. A special thanks goes to<br />

Dale Shiver for assistance with <strong>the</strong> fieldwork, as well as to Monica Harris <strong>and</strong> Thom Lewis. I<br />

am also indebted to Aaron Lower, Jonathan Faulkner, Tami Karl, Anthony Priestas, Jennifer<br />

Sliko <strong>and</strong> Alan Willet for helping with fieldwork despite <strong>the</strong> long days, heat <strong>and</strong> bugs. Finally, I<br />

would like to thank my family <strong>and</strong> friends for listening to my complaints <strong>and</strong> frustrations <strong>and</strong> for<br />

supporting me. Without <strong>the</strong>m, I could not have accomplished this project.<br />

iii


TABLE OF CONTENTS<br />

List <strong>of</strong> Tables ........................................................................................................................... vi<br />

List <strong>of</strong> Figures......................................................................................................................... vii<br />

Abstract.................................................................................................................................. xix<br />

1. INTRODUCTION AND GEOLOGICAL BACKGROUND<br />

Objectives ......................................................................................................................1<br />

Potential Significance ....................................................................................................2<br />

Hypo<strong>the</strong>ses.....................................................................................................................3<br />

Regional Geology ..........................................................................................................3<br />

Apalachicola River.........................................................................................................4<br />

Barrier Isl<strong>and</strong>s................................................................................................................5<br />

Beach Ridge Formation .................................................................................................7<br />

Sea Level Change ..........................................................................................................9<br />

Pre-Holocene Sea Level...............................................................................................10<br />

Holocene Sea Level .....................................................................................................12<br />

Gulf <strong>of</strong> Mexico Sea Level Record ...............................................................................13<br />

2. STUDY AREA<br />

3. METHODS<br />

St. Vincent Isl<strong>and</strong>.........................................................................................................23<br />

Barrier Isl<strong>and</strong> Evolution Inferred from Beach Ridge Patterns.....................................25<br />

Geoarchaeology ...........................................................................................................26<br />

Field Sampling........................................................................................................….33<br />

Geochronology<br />

Luminescence Dating…………………………………………………………34<br />

Advantages <strong>of</strong> Luminescence Dating for Coastal Sediment Deposits.……….36<br />

OSL versus Radiocarbon Dating…..………………………………………….37<br />

Application <strong>of</strong> OSL to Coastal Studies………………………………………..38<br />

iv


4. RESULTS<br />

Laboratory Analyses ....................................................................................................38<br />

Sediment Analyses.......................................................................................................41<br />

Topographic Surveying................................................................................................42<br />

Airborne Remote Sensing............................................................................................42<br />

Ground Penetrating Radar (GPR) ................................................................................43<br />

Sample Sites.................................................................................................................56<br />

Surface <strong>and</strong> Subsurface Morphology <strong>of</strong> <strong>the</strong> Beach Ridge Plain<br />

Topographic Survey Results.......................................................................63<br />

GPR Transect Results .................................................................................64<br />

Granulometric Results .................................................................................................65<br />

Geochronologic Results...............................................................................................68<br />

5. DISCUSSION<br />

Surface <strong>and</strong> Subsurface Morphology <strong>of</strong> <strong>the</strong> Beach Ridge Plain................................116<br />

Granulometric Data from <strong>the</strong> Beach Ridge Samples.................................................118<br />

Geochronologic data from <strong>the</strong> beach ridge samples..................................................121<br />

6. CONCLUSIONS................................................................................................................125<br />

APPENDIX A- Granulometry Data.......................................................................................128<br />

REFERENCES .....................................................................................................................257<br />

BIOGRAPHICAL SKETCH .................................................................................................268<br />

v


LIST OF TABLES<br />

3.1 Location <strong>of</strong> benchmarks on St. Vincent Isl<strong>and</strong>..................................................................45<br />

4.1 Summary <strong>of</strong> beach ridge sediment sample data.................................................................71<br />

4.2 Summary <strong>of</strong> beach ridge set characteristics.......................................................................73<br />

4.3 Measured elevations <strong>of</strong> St. Vincent Isl<strong>and</strong> benchmarks ....................................................74<br />

4.4 Summary <strong>of</strong> granulometry data .........................................................................................75<br />

4.5 Application <strong>of</strong> Tanner’s (1986, 1991) method <strong>of</strong> SELF (settling-<br />

eolian-littoral-fluvial) determination to <strong>the</strong> St. Vincent Isl<strong>and</strong> samples..................................76<br />

4.6 OSL age calculations .........................................................................................................77<br />

4.7 OSL age calculations using assumed moisture contents <strong>of</strong> 20±5% <strong>and</strong> 5±2%…………..78<br />

4.8 Calculated progradation rates <strong>and</strong> ridge growth rates, based on<br />

OSL ages <strong>and</strong> distances between ridges. .................................................................................79<br />

4.9 Paleosealevel position estimates........................................................................................80<br />

vi


LIST OF FIGURES<br />

1.1 Location map <strong>of</strong> St. Vincent Isl<strong>and</strong> on <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico<br />

coast, Florida, sou<strong>the</strong>astern U.S.A. Inset map shows <strong>the</strong> chain <strong>of</strong> barrier<br />

isl<strong>and</strong>s <strong>and</strong> spits <strong>of</strong> which St. Vincent is a part........................................................................15<br />

1.2 Beach ridge sets on St. Vincent Isl<strong>and</strong>. See Figure 1.1 for location<br />

(Source: Stapor, 1973) .............................................................................................................16<br />

1.3 The Florida Platform. The edge <strong>of</strong> <strong>the</strong> platform is marked by <strong>the</strong> west<br />

Florida shelf <strong>and</strong> slope, which drop into <strong>the</strong> deep Gulf <strong>of</strong> Mexico. Note<br />

that Florida occupies approximately half <strong>of</strong> <strong>the</strong> carbonate platform.<br />

(Source: USGS, 2001) .............................................................................................................17<br />

1.4 Pleistocene glacial advances <strong>and</strong> retreats, as recorded in benthic<br />

oxygen isotope records. The record shows <strong>the</strong> predicted sea level (solid<br />

18<br />

line) <strong>and</strong> mean ocean O (dashed line), derived from ice volume<br />

histories. (Source: Raymo et al., 2006)...................................................................................18<br />

1.5 Composite sea level curves for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. The solid<br />

line adapted from Balsillie <strong>and</strong> Donoghue (2004) is a comprehensive<br />

compilation <strong>of</strong> radiocarbon dated sea-level indicators for <strong>the</strong> nor<strong>the</strong>rn Gulf<br />

<strong>of</strong> Mexico. The dashed curve is <strong>the</strong> global “eustatic” sea-level history<br />

from Red Sea benthic foraminifera data <strong>of</strong> Siddall et al (2003). .............................................19<br />

1.6 The Apalachicola River drainage basin, northwest Florida. The<br />

boundaries <strong>of</strong> <strong>the</strong> basin are shown by <strong>the</strong> solid black line. (Source:<br />

Northwest Water Management District, 1996). St. Vincent Isl<strong>and</strong> is<br />

located in <strong>the</strong> lower left center <strong>of</strong> <strong>the</strong> map...............................................................................20<br />

1.7 Model <strong>of</strong> beach ridge formation. (Source: Tanner, 1989) .................................................21<br />

1.8 Global sea-level history from 400,000 years to present, based on dated<br />

shoreline indicators from Barbados <strong>and</strong> New Guinea (symbols) <strong>and</strong><br />

oxygen isotope data from marine sediments (solid line). (Source: Lea et al,<br />

2002) ........................................................................................................................................22<br />

2.1 Infrared orthophoto <strong>of</strong> St. Vincent Isl<strong>and</strong> showing <strong>the</strong> beach ridge<br />

plain that covers <strong>the</strong> surface <strong>of</strong> <strong>the</strong> isl<strong>and</strong> (USGS imagery). Location is<br />

shown in Figure 1.1..................................................................................................................28<br />

2.2 Sediment transport rates in <strong>the</strong> Apalachicola barrier isl<strong>and</strong> chain. The<br />

arrows indicate <strong>the</strong> direction <strong>of</strong> transport <strong>and</strong> <strong>the</strong> numbers represent <strong>the</strong><br />

volume (in 10 3 m 3 /yr) <strong>of</strong> material deposited <strong>and</strong> eroded. (Source: Stapor,<br />

1973) ........................................................................................................................................29<br />

vii


2.3 St. Vincent Isl<strong>and</strong> shoreline changes based on historic ch<strong>arts</strong>. (Source:<br />

Stapor, 1973)............................................................................................................................30<br />

2.4 Age distribution <strong>of</strong> archaeological sites in <strong>the</strong> lower Apalachicola<br />

River watershed, including St. Vincent Isl<strong>and</strong>. Symbols indicate<br />

approximate known age <strong>of</strong> <strong>the</strong> oldest artifacts found at all dated sites<br />

within <strong>the</strong> lower watershed. Contours show <strong>the</strong> maximum age <strong>of</strong> <strong>the</strong><br />

enclosed sites, indicating a close connection between delta migration <strong>and</strong><br />

human settlement patterns. Contours are dashed where uncertain.<br />

Patterned area northwest <strong>of</strong> <strong>the</strong> modern Apalachicola delta is <strong>the</strong> “Late<br />

Pleistocene” delta. (Source: Donoghue <strong>and</strong> White, 1995).......................................................31<br />

2.5 Archaeological sites on St. Vincent Isl<strong>and</strong>. (Source: Braley, 1982)..................................32<br />

3.1 a) Collecting a vibracore. b) Collecting samples by trenching <strong>and</strong><br />

hammering a short section <strong>of</strong> aluminum pipe into <strong>the</strong> vertical face . ......................................46<br />

3.2 Demonstration <strong>of</strong> <strong>the</strong> basis <strong>of</strong> luminescence dating. The event being<br />

dated is <strong>the</strong> setting to zero <strong>of</strong> <strong>the</strong> luminescence signal that was acquired at<br />

some point in <strong>the</strong> past. The zeroing <strong>of</strong> this signal occurs through exposure<br />

to sunlight during erosion, transport <strong>and</strong> deposition. Once <strong>the</strong> material is<br />

buried <strong>the</strong> signal begins to build again. (Source: Lepper, K., NDSU,<br />

http://www.ndsu.nodak.edu/ndsu/klepper) ..............................................................................47<br />

3.3 OSL processes represented by <strong>the</strong> conduction b<strong>and</strong> model. The<br />

mineral is exposed to nuclear radiation. The binding electrons are excited<br />

above <strong>the</strong>ir ground <strong>state</strong>s. As <strong>the</strong> electrons return to <strong>the</strong>ir ground <strong>state</strong>s,<br />

some become trapped in defects in <strong>the</strong> crystal lattice (represented by “T”).<br />

When <strong>the</strong> mineral is exposed to light or heat <strong>the</strong> defects are emptied <strong>and</strong><br />

light is emitted. (Source: Aitken, 1991)..................................................................................48<br />

3.4 Effects <strong>of</strong> natural radiation on sediment particles. Silt-sized grains are<br />

irradiated by alpha, beta, gamma <strong>and</strong> cosmic radiation but s<strong>and</strong>-sized<br />

grains are only irradiated by beta, gamma <strong>and</strong> cosmic radiation, since<br />

alpha particles have a short range <strong>and</strong> only penetrate <strong>the</strong> outer rind <strong>of</strong><br />

s<strong>and</strong>-sized grains. Of <strong>the</strong> four radiation types that contribute to <strong>the</strong> dose<br />

rate, cosmic radiation has <strong>the</strong> greatest penetration. (Source: Aitken, 1998)............................49<br />

3.5 Sample removed from large core samples. The shaded area represents<br />

<strong>the</strong> 100 grams collected as a dating sample. (Source: Forrest, 2003)......................................50<br />

3.6 Riso TL/OSL measurement system schematic in side view. This<br />

system consists <strong>of</strong> a turntable in which <strong>the</strong>re can be 48 sample aliquot<br />

positions. The table rotates <strong>and</strong> when a sample disc reaches <strong>the</strong> position<br />

<strong>of</strong> <strong>the</strong> lift, it is raised for measurement <strong>of</strong> luminescence. A beta source<br />

(i.e. Sr-90) is positioned remotely from <strong>the</strong> measurement position <strong>and</strong><br />

viii


preheating is carried out on a heating element. The system is fully<br />

automated. (Source: Aitken, 1998) ..........................................................................................51<br />

3.7 Location <strong>of</strong> samples collected specifically for grain size analysis. The<br />

closed green circles represent samples collected in 2005 <strong>and</strong> 2006 by <strong>the</strong><br />

author. The closed blue <strong>and</strong> red circles represent samples collected in<br />

1984 <strong>and</strong> 1985, respectively, by Tanner <strong>and</strong> colleagues. (Map Source:<br />

Miller et al, 1981) ....................................................................................................................52<br />

3.8 Method <strong>of</strong> SELF determination. (Source: Balsillie, 1995)................................................53<br />

3.9 Basis <strong>of</strong> airborne LIDAR surveying. (Source: USACE, 2002). ........................................54<br />

3.10 GPR survey techniques. a) GPR setup. b) 100 mHz antenna unit. c)<br />

250 mHz antenna unit. d) 50 mHz antenna unit. .....................................................................55<br />

4.1 Sample sites on St. Vincent Isl<strong>and</strong>. The blue circles represent sites<br />

where a vibracore was collected. The black circles represent sites where<br />

samples were collected from <strong>the</strong> vertical wall <strong>of</strong> a trench. The<br />

approximate locations <strong>of</strong> Roads 4 <strong>and</strong> 5 are shown in red. .....................................................81<br />

4.2 Example <strong>of</strong> a trench through a beach ridge on St. Vincent Isl<strong>and</strong>. The<br />

trench axis is perpendicular to <strong>the</strong> shoreline. Seaward direction is to <strong>the</strong><br />

left. Note <strong>the</strong> seaward dipping beds at all levels in <strong>the</strong> ridge shown by <strong>the</strong><br />

solid black line <strong>and</strong> <strong>the</strong> dashed lines. Vertical structures in <strong>the</strong> upper<br />

section are root casts. White circles indicate sediment sample locations...............................82<br />

4.3 Site SVI 001 (Paradise Point Site). Location <strong>of</strong> vibracore site SVI 001<br />

was just <strong>of</strong>fshore. Site location is shown in Figure 4.1. Samples collected<br />

from this site are listed in Table 4.1…………………………………………………………..83<br />

4.4 Site SVI 002. Push cores 072304-01,02 <strong>and</strong> 03 were collected for OSL<br />

dating. Vibracore 072304-04 was also collected from <strong>the</strong> floor <strong>of</strong> this<br />

trench. Site location is shown in Figure 4.1. Samples collected from this<br />

site are listed in Table 4.1 . ......................................................................................................83<br />

4.5 Site SVI 003. Trench excavated at site SVI 003. Push cores 072304-<br />

05,06 <strong>and</strong> 07 were collected for OSL dating. Site location is shown in<br />

Figure 4.1. Samples collected from this site are listed in Table 4.1. ......................................84<br />

4.6 Site SVI 004. Vibracore 072304-08 was collected from this site. Site<br />

location is shown in Figure 4.1. Samples collected from this site are listed<br />

in Table 4.1. .............................................................................................................................85<br />

ix


4.7 Site SVI 009. a) OSL dating samples. b) Samples collected for grain<br />

size analysis. Site location is shown in Figure 4.1. Samples collected<br />

from this site are listed in Table 4.1.........................................................................................86<br />

4.8 Site SVI 010. Location <strong>of</strong> three samples collected for grain size<br />

analysis (050505-02A,B,C) <strong>and</strong> one sample collected for OSL dating<br />

(050505-02D). Site location is shown in Figure 4.1. Samples collected<br />

from this site are listed in Table 4.1. .......................................................................................87<br />

4.9 Site SVI 011. Location <strong>of</strong> two samples collected for grain size<br />

analysis (050505-03A,B) <strong>and</strong> one sample collected for OSL dating<br />

(050505-03C). Site location is shown in Figure 4.1. Samples collected<br />

from this site are listed in Table 4.1.........................................................................................87<br />

4.10 Site SVI 012. a) Trench excavated. b) Location <strong>of</strong> two samples<br />

collected for grain size analysis (050505-04A,B) <strong>and</strong> one sample collected<br />

for OSL dating (050505-04C). Site location is shown in Figure 4.1.<br />

Samples collected from this site are listed in Table 4.1...........................................................88<br />

4.11 Site SVI 013. Location <strong>of</strong> two samples collected for grain size<br />

analysis (050505-05A,B) <strong>and</strong> one sample collected for OSL dating<br />

(050505-05C). Site location is shown in Figure 4.1. Samples collected<br />

from this site are listed in Table 4.1.........................................................................................89<br />

4.12 Site SVI 014. Vibracore 050505-06 was collected from this location.<br />

Site location is shown in Figure 4.1. Samples collected from this site are<br />

listed in Table 4.1.....................................................................................................................89<br />

4.13 Site SVI 015. Vibracore 050605-01 was collected from this location.<br />

Site location is shown in Figure 4.1. Samples collected from this site are<br />

listed in Table 4.1.....................................................................................................................90<br />

4.14 Site SVI 016. Vibracore 050605-02 was collected from this location.<br />

Site location is shown in Figure 4.1. Samples collected from this site are<br />

listed in Table 4.1.....................................................................................................................90<br />

4.15 Site SVI 020. Samples 011006-01, 02 <strong>and</strong> 03 were collected for OSL<br />

dating. Samples 011006-04, 05 <strong>and</strong> 06 were collected for grain size<br />

analysis. Site location is shown in Figure 4.1. Samples collected from<br />

this site are listed in Table 4.1. ................................................................................................91<br />

4.16 Site SVI 022. Two grain size samples (011006-13,14) <strong>and</strong> two OSL<br />

samples were collected (011006-11,12). Site location is shown in Figure<br />

4.1. Samples collected from this site are listed in Table 4.1...................................................91<br />

x


4.17 Site SVI 023. a) Trench. b) Samples 011006-15 <strong>and</strong> 16 were<br />

collected for OSL dating. Samples 011006-17 <strong>and</strong> 18 were collected for<br />

grain size analysis. Site location is shown in Figure 4.1. Samples<br />

collected from this site are listed in Table 4.1. ........................................................................92<br />

4.18 Site SVI 024. a) Trench. b) Samples 011006-19 <strong>and</strong> 20 were<br />

collected for OSL dating. Samples 011006-21 <strong>and</strong> 22 were collected for<br />

grain size analysis. Site location is shown in Figure 4.1. Samples<br />

collected from this site are listed in Table 4.1. ........................................................................93<br />

4.19 Site SVI 027. a) Trench. b) Samples 011106-07 <strong>and</strong> 08 were<br />

collected for OSL dating. Samples 011106-09 <strong>and</strong> 10 were collected for<br />

grain size analysis. Site location is shown in Figure 4.1. Samples<br />

collected from this site are listed in Table 4.1. ........................................................................94<br />

4.20 Site SVI 028. a) Trench. b) Samples 011206-01 <strong>and</strong> 02 were<br />

collected for OSL dating. Samples 011206-03 <strong>and</strong> 04 were collected for<br />

grain size analysis. Site location is shown in Figure 4.1. Samples<br />

collected from this site are listed in Table 4.1. ........................................................................95<br />

4.21 Dutch gouge-auger core taken at Tahiti Beach in <strong>the</strong> vicinity <strong>of</strong><br />

Mallard Slough in January 1979. The approximate location <strong>of</strong> <strong>the</strong> core is<br />

shown in Figure 4.1. Note <strong>the</strong> pre-barrier Pleistocene surface (indicated<br />

by <strong>the</strong> arrow) at approximately 8.7 meters depth in <strong>the</strong> core. (Source:<br />

Stapor, pers. comm.) ................................................................................................................96<br />

4.22 Boreholes drilled in <strong>the</strong> St. Vincent Isl<strong>and</strong> vicinity. Inset map shows<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> three cores. The pre-barrier Pleistocene surface appears<br />

in <strong>the</strong> two St. Vincent boreholes (Holes IL <strong>and</strong> IM) at approximately 22<br />

feet below MSL (6.7 meters). (Source: Schnable, 1966).........................................................97<br />

4.23 Line A-A’ represents <strong>the</strong> location <strong>of</strong> <strong>the</strong> topographic survey transect<br />

across St. Vincent Isl<strong>and</strong>. That pr<strong>of</strong>ile is shown in Figure 4.24. The<br />

pr<strong>of</strong>ile follows isl<strong>and</strong> Road 4. Line A-A’ also represents <strong>the</strong> location <strong>of</strong><br />

<strong>the</strong> GPR survey transect across St. Vincent Isl<strong>and</strong>, which is shown in<br />

Figures 4.27 <strong>and</strong> 4.28...............................................................................................................98<br />

4.24 North-south topographic pr<strong>of</strong>ile across St. Vincent Isl<strong>and</strong>, along Road<br />

4. North is to <strong>the</strong> right. See Figure 4.23 for pr<strong>of</strong>ile location. The blue line<br />

represents <strong>the</strong> transect conducted by Stapor <strong>and</strong> Tanner (1977) (referred to<br />

as “Stapor Survey”. The green line represents <strong>the</strong> road <strong>and</strong> <strong>the</strong> red line<br />

represents <strong>the</strong> survey conducted during this study (referred to as “Kish<br />

Survey”). Vertical exaggeration is 200 x………………..………………………………….…99<br />

4.25 Topographic pr<strong>of</strong>ile across <strong>the</strong> beach ridges located at site SVI 009.<br />

The ridges are located on isl<strong>and</strong> Road 4, <strong>and</strong> are part <strong>of</strong> <strong>the</strong> topographic<br />

xi


<strong>and</strong> GPR transect <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. Vertical exaggeration is 17x. North is to<br />

<strong>the</strong> right <strong>and</strong> south (seaward) is to <strong>the</strong> left. Site location is shown in<br />

Figure 4.1 ...............................................................................................................................100<br />

4.26 Mean ridge set height vs. distance along <strong>the</strong> topographic pr<strong>of</strong>ile.<br />

Pr<strong>of</strong>ile location shown in Figure 4.23. Mean heights taken from Figure<br />

4.24.........................................................................................................................................101<br />

4.27 GPR pr<strong>of</strong>ile across St. Vincent Isl<strong>and</strong>. Gulf <strong>of</strong> Mexico (south) is to<br />

<strong>the</strong> left side <strong>of</strong> <strong>the</strong> figure. Vertical <strong>and</strong> horizontal scales are in meters.<br />

The red vertical lines delineate <strong>the</strong> low areas between individual beach<br />

ridges. The blue lines represent <strong>the</strong> trend <strong>of</strong> <strong>the</strong> crossbeds within each<br />

beach ridge.............................................................................................................................102<br />

4.28 Close-up <strong>of</strong> <strong>the</strong> section <strong>of</strong> <strong>the</strong> 100 MHz GPR survey that covered site<br />

SVI 009. Site location is shown in Figure 4.1 <strong>and</strong> 4.27. South (seaward)<br />

is to left. .................................................................................................................................103<br />

4.29 Suite mean vs. suite st<strong>and</strong>ard deviation .........................................................................104<br />

4.30 Suite mean vs. suite kurtosis..........................................................................................105<br />

4.31 Relative age versus suite kurtosis. Note: Relative age is unitless.<br />

Ridge sets were assigned numbers from 1 to 13 with <strong>the</strong> youngest<br />

represented by “1” <strong>and</strong> <strong>the</strong> oldest represented by “13” .........................................................106<br />

4.32 Suite mean vs. suite skewness .......................................................................................107<br />

4.33 Plot <strong>of</strong> relative age versus suite st<strong>and</strong>ard deviation Note: Relative age<br />

is unitless. Ridge sets were assigned numbers from 1 to 13 with <strong>the</strong><br />

youngest represented by “1” <strong>and</strong> <strong>the</strong> oldest represented by “13”..........................................108<br />

4.34 Tail <strong>of</strong> fines plot. Plot derived from Tanner (1991)......................................................109<br />

4.35 Skewness vs. kurtosis. Plot derived from Tanner (1991) .............................................110<br />

4.36 Grain size characteristics <strong>of</strong> <strong>the</strong> isl<strong>and</strong>s that rim <strong>the</strong> Apalachicola<br />

River mouth. The numbers from 1 to 9 correspond to <strong>the</strong> relative<br />

locations plotted in Figures 4.37 to 4.39. (Source: Balsillie, 1995).......................................111<br />

4.37 Location relative to <strong>the</strong> Apalachicola River mouth versus mean grain<br />

size. Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered<br />

locations in Figure 4.36. (Data source: Balsillie, 1995) ........................................................112<br />

xii


4.38 Location relative to <strong>the</strong> Apalachicola River mouth versus st<strong>and</strong>ard<br />

deviation. Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong><br />

numbered locations in Figure 4.36. (Data source: Balsillie, 1995) .......................................112<br />

4.39 Location relative to <strong>the</strong> Apalachicola River mouth versus skewness.<br />

Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered locations<br />

in Figure 4.36 (Data source: Balsillie, 1995).........................................................................113<br />

4.40 Location relative to <strong>the</strong> Apalachicola River mouth versus kurtosis.<br />

Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered locations<br />

in Figure 4.36. (Data source: Balsillie, 1995)........................................................................113<br />

4.41 OSL ages for samples collected from St. Vincent Isl<strong>and</strong> ..............................................114<br />

4.42 St. Vincent Isl<strong>and</strong> progradation rates. The red solid line adapted<br />

from Balsillie <strong>and</strong> Donoghue (2004) is a comprehensive compilation <strong>of</strong><br />

radiocarbon dated sea-level indicators for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico.<br />

The numerical values represent <strong>the</strong> rates <strong>of</strong> progradation <strong>of</strong> <strong>the</strong> St. Vincent<br />

Isl<strong>and</strong> beach ridge plain based on <strong>the</strong> OSL dated sites on <strong>the</strong> isl<strong>and</strong>. The<br />

blue arrows represent <strong>the</strong> OSL dates obtained during <strong>the</strong> investigation. ..............................115<br />

A.1 Granplot analysis <strong>of</strong> sample 7.........................................................................................129<br />

A.2 Method <strong>of</strong> SELF determination applied to sample 7 ......................................................130<br />

A.3 Granplot analysis <strong>of</strong> sample 49.......................................................................................131<br />

A.4 Method <strong>of</strong> SELF determination applied to sample 49 ....................................................132<br />

A.5 Granplot analysis <strong>of</strong> sample 1.........................................................................................133<br />

A.6 Method <strong>of</strong> SELF determination applied to sample 1 ......................................................134<br />

A.7 Granplot analysis <strong>of</strong> sample 011206-06..........................................................................135<br />

A.8 Method <strong>of</strong> SELF determination applied to sample 011206-06.......................................136<br />

A.9 Granplot analysis <strong>of</strong> sample 28.......................................................................................137<br />

A.10 Method <strong>of</strong> SELF determination applied to sample 28 ..................................................138<br />

A.11Granplot analysis <strong>of</strong> sample 46......................................................................................139<br />

A.12 Method <strong>of</strong> SELF determination applied to sample 46 ..................................................140<br />

A.13 Granplot analysis <strong>of</strong> sample 38.....................................................................................141<br />

xiii


A.14 Method <strong>of</strong> SELF determination applied to sample 38 ..................................................142<br />

A.15 Granplot analysis <strong>of</strong> sample 42.....................................................................................143<br />

A.16 Method <strong>of</strong> SELF determination applied to sample 42 ..................................................144<br />

A.17 Granplot analysis <strong>of</strong> sample 40.....................................................................................145<br />

A.18 Method <strong>of</strong> SELF determination applied to sample 40 ..................................................146<br />

A.19 Granplot analysis <strong>of</strong> sample 011006-09........................................................................147<br />

A.20 Method <strong>of</strong> SELF determination applied to sample 011006-09.....................................148<br />

A.21 Granplot analysis <strong>of</strong> sample 011006-10........................................................................149<br />

A.22 Method <strong>of</strong> SELF determination applied to sample 011006-10.....................................150<br />

A.23 Granplot analysis <strong>of</strong> sample 24.....................................................................................151<br />

A.24 Method <strong>of</strong> SELF determination applied to sample 24 ..................................................152<br />

A.25 Granplot analysis <strong>of</strong> sample 34.....................................................................................153<br />

A.26 Method <strong>of</strong> SELF determination applied to sample 34 ..................................................154<br />

A.27 Granplot analysis <strong>of</strong> sample 32.....................................................................................155<br />

A.28 Method <strong>of</strong> SELF determination applied to sample 32 ..................................................156<br />

A.29 Granplot analysis <strong>of</strong> sample 011206-03........................................................................157<br />

A.30 Method <strong>of</strong> SELF determination applied to sample 011206-03.....................................158<br />

A.31 Granplot analysis <strong>of</strong> sample 011206-04........................................................................159<br />

A.32 Method <strong>of</strong> SELF determination applied to sample 011206-04.....................................160<br />

A.33 Granplot analysis <strong>of</strong> sample 050505-01A.....................................................................161<br />

A.34 Method <strong>of</strong> SELF determination applied to sample 050505-01A..................................162<br />

A.35 Granplot analysis <strong>of</strong> sample 050505-01B.....................................................................163<br />

A.36 Method <strong>of</strong> SELF determination applied to sample 050505-01B ..................................164<br />

xiv


A.37 Granplot analysis <strong>of</strong> sample 050505-01C.....................................................................165<br />

A.38 Method <strong>of</strong> SELF determination applied to sample 050505-01C ..................................166<br />

A.39 Granplot analysis <strong>of</strong> sample 050505-01D.....................................................................167<br />

A.40 Method <strong>of</strong> SELF determination applied to sample 050505-01D..................................168<br />

A.41 Granplot analysis <strong>of</strong> sample 050505-01E .....................................................................169<br />

A.42 Method <strong>of</strong> SELF determination applied to sample 050505-01E ..................................170<br />

A.43 Granplot analysis <strong>of</strong> sample 050505-01F .....................................................................171<br />

A.44 Method <strong>of</strong> SELF determination applied to sample 050505-01F...................................172<br />

A.45 Granplot analysis <strong>of</strong> sample 050505-01G.....................................................................173<br />

A.46 Method <strong>of</strong> SELF determination applied to sample 050505-01G..................................174<br />

A.47 Granplot analysis <strong>of</strong> sample 050505-01H.....................................................................175<br />

A.48 Method <strong>of</strong> SELF determination applied to sample 050505-01H..................................176<br />

A.49 Granplot analysis <strong>of</strong> sample 050505-01I ......................................................................177<br />

A.50 Method <strong>of</strong> SELF determination applied to sample 050505-01I ...................................178<br />

A.51 Granplot analysis <strong>of</strong> sample 011006-13........................................................................179<br />

A.52 Method <strong>of</strong> SELF determination applied to sample 011006-13.....................................180<br />

A.53 Granplot analysis <strong>of</strong> sample 011006-14........................................................................181<br />

A.54 Method <strong>of</strong> SELF determination applied to sample 011006-14.....................................182<br />

A.55 Granplot analysis <strong>of</strong> sample 20.....................................................................................183<br />

A.56 Method <strong>of</strong> SELF determination applied to sample 20 ..................................................184<br />

A.57 Granplot analysis <strong>of</strong> sample 011006-05........................................................................185<br />

A.58 Method <strong>of</strong> SELF determination applied to sample 011006-05.....................................186<br />

A.59 Granplot analysis <strong>of</strong> sample 011006-06........................................................................187<br />

xv


A.60 Method <strong>of</strong> SELF determination applied to sample 011006-06.....................................188<br />

A.61 Granplot analysis <strong>of</strong> sample 011006-04........................................................................189<br />

A.62 Method <strong>of</strong> SELF determination applied to sample 011006-04.....................................190<br />

A.63 Granplot analysis <strong>of</strong> sample 16.....................................................................................191<br />

A.64 Method <strong>of</strong> SELF determination applied to sample 16 ..................................................192<br />

A.65 Granplot analysis <strong>of</strong> sample 14.....................................................................................193<br />

A.66 Method <strong>of</strong> SELF determination applied to sample 14 ..................................................194<br />

A.67 Granplot analysis <strong>of</strong> sample 011006-17........................................................................195<br />

A.68 Method <strong>of</strong> SELF determination applied to sample 011006-17.....................................196<br />

A.69 Granplot analysis <strong>of</strong> sample 011006-18........................................................................197<br />

A.70 Method <strong>of</strong> SELF determination applied to sample 011006-18.....................................198<br />

A.71 Granplot analysis <strong>of</strong> sample 050505-02A.....................................................................199<br />

A.72 Method <strong>of</strong> SELF determination applied to sample 050505-02A..................................200<br />

A.73 Granplot analysis <strong>of</strong> sample 050505-02B.....................................................................201<br />

A.74 Method <strong>of</strong> SELF determination applied to sample 050505-02B ..................................202<br />

A.75 Granplot analysis <strong>of</strong> sample 050505-02C.....................................................................203<br />

A.76 Method <strong>of</strong> SELF determination applied to sample 050505-02C ..................................204<br />

A.77 Granplot analysis <strong>of</strong> sample 050505-04A.....................................................................205<br />

A.78 Method <strong>of</strong> SELF determination applied to sample 050505-04A..................................206<br />

A.79 Granplot analysis <strong>of</strong> sample 050505-04B.....................................................................207<br />

A.80 Method <strong>of</strong> SELF determination applied to sample 050505-04B ..................................208<br />

A.81 Granplot analysis <strong>of</strong> sample 050505-05A....................................................................209<br />

A.82 Method <strong>of</strong> SELF determination applied to sample 050505-05A..................................210<br />

xvi


A.83 Granplot analysis <strong>of</strong> sample 050505-05B.....................................................................211<br />

A.84 Method <strong>of</strong> SELF determination applied to sample 050505-05B ..................................212<br />

A.85 Granplot analysis <strong>of</strong> sample 011106-06........................................................................213<br />

A.86 Method <strong>of</strong> SELF determination applied to sample 011106-06.....................................214<br />

A.87 Granplot analysis <strong>of</strong> sample 011106-03........................................................................215<br />

A.88 Method <strong>of</strong> SELF determination applied to sample 011106-03.....................................216<br />

A.89 Granplot analysis <strong>of</strong> sample 011106-04........................................................................217<br />

A.90 Method <strong>of</strong> SELF determination applied to sample 011106-04.....................................218<br />

A.91 Granplot analysis <strong>of</strong> sample H......................................................................................219<br />

A.92 Method <strong>of</strong> SELF determination applied to sample H ...................................................220<br />

A.93 Granplot analysis <strong>of</strong> sample I........................................................................................221<br />

A.94 Method <strong>of</strong> SELF determination applied to sample I.....................................................222<br />

A.95 Granplot analysis <strong>of</strong> sample 011006-21........................................................................223<br />

A.96 Method <strong>of</strong> SELF determination applied to sample 011006-21.....................................224<br />

A.97 Granplot analysis <strong>of</strong> sample 011006-22........................................................................225<br />

A.98 Method <strong>of</strong> SELF determination applied to sample 011006-22.....................................226<br />

A.99 Granplot analysis <strong>of</strong> sample J .......................................................................................227<br />

A.100 Method <strong>of</strong> SELF determination applied to sample J...................................................228<br />

A.101 Granplot analysis <strong>of</strong> sample K....................................................................................229<br />

A.102 Method <strong>of</strong> SELF determination applied to sample K .................................................230<br />

A.103 Granplot analysis <strong>of</strong> sample L ....................................................................................231<br />

A.104 Method <strong>of</strong> SELF determination applied to sample L..................................................232<br />

A.105 Granplot analysis <strong>of</strong> sample 12...................................................................................233<br />

xvii


A.106 Method <strong>of</strong> SELF determination applied to sample 12 ................................................234<br />

A.107 Granplot analysis <strong>of</strong> sample 050505-03A...................................................................235<br />

A.108 Method <strong>of</strong> SELF determination applied to sample 050505-03A................................236<br />

A.109 Granplot analysis <strong>of</strong> sample 050505-03B...................................................................237<br />

A.110 Method <strong>of</strong> SELF determination applied to sample 050505-03B ................................238<br />

A.111 Granplot analysis <strong>of</strong> sample D....................................................................................239<br />

A.112 Method <strong>of</strong> SELF determination applied to sample D .................................................240<br />

A.113 Granplot analysis <strong>of</strong> sample C ....................................................................................241<br />

A.114 Method <strong>of</strong> SELF determination applied to sample C .................................................242<br />

A.115 Granplot analysis <strong>of</strong> sample G....................................................................................243<br />

A.116 Method <strong>of</strong> SELF determination applied to sample G .................................................244<br />

A.117 Granplot analysis <strong>of</strong> sample 011106-09......................................................................245<br />

A.118 Method <strong>of</strong> SELF determination applied to sample 011106-09...................................246<br />

A.119 Granplot analysis <strong>of</strong> sample 011106-10......................................................................247<br />

A.120 Method <strong>of</strong> SELF determination applied to sample 011106-10...................................248<br />

A.121 Granplot analysis <strong>of</strong> sample F.....................................................................................249<br />

A.122 Method <strong>of</strong> SELF determination applied to sample F..................................................250<br />

A.123 Granplot analysis <strong>of</strong> sample B ....................................................................................251<br />

A.124 Method <strong>of</strong> SELF determination applied to sample B .................................................252<br />

A.125 Granplot analysis <strong>of</strong> sample A....................................................................................253<br />

A.126 Method <strong>of</strong> SELF determination applied to sample A .................................................254<br />

A.127 Granplot analysis <strong>of</strong> sample E ....................................................................................255<br />

A.128 Method <strong>of</strong> SELF determination applied to sample E..................................................256<br />

xviii


ABSTRACT<br />

The goal <strong>of</strong> this investigation was to determine whe<strong>the</strong>r highly accurate sampling <strong>and</strong><br />

dating methods could be employed to develop a high-resolution history <strong>of</strong> barrier <strong>evolution</strong> <strong>and</strong><br />

sea-level change. The focus <strong>of</strong> <strong>the</strong> study was St. Vincent Isl<strong>and</strong>, an undeveloped barrier isl<strong>and</strong><br />

beach ridge plain in <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico. The isl<strong>and</strong> consists <strong>of</strong> more than 100<br />

beach ridges organized into a dozen groups or sets based on <strong>the</strong>ir topographic expression <strong>and</strong><br />

geographic pattern. These ridges represent sequential paleo-shoreline positions over <strong>the</strong> 4000+<br />

year history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. Given <strong>the</strong> long-term tectonic stability <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico<br />

throughout <strong>the</strong> Quaternary, <strong>the</strong> isl<strong>and</strong> holds <strong>the</strong> potential for a unique high-resolution chronology<br />

<strong>of</strong> mid- to late-Holocene sea-level change.<br />

The sampling <strong>of</strong> <strong>the</strong> beach ridges by means <strong>of</strong> trenches, ra<strong>the</strong>r than just cores, allowed for<br />

<strong>the</strong> collection <strong>of</strong> basal deposits as well as visual confirmation <strong>of</strong> <strong>the</strong> origin <strong>and</strong> structure <strong>of</strong> <strong>the</strong><br />

ridges. Ground penetrating radar (GPR) pr<strong>of</strong>iles confirmed <strong>the</strong> origin <strong>and</strong> structure <strong>of</strong> <strong>the</strong> ridges.<br />

Based on <strong>the</strong>se techniques it is evident that <strong>the</strong> beach ridges on <strong>the</strong> isl<strong>and</strong> were built by swash<br />

processes ra<strong>the</strong>r than by storms. The direct dating <strong>of</strong> quartz grains collected from <strong>the</strong> base <strong>of</strong><br />

several <strong>of</strong> <strong>the</strong> isl<strong>and</strong>s beach ridges via optically stimulated luminescence dating (OSL) provided<br />

an accurate measure <strong>of</strong> <strong>the</strong> depositional ages <strong>of</strong> <strong>the</strong> ridges. The ridges on St. Vincent Isl<strong>and</strong> have<br />

ages ranging from zero to 4,100 years, with <strong>the</strong> oldest ridges on <strong>the</strong> north side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> <strong>and</strong><br />

<strong>the</strong> youngest ridges on <strong>the</strong> sou<strong>the</strong>ast side <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. These ages can be correlated with <strong>the</strong><br />

most recent sea level curve produced for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. These ages have also<br />

been used in conjunction with topographic maps, leveling or topographic pr<strong>of</strong>ile surveys <strong>and</strong><br />

LIDAR data, to calculate <strong>the</strong> rates <strong>of</strong> beach ridge plain progradation <strong>and</strong> beach ridge formation<br />

over time. Results show that during times <strong>of</strong> sea level fall, <strong>the</strong> progradation rates on St. Vincent<br />

Isl<strong>and</strong> were relatively fast while during times <strong>of</strong> sea level rise, rates were considerably slower.<br />

The result <strong>of</strong> this project is a better <strong>and</strong> more detailed underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> influence <strong>of</strong> sea-level<br />

change on barrier isl<strong>and</strong> development.<br />

xix


Objectives<br />

CHAPTER 1<br />

INTRODUCTION AND GEOLOGICAL BACKGROUND<br />

Coastal features, such as barrier isl<strong>and</strong>s, marine terraces, raised beaches etc, are products<br />

<strong>of</strong> sea-level change. This investigation focuses on barrier isl<strong>and</strong>s. Beach ridges, which represent<br />

paleo-shoreline positions, are <strong>of</strong>ten preserved on <strong>the</strong> surface <strong>of</strong> <strong>the</strong>se features. Beach ridges can<br />

provide a detailed record <strong>of</strong> <strong>the</strong> response <strong>of</strong> barrier isl<strong>and</strong>s to sea-level change. The purpose <strong>of</strong><br />

this project was to investigate <strong>the</strong> age, origin <strong>and</strong> <strong>evolution</strong> <strong>of</strong> a well-developed <strong>and</strong> well-<br />

preserved barrier isl<strong>and</strong> beach ridge plain in <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. St. Vincent Isl<strong>and</strong>, a<br />

coastal barrier isl<strong>and</strong> located near <strong>the</strong> mouth <strong>of</strong> <strong>the</strong> Apalachicola River in northwest Florida<br />

(Figure 1.1), has been actively evolving <strong>and</strong> prograding over <strong>the</strong> past 4,000+ years. The<br />

organization <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s ridges into distinct sets (Figure 1.2) separated by erosional<br />

truncations indicates a history <strong>of</strong> episodic progradation. This episodicity is likely related to sea-<br />

level change. The primary objective <strong>of</strong> this investigation was to use <strong>the</strong> occurrence <strong>of</strong> multiple<br />

beach ridge sets on <strong>the</strong> isl<strong>and</strong> to investigate <strong>the</strong> relationship that ridge ages <strong>and</strong> mean ridge set<br />

heights have to regional sea-level history.<br />

The goals <strong>of</strong> this project are:<br />

1) To develop a better underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> late Quaternary history <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong><br />

Mexico coast <strong>and</strong> its response to sea-level change, including abrupt sea-level changes<br />

during <strong>the</strong> mid to late Holocene.<br />

2) To gain insight into <strong>the</strong> impact <strong>of</strong> short-term changes in sea level on coastal <strong>evolution</strong><br />

<strong>and</strong> geomorphology on stable continental margins.<br />

3) To obtain direct evidence for mid- to late Holocene sea-level fluctuations, including<br />

stillst<strong>and</strong>s <strong>and</strong> possible highst<strong>and</strong>s in <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico.<br />

1


4) To fur<strong>the</strong>r develop Optically Stimulated Luminescence (OSL) dating <strong>of</strong> quartz grains, a<br />

relatively new technique that has recently been used to directly date s<strong>and</strong>y coastal<br />

features.<br />

Potential Significance<br />

The study <strong>of</strong> relict str<strong>and</strong>plains <strong>and</strong> <strong>the</strong>ir stratigraphic context has <strong>the</strong> potential to provide<br />

high-resolution records that can be used to reconstruct <strong>the</strong> <strong>evolution</strong> <strong>of</strong> a coast (Zenkovitch,<br />

1967). With <strong>the</strong> exception <strong>of</strong> <strong>the</strong> recent studies by Morton et al. (2000) <strong>and</strong> Blum et al. (2002),<br />

this is a research area that is only recently being explored in <strong>the</strong> United States. The anticipated<br />

outcome <strong>of</strong> this work is a detailed history that is expected to emerge from <strong>the</strong> geochronologic<br />

<strong>and</strong> sedimentologic analyses <strong>of</strong> <strong>the</strong> dozen beach ridge sets on St. Vincent Isl<strong>and</strong>. Coastal<br />

geomorphologic features, especially coastal barriers, are highly sensitive to sea-level change.<br />

The dozen sets <strong>of</strong> beach ridges preserved on St. Vincent Isl<strong>and</strong> hold an unusually complete <strong>and</strong><br />

well-preserved record <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s response to this history <strong>of</strong> sea-level change during <strong>the</strong> late<br />

Quaternary. The Quaternary period has been a time <strong>of</strong> major global change. Much <strong>of</strong> that<br />

change, particularly sea-level change, has been geologically abrupt as can be seen in <strong>the</strong> Gulf <strong>of</strong><br />

Mexico sea level curve compiled by Balsillie <strong>and</strong> Donoghue (2004). An accurate determination<br />

<strong>of</strong> how abrupt changes in sea level over <strong>the</strong> past few millennia have affected coastal l<strong>and</strong>forms<br />

may be critically important to our underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> nature <strong>and</strong> potential effects <strong>of</strong> global<br />

change in <strong>the</strong> near future. The anticipated outcome <strong>of</strong> this project was a better underst<strong>and</strong>ing <strong>of</strong><br />

<strong>the</strong> response <strong>of</strong> coastal geologic environments to abrupt environmental change. Given that <strong>the</strong><br />

nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico is a stable margin <strong>and</strong> reflects global eustatic change, this project<br />

will also have several broader impacts. It will answer some fundamental questions concerning<br />

<strong>the</strong> impact <strong>of</strong> global change, in <strong>the</strong> form <strong>of</strong> abrupt sea-level change, on coastal environments.<br />

An improved underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> history <strong>and</strong> timing <strong>of</strong> late Holocene climate-related events,<br />

<strong>and</strong> <strong>of</strong> <strong>the</strong> response <strong>of</strong> coastal environments to those events, is an essential component in <strong>the</strong><br />

development <strong>of</strong> global change predictions over <strong>the</strong> next few centuries.<br />

2


Hypo<strong>the</strong>ses<br />

Over <strong>the</strong> course <strong>of</strong> this investigation, <strong>the</strong> following hypo<strong>the</strong>ses were tested:<br />

1) Direct luminescence dating <strong>of</strong> quartz s<strong>and</strong> grains in beach ridges can provide a high-<br />

resolution history <strong>of</strong> barrier beach-ridge plain <strong>evolution</strong>.<br />

2) Beach ridge progradation rates <strong>and</strong> beach ridge height are influenced primarily by <strong>the</strong><br />

rate <strong>and</strong> direction <strong>of</strong> sea-level change.<br />

3) Abrupt changes in sea level can have a significant effect on <strong>the</strong> development <strong>of</strong> coastal<br />

l<strong>and</strong>forms over a geologically brief span <strong>of</strong> time.<br />

4) Sea-level history in <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico reflects global eustatic history.<br />

5) Beach ridges hold evidence <strong>of</strong> sea level high st<strong>and</strong>s during <strong>the</strong> mid- to late- Holocene.<br />

6) Beach ridges are built primarily by swash processes, as opposed to storms.<br />

Regional Geology<br />

The Florida subsurface is a carbonate platform that is approximately 800 km long <strong>and</strong><br />

400-720 km wide (Lamont et al., 1997). The State <strong>of</strong> Florida is <strong>the</strong> emergent part <strong>of</strong> <strong>the</strong> platform<br />

(R<strong>and</strong>azzo <strong>and</strong> Jones, 1997). Figure 1.3 shows <strong>the</strong> carbonate platform. Throughout its history,<br />

<strong>the</strong> platform has been alternately flooded by shallow seas or exposed as dry l<strong>and</strong> (R<strong>and</strong>azzo <strong>and</strong><br />

Jones, 1997). During times <strong>of</strong> submergence, 1,200 to 6,100 m <strong>of</strong> primarily carbonate marine<br />

sediment was deposited on <strong>the</strong> platform. Following, or concurrent with one <strong>of</strong> <strong>the</strong> later periods<br />

<strong>of</strong> emergence, <strong>the</strong> plateau tilted about its longitudinal axis. As a result <strong>of</strong> this, <strong>the</strong> west coast <strong>of</strong><br />

<strong>the</strong> platform is partially submerged relative to <strong>the</strong> east coast. Florida’s submergence rate over<br />

<strong>the</strong> past 4,500 years has averaged 1.2 mm/yr (Scholl, 1969).<br />

The geologic history <strong>of</strong> Florida has been strongly influenced by sea-level change. The<br />

gentle slope <strong>and</strong> lack <strong>of</strong> surface relief on <strong>the</strong> platform means that a relatively small change in sea<br />

level can have dramatic impacts (R<strong>and</strong>azzo <strong>and</strong> Jones, 1997). Changes in sea level can change<br />

3


<strong>the</strong> rate <strong>of</strong> erosion or deposition <strong>and</strong> can change <strong>the</strong> nature <strong>of</strong> a region or environment from<br />

erosional to depositional.<br />

During <strong>the</strong> Quaternary, a series <strong>of</strong> glacial-interglacial cycles brought about drastic<br />

changes in sea level. Figure 1.4 is a benthic oxygen isotope curve showing sea-level fluctuations<br />

throughout <strong>the</strong> Quaternary. As a result <strong>of</strong> <strong>the</strong>se changes, <strong>the</strong> surface <strong>of</strong> <strong>the</strong> Florida platform has<br />

alternated between emergent <strong>and</strong> submergent. At times during <strong>the</strong> late Cenozoic glacial stages,<br />

dry l<strong>and</strong> on <strong>the</strong> Florida plateau was restricted to a few small isl<strong>and</strong>s along <strong>the</strong> central Florida<br />

ridge. At <strong>the</strong> maximum extent <strong>of</strong> <strong>the</strong> last glaciation, approximately 20,000 years B.P., sea level<br />

was near <strong>the</strong> edge <strong>of</strong> <strong>the</strong> continental shelf, approximately 130 m below its present level. Figure<br />

1.5 is a sea-level curve for <strong>the</strong> Gulf <strong>of</strong> Mexico that spans <strong>the</strong> past 20,000 years. During <strong>the</strong><br />

Quaternary sea-level cycles, river <strong>and</strong> stream systems traversed <strong>the</strong> entire continental shelf. At<br />

about 6,000 years B.P. <strong>the</strong> rate <strong>of</strong> sea-level rise slowed. As sea-level rise slowed, modern barrier<br />

isl<strong>and</strong>s, like St. Vincent Isl<strong>and</strong>, on <strong>the</strong> northwest coast <strong>of</strong> Florida, began to form.<br />

Apalachicola River<br />

The Mississippi, Rio Gr<strong>and</strong>e, Brazos, Sabine <strong>and</strong> Suwannee Rivers are <strong>the</strong> only major<br />

rivers that carry sediment directly to <strong>the</strong> Gulf <strong>of</strong> Mexico (Davis, 1997). The o<strong>the</strong>r rivers,<br />

including <strong>the</strong> Apalachicola River, lose <strong>the</strong>ir sediment load in <strong>the</strong> numerous estuaries that are<br />

isolated from <strong>the</strong> open coast by chains <strong>of</strong> barrier isl<strong>and</strong>s (Davis, 1997). The Apalachicola River<br />

st<strong>arts</strong> where <strong>the</strong> Chattahoochee <strong>and</strong> Flint Rivers merge (Fernald <strong>and</strong> Purdum, 1992) (Figure 1.6).<br />

The geology <strong>of</strong> <strong>the</strong> Florida Panh<strong>and</strong>le coast <strong>of</strong> <strong>the</strong> nor<strong>the</strong>ast Gulf <strong>of</strong> Mexico has been strongly<br />

influenced by <strong>the</strong> Apalachicola River (Donoghue <strong>and</strong> Tanner, 1992). The Apalachicola River is<br />

<strong>the</strong> largest river in Florida <strong>and</strong> 21 st largest in <strong>the</strong> contiguous United States (Donoghue <strong>and</strong><br />

Tanner, 1994) with a drainage basin covering an area <strong>of</strong> over 60,000 square km (McKeown et<br />

al., 2004) <strong>and</strong> having a mean discharge <strong>of</strong> 660 m 3 /s (Raney et al., 1985). The river drains an<br />

extensive area stretching from <strong>the</strong> Piedmont in Georgia to eastern Alabama <strong>and</strong> southward to <strong>the</strong><br />

Gulf Coast (Stewart <strong>and</strong> Gorsline, 1962). Its drainage basin includes <strong>the</strong> sou<strong>the</strong>rn Appalachians,<br />

a portion <strong>of</strong> <strong>the</strong> Piedmont <strong>and</strong> <strong>the</strong> Gulf Coastal Plain (Schnable <strong>and</strong> Goodell, 1968). Figure 1.6<br />

shows <strong>the</strong> extent <strong>of</strong> <strong>the</strong> Apalachicola River’s drainage basin.<br />

4


Throughout <strong>the</strong> Holocene, <strong>the</strong> Apalachicola River <strong>and</strong> its delta have migrated in a<br />

sou<strong>the</strong>asterly direction (Donoghue <strong>and</strong> White, 1995). During periods <strong>of</strong> rapid sea-level rise, this<br />

sou<strong>the</strong>rly migration was punctuated by retreats. As sea level rose through <strong>the</strong> Holocene, <strong>the</strong><br />

mouth <strong>of</strong> <strong>the</strong> Apalachicola River retreated northwards up <strong>the</strong> Apalachicola River Valley. This<br />

movement has been <strong>the</strong> driving force behind <strong>the</strong> creation <strong>of</strong> relict quaternary shoreline features.<br />

During <strong>the</strong> Quaternary, <strong>the</strong> Apalachicola River was <strong>the</strong> major s<strong>and</strong> source for <strong>the</strong><br />

Panh<strong>and</strong>le coast (Lamont et al., 1997; Donoghue, 1993). The Apalachicola River delivered<br />

sediment at a rate faster than <strong>the</strong> coastal wave energy was able to dissipate it (Tanner, 1964). As<br />

a result, <strong>the</strong> excess sediment load accumulated in <strong>the</strong> barrier isl<strong>and</strong>s, spits <strong>and</strong> shoals that now<br />

rim <strong>the</strong> river’s mouth. From east to west <strong>the</strong> barrier isl<strong>and</strong>s include Dog Isl<strong>and</strong>, St. George<br />

Isl<strong>and</strong>, Little St. George Isl<strong>and</strong> <strong>and</strong> St. Vincent Isl<strong>and</strong> (Figure 1.6). The shoals <strong>and</strong> barrier<br />

isl<strong>and</strong>s in <strong>the</strong> region contain enough s<strong>and</strong> to account for <strong>the</strong> total sediment load <strong>of</strong> <strong>the</strong> river for<br />

<strong>the</strong> past 5,000 years (Tanner, 1964). The relatively recent construction <strong>of</strong> dams across <strong>the</strong> river<br />

has drastically reduced <strong>the</strong> amount <strong>of</strong> sediment being delivered to <strong>the</strong> coast (Tanner, 1964). The<br />

development <strong>of</strong> <strong>the</strong> barrier isl<strong>and</strong> rim around <strong>the</strong> river’s mouth has also contributed to <strong>the</strong><br />

reduction in <strong>the</strong> amount <strong>of</strong> sediment by trapping much <strong>of</strong> <strong>the</strong> material before it reaches <strong>the</strong> Gulf<br />

coast (Donoghue <strong>and</strong> Tanner, 1994).<br />

Barrier Isl<strong>and</strong>s<br />

Shore-parallel sediment deposits are common features on wave-dominated shorelines.<br />

These deposits can occur as mainl<strong>and</strong>-attached barriers, as str<strong>and</strong>plains consisting <strong>of</strong> multiple<br />

parallel beach ridges or as barrier isl<strong>and</strong>s (Reinson, 1992).<br />

Barrier isl<strong>and</strong>s are narrow, s<strong>and</strong>-dominated l<strong>and</strong>forms that run parallel or semi-parallel to<br />

mainl<strong>and</strong> shorelines (Hoyt, 1967). They are usually separated from <strong>the</strong> mainl<strong>and</strong> by a lagoon,<br />

estuary or marsh system (Reinson, 1992). The stratigraphy <strong>and</strong> <strong>evolution</strong> <strong>of</strong> a barrier isl<strong>and</strong> is<br />

influenced by several factors including sea level, sediment supply, pre-depositional topography,<br />

tectonic setting <strong>and</strong> tidal range (Moslow, 1983).<br />

Barrier isl<strong>and</strong> formation is a complex <strong>and</strong> poorly understood process. However, several<br />

<strong>the</strong>ories have been proposed in an attempt to explain <strong>the</strong>ir origin <strong>and</strong> formation. No single<br />

<strong>the</strong>ory has emerged as dominant. deBeaumont (1845) suggested that barrier isl<strong>and</strong>s form as a<br />

5


esult <strong>of</strong> <strong>the</strong> buildup <strong>of</strong> <strong>of</strong>fshore bars. Waves approaching <strong>the</strong> shore stir up sea floor sediment.<br />

When <strong>the</strong>se waves break, <strong>the</strong>y lose energy <strong>and</strong> <strong>the</strong> sediment accumulates forming a bar <strong>and</strong><br />

subsequently an isl<strong>and</strong>. Gilbert (1885) suggested that <strong>the</strong> material that forms a bar is transported<br />

along <strong>the</strong> shore by littoral <strong>and</strong> longshore currents ra<strong>the</strong>r than coming from <strong>the</strong> seafloor as<br />

deBeaumont (1845) suggested. These sediments accumulate to form a spit. The spit is <strong>the</strong>n<br />

breached <strong>and</strong> as a result <strong>of</strong> this breach, a barrier isl<strong>and</strong> is formed. Zenkovitch (1962) suggested<br />

that barrier isl<strong>and</strong>s are a product <strong>of</strong> <strong>the</strong> sinking <strong>of</strong> wave-built terraces or <strong>the</strong> submergence <strong>of</strong><br />

alluvial plains. Price (1963) proposed that small barriers form as a result <strong>of</strong> storm wave activity.<br />

Leontyev <strong>and</strong> Nikiforov (1966) suggested that barrier isl<strong>and</strong>s form from <strong>of</strong>fshore bars exposed<br />

during a lowering <strong>of</strong> sea level. Hoyt (1967) hypo<strong>the</strong>sized that a barrier isl<strong>and</strong> is formed by <strong>the</strong><br />

building <strong>of</strong> a ridge immediately l<strong>and</strong>ward <strong>of</strong> <strong>the</strong> shoreline from wind or water deposited<br />

sediments. Slow submergence floods <strong>the</strong> area l<strong>and</strong>ward <strong>of</strong> <strong>the</strong> ridge, forming a barrier <strong>and</strong> a<br />

lagoon.<br />

Although many models have been proposed to explain barrier isl<strong>and</strong> formation, three<br />

models are commonly encountered in <strong>the</strong> literature; 1) <strong>the</strong> upbuilding <strong>of</strong> <strong>of</strong>fshore bars, 2) <strong>the</strong><br />

cutting <strong>of</strong> inlets through spits <strong>and</strong> 3) <strong>the</strong> submergence <strong>of</strong> ridge like coastal features (Schwartz,<br />

1971). The first model is based on <strong>the</strong> aggradation <strong>and</strong> emergence <strong>of</strong> submarine bars<br />

(Zenkovich, 1967). This model suggests that a barrier isl<strong>and</strong> is formed when an <strong>of</strong>fshore bar<br />

builds up to <strong>the</strong> water surface. This <strong>the</strong>ory is generally rejected because to form barrier isl<strong>and</strong>s<br />

in this manner, <strong>the</strong> submarine bar would have to build up through <strong>the</strong> surf zone, which is<br />

unlikely because wave action in <strong>the</strong> surf zone would wash away <strong>the</strong> crest <strong>of</strong> <strong>the</strong> bar <strong>and</strong> prevent<br />

its emergence. The second model is spit progradation parallel to <strong>the</strong> coast <strong>and</strong> segmentation <strong>of</strong><br />

<strong>the</strong> spit by channels (Fisher, 1968). This is similar to <strong>the</strong> <strong>the</strong>ory proposed by Gilbert (1885).<br />

The third model is that barrier isl<strong>and</strong>s are formed by <strong>the</strong> isolation <strong>of</strong> beach <strong>and</strong> dune complexes<br />

due to coastal submergence (Hoyt, 1967). This last <strong>the</strong>ory is <strong>the</strong> most feasible. However, it is<br />

most likely that extensive barrier isl<strong>and</strong> chains have had a composite mode <strong>of</strong> origin, both by spit<br />

progradation <strong>and</strong> by coastal submergence (Reinson, 1992).<br />

Barrier isl<strong>and</strong>s are dynamic systems that migrate l<strong>and</strong>ward in response to sea-level rise,<br />

subsidence or a reduction in sediment supply (Lamont et al., 1997). Most modern barrier isl<strong>and</strong>s<br />

have migrated l<strong>and</strong>ward in response to <strong>the</strong> Holocene transgression (Reinson, 1992). Barrier<br />

isl<strong>and</strong>s are abundant along <strong>the</strong> Gulf <strong>of</strong> Mexico coast. Barrier isl<strong>and</strong> nuclei in <strong>the</strong> Gulf were most<br />

6


likely initiated during times <strong>of</strong> lower sea level (Tanner, 1991). Increased wave action leads to<br />

<strong>the</strong> transport <strong>of</strong> both fine <strong>and</strong> coarse-grained sediment, which is <strong>the</strong>n deposited as a ridge at <strong>the</strong><br />

shoreline. A rise in sea level will flood <strong>the</strong> l<strong>and</strong>ward side <strong>of</strong> <strong>the</strong> ridge <strong>and</strong> isolate it, thus, turning<br />

it into a barrier isl<strong>and</strong>.<br />

There have been few studies <strong>of</strong> barrier isl<strong>and</strong> <strong>evolution</strong> along <strong>the</strong> Panh<strong>and</strong>le coast. Rizk<br />

(1991), Tanner (1987) <strong>and</strong> Forrest (2003) have studied <strong>the</strong> St. Joseph Peninsula, a barrier spit<br />

located on <strong>the</strong> Panh<strong>and</strong>le coast. Stapor (1973) <strong>and</strong> Tanner (1988, 1990) studied St. Vincent<br />

Isl<strong>and</strong>, a barrier isl<strong>and</strong> also located on <strong>the</strong> Panh<strong>and</strong>le coast.<br />

Beach Ridge Formation<br />

Many late Holocene coastal regions are progradational <strong>and</strong> are marked by beach ridge<br />

plains. Well-developed beach ridge plains can contain up to 200 individual beach ridges<br />

(Tanner, 1988). The term “beach ridge” has been defined in many different ways. Stapor<br />

(1975) defines beach ridges as linear s<strong>and</strong> bodies that parallel <strong>the</strong> modern coast. Otvos (2000)<br />

defines <strong>the</strong>m as relict, semi-parallel, multiple wave- <strong>and</strong> wind-built l<strong>and</strong>forms that originate in<br />

<strong>the</strong> intertidal <strong>and</strong> supratidal zones. Tanner (1995) identified four main categories <strong>of</strong> beach<br />

ridges. Swash built ridges <strong>and</strong> settling-lag ridges are long, low to almost invisible <strong>and</strong> more or<br />

less parallel. They usually occur in sets. The two ridge types can be distinguished from each<br />

o<strong>the</strong>r based on <strong>the</strong>ir internal structure. Swash built ridges display low-angle cross-bedding while<br />

settling-lag ridges have internal bedding that is horizontal, discontinuous <strong>and</strong> usually poorly<br />

defined. These two types can be distinguished by trenching or sample analysis. Storm surge<br />

ridges are usually single, isolated features, 5-10 m in height. They do not make up beach ridge<br />

sets or systems. The fourth type <strong>of</strong> ridge is <strong>the</strong> dune ridge. Dune ridges are distinguished from<br />

o<strong>the</strong>r ridge types on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir internal structure, which is characterized by internal cross-<br />

bedding <strong>and</strong> hummocky cross-stratification. Dune ridges can be found within or adjacent to a<br />

system <strong>of</strong> swash or settling lag ridges.<br />

Beach ridge systems are made up <strong>of</strong> multiple parallel ridges <strong>and</strong> swales, but usually lack<br />

well-developed lagoons or marshes (Boggs, 1995). A popular idea is that beach ridges within a<br />

set are attached to eacho<strong>the</strong>r at a single point. The point <strong>of</strong> attachment facilitates a determination<br />

<strong>of</strong> <strong>the</strong> s<strong>and</strong> source (Tanner et al., 1989).<br />

7


Recent studies <strong>of</strong> barriers using Ground Penetrating Radar (GPR) have revealed that<br />

beach ridges can be traced in <strong>the</strong> subsurface as seaward dipping reflectors with dips <strong>of</strong> 1-4<br />

degrees that decrease in a seaward direction (Jol et al., 1998; Bristow et al., 2000; Neal et al.,<br />

2002; Moore et al., 2004; Bristow <strong>and</strong> Pucillo, 2006). Washover-type, l<strong>and</strong>ward-dipping beds<br />

are rare. Ridge crests have elevations that are usually above mean high water <strong>and</strong> adjacent<br />

swales <strong>and</strong> troughs that are typically below mean low water (Stapor, 1973). Beach ridges are<br />

primarily composed <strong>of</strong> quartz s<strong>and</strong> (Doeglas, 1946; Eichenholtz et al., 1989; Otvos, 2000;<br />

Tanner, 1993; Tanner, 1994). It is rare to find shell in older ridges because any shell that was<br />

originally present is usually destroyed by in-situ leaching by rainwater (Stapor, 1973). Beach<br />

ridges that make up beach ridge plains are usually organized into distinct patterns or groups<br />

based on <strong>the</strong>ir topographic expression <strong>and</strong> geographic pattern (Stapor, 1973). These patterns<br />

reflect <strong>the</strong> energy, direction <strong>of</strong> s<strong>and</strong> transport <strong>and</strong> <strong>the</strong> mechanisms by which s<strong>and</strong> was delivered<br />

to <strong>the</strong> beach face during ridge construction (Stapor, 1973).<br />

The dominant processes controlling <strong>the</strong> formation <strong>of</strong> beach ridges are poorly understood.<br />

Several <strong>the</strong>ories have been proposed to attempt to explain <strong>the</strong> origin <strong>of</strong> beach ridges. Johnson<br />

(1919) suggested that beach ridges are constructed by wave action along successive shoreline<br />

positions. Shepard (1950) suggested that beach ridges form as a result <strong>of</strong> aggradation. Psuty<br />

(1966) suggested that beach ridges form during periods <strong>of</strong> increased water levels resulting from<br />

large, <strong>of</strong>fshore storms. Curray et al. (1969) suggested that ridges form when a longshore bar is<br />

built upwards <strong>and</strong> emerges above sea level during low wave conditions. The bar enlarges <strong>and</strong><br />

becomes a beach ridge. Dunes can <strong>the</strong>n form on <strong>the</strong> top <strong>of</strong> <strong>the</strong> newly formed ridge <strong>and</strong> stabilize<br />

it. This model is similar to <strong>the</strong> model <strong>of</strong> barrier isl<strong>and</strong> formation that was proposed by de<br />

Beaumont (1845). Reineck <strong>and</strong> Singh (1978) proposed that beach ridges form at high tide levels<br />

<strong>and</strong> are related to storms or high-water stages. O<strong>the</strong>r researchers (e.g., Carter, 1986; Davis et al.,<br />

1972; Fraser <strong>and</strong> Hester, 1977) believed that <strong>the</strong> l<strong>and</strong>ward shifting <strong>of</strong> <strong>of</strong>fshore bars forms ridges.<br />

Many researchers support this idea. Tanner (1995) proposed that beach ridge formation is<br />

influenced by small changes in sea level. They are formed by sea-level rise <strong>and</strong> fall couplets<br />

with magnitudes on <strong>the</strong> order <strong>of</strong> 5-30 cm <strong>and</strong> periodicities <strong>of</strong> 30-60 years. Under slightly lower<br />

sea level conditions waves are low <strong>and</strong> run-up doesn’t extend far up <strong>the</strong> beach pr<strong>of</strong>ile. A swale<br />

will build under <strong>the</strong>se conditions. When sea level rises, <strong>the</strong> sea deepens at a fixed distance from<br />

<strong>the</strong> shore, causing breakers to become higher. As a result, run-up extends fur<strong>the</strong>r up <strong>the</strong> beach<br />

8


pr<strong>of</strong>ile <strong>and</strong> deposits a ridge. Each ridge represents a paleo-sea-level position. The best estimate<br />

<strong>of</strong> paleo-sea-level position can be assumed to be somewhere between <strong>the</strong> ridge crest <strong>and</strong> <strong>the</strong> toe<br />

<strong>of</strong> <strong>the</strong> shoreface. The boundaries between beach ridge sets may indicate a change in sea-level<br />

position. Where adjacent sets have a measurable elevation difference <strong>the</strong>re has been a change in<br />

sea level (Tanner et al., 1989). Figure 1.7 illustrates Tanner’s <strong>the</strong>ory <strong>of</strong> beach ridge formation.<br />

As an alternative to this <strong>the</strong>ory, Curray (1996) re-proposed that <strong>of</strong>fshore bars are built to sea<br />

level when sufficient s<strong>and</strong> is supplied to <strong>the</strong> coastline. If enough s<strong>and</strong> is available, <strong>the</strong> bar<br />

becomes emergent during periods <strong>of</strong> low surf. With <strong>the</strong> subsequent rise <strong>and</strong> fall <strong>of</strong> tides, <strong>and</strong> if<br />

surf conditions remain low, <strong>the</strong> bar will grow in height. Taylor <strong>and</strong> Stone (1996) proposed that<br />

during storm activity, s<strong>and</strong> from existing ridges is eroded <strong>and</strong> stored in an <strong>of</strong>fshore bar. During<br />

calm wea<strong>the</strong>r conditions, <strong>the</strong> s<strong>and</strong> is transported onshore <strong>and</strong> a ridge is rebuilt.<br />

Each beach ridge plain displays <strong>the</strong> same relative time sequence. The ridge closest to <strong>the</strong><br />

mainl<strong>and</strong> is oldest <strong>and</strong> <strong>the</strong> ridge immediately adjacent to <strong>the</strong> beach is youngest. All o<strong>the</strong>rs fit in<br />

a sequence between <strong>the</strong> two extremes (Tanner, 1988). Since ridges form on <strong>the</strong> beach face, <strong>the</strong>y<br />

are indicators <strong>of</strong> <strong>the</strong> orientation <strong>of</strong> <strong>the</strong> coastline <strong>and</strong> approximate <strong>the</strong> vertical position <strong>of</strong> sea level<br />

at <strong>the</strong> time <strong>of</strong> <strong>the</strong>ir deposition (Donoghue <strong>and</strong> Tanner, 1992; Fernald <strong>and</strong> Purdum, 1992; Tanner,<br />

1988). A beach ridge plain can be divided into sets. The different orientations <strong>of</strong> <strong>the</strong> sets<br />

indicate changes in oceanographic conditions (sea level rise, changes in river mouth position) or<br />

a change in <strong>the</strong> rate <strong>of</strong> sediment supply (Curray et al., 1969; Dominguez et al., 1992).<br />

Many <strong>of</strong> Florida’s barrier isl<strong>and</strong>s are composed <strong>of</strong> beach ridges. The organization <strong>and</strong><br />

<strong>the</strong> physical character <strong>of</strong> <strong>the</strong> beach ridges that make up <strong>the</strong> Holocene beach ridge plains <strong>of</strong> <strong>the</strong><br />

northwest Florida barrier isl<strong>and</strong>s can be employed to study <strong>the</strong> depositional history <strong>of</strong> <strong>the</strong><br />

barriers.<br />

Sea-Level Change<br />

Sea level is never static, but ra<strong>the</strong>r has fluctuated throughout geologic time. Several<br />

factors can cause <strong>the</strong>se fluctuations including changes in <strong>the</strong> volume <strong>of</strong> seawater (i.e. <strong>the</strong>rmal<br />

expansion <strong>and</strong> contraction, or advance <strong>and</strong> retreat <strong>of</strong> ice sheets), rise <strong>and</strong> fall <strong>of</strong> <strong>the</strong> l<strong>and</strong> or ocean<br />

floor (i.e. tectonics, isostatic rebound) <strong>and</strong> variations in <strong>the</strong> earth’s gravitational field (<strong>the</strong><br />

gravitational forces between <strong>the</strong> sun <strong>and</strong> moon will change <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> earth’s water<br />

9


<strong>and</strong>, <strong>the</strong>refore, sea level) (Dorsey, 1997). The earliest reported systematic sea-level<br />

measurements were begun in 1682 at Amsterdam (van Veen, 1954), 1732 at Venice (Ekman,<br />

1988) <strong>and</strong> 1774 at Stockholm (Pirazzoli, 1974; Zendrini, 1802). The construction <strong>of</strong> a sea-level<br />

curve is based on having paleoshoreline indicators (shell, peat etc) that are datable. Once samples<br />

have been dated, a curve showing <strong>the</strong> details <strong>of</strong> rise or fall <strong>of</strong> sea level in a given region can <strong>the</strong>n<br />

be generated. Suess was <strong>the</strong> first to take up <strong>the</strong> idea <strong>of</strong> global sea-level change (Fairbridge,<br />

1961). Since <strong>the</strong>se early sea-level studies, many global <strong>and</strong> local sea-level curves have been<br />

created. Comprehensive treatments include that <strong>of</strong> Bloom (1977), who published an atlas <strong>of</strong> sea-<br />

level curves. Pirazzoli (1991) provides a global compilation <strong>of</strong> Holocene sea-level curves.<br />

Pre-Holocene Sea level<br />

Intensive study <strong>of</strong> late Quaternary sea-level change came about in <strong>the</strong> 1950s with <strong>the</strong><br />

advent <strong>of</strong> radiocarbon dating techniques (Balsillie <strong>and</strong> Donoghue, 2004). By <strong>the</strong> 1960s it was<br />

clear that Quaternary sea-level history could be characterized by three modes <strong>of</strong> behavior<br />

(oscillating, smooth <strong>and</strong> continuously rising <strong>and</strong> smooth <strong>and</strong> continuously rising followed by<br />

stability at or near current mean sea level). Fairbridge (1961) presented an oscillating curve.<br />

This curve rose rapidly from <strong>the</strong> early Holocene to about 6,000 years B.P. It <strong>the</strong>n oscillated<br />

about current mean sea level. Shepard (1963, 1964) produced a smooth curve that rose to<br />

present mean sea level. The third mode <strong>of</strong> behavior was suggested by Fisk (1956), Godwin et al.<br />

(1958) <strong>and</strong> McFarlan (1961). They proposed a smooth, continuously rising curve from <strong>the</strong> early<br />

Holocene to about 5,500 years ago, followed by sea level stability at or near current mean sea<br />

level. The oscillating mode is <strong>the</strong> currently accepted model <strong>and</strong> <strong>the</strong> model used in this<br />

investigation as depicted in Figure 1.5.<br />

Sea-level change during <strong>the</strong> Quaternary was primarily a result <strong>of</strong> <strong>the</strong> cyclic growth <strong>and</strong><br />

decay <strong>of</strong> ice sheets (Lambeck <strong>and</strong> Chappell, 2001). Glacial periods were times <strong>of</strong> sea-level<br />

lowst<strong>and</strong>s <strong>and</strong> interglacial periods were times <strong>of</strong> sea-level highst<strong>and</strong>s (Lambeck <strong>and</strong> Chappell,<br />

2001). A number <strong>of</strong> indicators have been used as evidence <strong>of</strong> past sea-level change. These<br />

include raised or submerged shorelines (i.e. beach ridges or shorelines indicated by fossil coral<br />

reefs above present growth positions or submerged in-situ tree stumps, erosional features like<br />

shore platforms <strong>and</strong> marine notches (Lambeck <strong>and</strong> Chappell, 2001). The onset <strong>of</strong> <strong>the</strong> most<br />

10


ecent glacial era occurred about 3 million years ago with <strong>the</strong> formation <strong>of</strong> permanent ice sheets<br />

at high latitudes (Lambeck et al., 2002). As <strong>the</strong> ice sheets grew <strong>and</strong> retreated, sea levels<br />

fluctuated in response. Major sea-level cycles have occurred at approximately 100,000 year<br />

intervals over <strong>the</strong> past 4 million years with amplitudes <strong>of</strong> 120-140 m (Lambeck et al., 2002).<br />

Superimposed on <strong>the</strong>se cycles are lesser cycles <strong>of</strong> a few tens <strong>of</strong> thous<strong>and</strong>s <strong>of</strong> years (Lambeck et<br />

al., 2002). This sea level history is reflected in <strong>the</strong> benthic oxygen isotope record in Figure 1.4.<br />

Directly datable records <strong>of</strong> past sea levels exist only for <strong>the</strong> last glacial cycle from about 130,000<br />

years to present (Lambeck et al., 2002). Any records prior to this time were ei<strong>the</strong>r destroyed by<br />

sea-level rise at <strong>the</strong> onset <strong>of</strong> deglaciation or by <strong>the</strong> advance <strong>of</strong> ice sheets during <strong>the</strong> lead up to<br />

maximum glaciation (Lambeck <strong>and</strong> Chappell, 2001). Figure 1.8 illustrates <strong>the</strong> changes in sea<br />

level that have occurred over <strong>the</strong> past several glacial cycles. Sea-level fall from 130,000 to<br />

75,000 years (Marine Isotope Stage (MIS) 5) to <strong>the</strong> Last Glacial Maximum (LGM) was not<br />

uniform, but oscillated rapidly with amplitudes <strong>of</strong> 10-15 m approximately every 4,000 years<br />

(Lambeck et al., 2002). Five positive excursions <strong>of</strong> sea level have been identified within MIS 3,<br />

which covered a period from 60,000-25,000 years ago (32,000; 36,000; 44,000; 49,000-52,000;<br />

60,000 years B.P.) (Lambeck et al., 2002). The lowest sea levels during <strong>the</strong> last glacial cycle<br />

occurred from 30,000 to 19,000 years ago (Lambeck et al., 2002). The onset <strong>of</strong> <strong>the</strong> LGM was<br />

rapid, with sea level falling 30-40 m within 1,000-2,000 years (Lambeck et al., 2002). Post-<br />

LGM sea-level rise was not temporally uniform.<br />

An attempt has been made to relate sea-level fluctuations to oscillations in solar<br />

insolation. Subtle changes in <strong>the</strong> sun’s brightness may have triggered drastic climate change<br />

(Kerr, 2001). Solar activity acts on cycles <strong>of</strong> varying duration, including a 200-year cycle (Kerr,<br />

2001). The mechanisms that control solar activity are not well understood. Solar activity could<br />

be related to changes in <strong>the</strong> chronosphere that affect <strong>the</strong> UV region <strong>of</strong> <strong>the</strong> solar spectrum. This<br />

affects ozone production <strong>and</strong> <strong>the</strong> stratospheric temperature structure (Hodell et al., 2001).<br />

Ano<strong>the</strong>r mechanism may be <strong>the</strong> effect <strong>of</strong> cosmic ray intensity on cloud formation <strong>and</strong><br />

precipitation. Changes in solar output may affect global mean temperature, humidity, convection<br />

<strong>and</strong> intensity <strong>of</strong> Hadley circulation in <strong>the</strong> tropics (Hodell et al., 2001). Sea-level fluctuations<br />

during <strong>the</strong> last glacial cycle may have responded to dominant oscillations in insolation with<br />

periodicities <strong>of</strong> 40,000 <strong>and</strong> 20,000 years (Lambeck et al., 2002). Insolation minima at 140,000<br />

<strong>and</strong> 20,000 years correspond to two associated glacial maxima.<br />

11


Holocene Sea Level<br />

Over 900 Holocene sea-level curves have been published (Dorsey, 1997). The earliest<br />

known examples <strong>of</strong> Holocene sea-level histories were published in Great Britain using pollen<br />

analyses (Granlund, 1932; Liden, 1938). Approximately 20,000 years ago sea level was 130 m<br />

lower than at present (Stapor <strong>and</strong> Tanner, 1977). It rose rapidly until about 5,000 to 6,000 years<br />

ago, at which point <strong>the</strong> rate <strong>of</strong> rise slowed drastically (Stapor <strong>and</strong> Tanner, 1977). The history <strong>of</strong><br />

sea-level change over <strong>the</strong> past 5,000 years is much debated. There are two main schools <strong>of</strong><br />

thought. The first is that sea level rose steadily from a low position during <strong>the</strong> Wisconsinan <strong>and</strong><br />

approached its present level without significant variations (Kidson, 1982). The second is that<br />

<strong>the</strong>re have been various short-lived sea-level oscillations superimposed on <strong>the</strong> general rise.<br />

A cooling event between 8,250 <strong>and</strong> 8,150 years ago was a result <strong>of</strong> meltwater release into<br />

<strong>the</strong> North Atlantic (Rohling <strong>and</strong> Palike, 2005). This stopped North Atlantic Deep Water<br />

(NADW) formation <strong>and</strong> its associated northward heat transport (Rohling <strong>and</strong> Palike, 2005).<br />

NADW is a water mass found in <strong>the</strong> Atlantic at depths between 1,000 <strong>and</strong> 4,000 m. It can be<br />

traced from <strong>the</strong>re into most o<strong>the</strong>r ocean basins. It is formed in <strong>the</strong> North Atlantic from Atlantic<br />

bottom water entering through <strong>the</strong> Denmark Strait <strong>and</strong> across <strong>the</strong> Scotl<strong>and</strong>-Faeroe-Icel<strong>and</strong> Ridge.<br />

Water flows towards <strong>the</strong> Labrador Sea <strong>and</strong> joins with bottom water from <strong>the</strong> eastern North<br />

Atlantic. NADW supplies heat <strong>and</strong> moisture to high nor<strong>the</strong>rn latitudes <strong>and</strong> <strong>the</strong>refore affects <strong>the</strong><br />

stability <strong>of</strong> ice sheets in <strong>the</strong> nor<strong>the</strong>rn hemisphere (Lear et al., 2003). The formation <strong>of</strong> NADW is<br />

one <strong>of</strong> <strong>the</strong> most important processes influencing today’s climate (Lear et al., 2003).<br />

The oscillating sea-level curve <strong>of</strong> Fairbridge (1961) showed a rapid rise in sea level from<br />

<strong>the</strong> early Holocene to about 6,000 years B.P. after which it fluctuated about current mean sea<br />

level. Shepard (1963, 1964) published a smooth curve that showed sea level rising continuously<br />

to its present level. There have been two periods <strong>of</strong> rapid <strong>and</strong> sustained sea-level rise from<br />

16,000-12,500 years ago <strong>and</strong> from 11,500-8000 years ago (Lambeck <strong>and</strong> Chappell, 2001). In<br />

general, global sea level has been rising throughout <strong>the</strong> Holocene- an event termed <strong>the</strong><br />

“Holocene Marine Transgression”.<br />

The oscillating model is <strong>the</strong> most widely accepted model <strong>and</strong> is believed to accurately<br />

represent how sea level has behaved throughout <strong>the</strong> mid to late Holocene. For this reason, this<br />

investigation is based on <strong>the</strong> oscillating model <strong>of</strong> sea-level change.<br />

12


Gulf <strong>of</strong> Mexico Sea-level Record<br />

Several sea-level curves have been created for <strong>the</strong> Gulf <strong>of</strong> Mexico using a variety <strong>of</strong> sea-<br />

level indicators. These sea-level curves can be divided into two groups, those that involve dating<br />

shoreline indicators <strong>and</strong> those that are based on sedimentological studies. Curray (1960) created<br />

a curve based on samples from <strong>the</strong> Texas <strong>and</strong> Louisiana shelf. These samples were shells from<br />

organisms that lived near <strong>the</strong> shoreline <strong>and</strong> were radiocarbon dated to provide age control.<br />

Frazier (1974) created a curve for <strong>the</strong> northwest portion <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Mexico (Texas <strong>and</strong><br />

Louisiana coasts). This curve was based on radiocarbon dates from peat, molluscs <strong>and</strong><br />

pelecypods. Scholl et al. (1969) provided sea-level data for south Florida based on radiocarbon-<br />

dated peats from <strong>the</strong> Everglades region. Stapor <strong>and</strong> Tanner (1977) presented a sea-level curve<br />

based on a plane table leveling or topographic pr<strong>of</strong>ile across <strong>the</strong> beach ridge plain on St. Vincent<br />

Isl<strong>and</strong>. Tanner (1991) produced a late Holocene sea-level curve for <strong>the</strong> Gulf <strong>of</strong> Mexico based on<br />

grain size studies. The sea-level curve was derived from topographic pr<strong>of</strong>iling <strong>and</strong><br />

granulometric parameters on St. Vincent Isl<strong>and</strong> <strong>and</strong> later confirmed at several o<strong>the</strong>r locations<br />

along <strong>the</strong> Gulf <strong>of</strong> Mexico coastline (Tanner, 1991). A sea-level history was developed for an<br />

isl<strong>and</strong> (Isla del Carmen) on <strong>the</strong> western edge <strong>of</strong> <strong>the</strong> <strong>state</strong> <strong>of</strong> Campeche in Mexico (Alvarez 1984,<br />

1985). Ano<strong>the</strong>r record comes from Mesa Del Gavilan, an isl<strong>and</strong> west <strong>of</strong> Boca Chica, Texas<br />

(Tanner et al., 1989). The isl<strong>and</strong> is made up <strong>of</strong> 30+ beach ridges. The ridges were trenched <strong>and</strong><br />

sampled <strong>and</strong> a granulometric analysis was conducted (Tanner et al., 1989). Walker et al. (1995)<br />

created a sea level curve for <strong>the</strong> Gulf <strong>of</strong> Mexico based on archaeological evidence from<br />

southwest Florida.<br />

Sea-level curves spanning from <strong>the</strong> Last Glacial Maximum (approximately 21,000 years<br />

ago) to <strong>the</strong> present are available for <strong>the</strong> Gulf <strong>of</strong> Mexico. In general <strong>the</strong> Last Glacial Maximum<br />

had a lowst<strong>and</strong> <strong>of</strong> about –120 m (Balsillie <strong>and</strong> Donoghue, 2004). Sea level <strong>the</strong>n rose in a series<br />

<strong>of</strong> spurts alternating with stillst<strong>and</strong>s. Between 5,000 <strong>and</strong> 7,000 years ago sea level reached close<br />

to modern levels <strong>and</strong> has since oscillated up <strong>and</strong> down a few meters. Walker et al. (1995)<br />

showed that between 3,000 <strong>and</strong> 2,000 years <strong>the</strong>re were two sea level highst<strong>and</strong>s between 1.5 <strong>and</strong><br />

2 m above present level. Sea level is currently rising. Despite <strong>the</strong> abundance <strong>of</strong> sea-level<br />

curves, <strong>the</strong> history <strong>of</strong> sea-level change over <strong>the</strong> past 5,000-6,000 years is still highly debated.<br />

This is, in part, a result <strong>of</strong> a lack <strong>of</strong> reliable data. There are three main schools <strong>of</strong> thought. The<br />

13


first is that sea level rose steadily from a low position in Wisconsin time to its present level<br />

without variations (Tanner et al., 1989). The second is that <strong>the</strong>re have been various short-lived<br />

cycles <strong>of</strong> sea level, including at least one position 1.0 m above present level 4,000-6,000 years<br />

ago (Tanner et al., 1989). The third is that <strong>the</strong> noise in <strong>the</strong> sea-level data is so great that no<br />

meaningful information can be obtained.<br />

The most recent comprehensive Gulf <strong>of</strong> Mexico sea-level history was presented by<br />

Balsillie <strong>and</strong> Donoghue (2004). Published <strong>and</strong> unpublished Pleistocene <strong>and</strong> Holocene sea-level<br />

data for <strong>the</strong> nor<strong>the</strong>rn <strong>and</strong> eastern Gulf <strong>of</strong> Mexico coast were collected. All <strong>of</strong> <strong>the</strong> data collected<br />

were based on <strong>the</strong> radiocarbon dating <strong>of</strong> shoreline indicators. A total <strong>of</strong> 342 dated sea-level<br />

indicators were assessed, covering <strong>the</strong> past 20,000 years <strong>of</strong> geologic time. Each date was<br />

analyzed to determine if it represented a stable (i.e. unaffected by tectonic processes, such as<br />

subsidence) vertical sea-level indicator. Any questionable data were discarded. Figure 1.5 is a<br />

compilation <strong>of</strong> all available radiocarbon dated sea-level indicators for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong><br />

Mexico. The upper panel <strong>of</strong> Figure 1.5 reveals that several abrupt sea-level changes <strong>of</strong> 1 to 2 m<br />

are recorded in <strong>the</strong> Gulf <strong>of</strong> Mexico chronology. Such changes occurred at approximately 2,200<br />

years B.P., 4,000 years B.P., 5,400 years B.P. <strong>and</strong> 6,800 years B.P. There are few details beyond<br />

3,500 years B.P. along <strong>the</strong> Gulf <strong>of</strong> Mexico coast because beach ridge history extends only to<br />

approximately 3,500 years B.P. (Tanner, 1991a). The Balsillie <strong>and</strong> Donoghue (2004) curve is<br />

<strong>the</strong> most recent <strong>and</strong> well-defined sea-level curve for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico.<br />

14


Apalachicola River<br />

Figure 1.1. Location map <strong>of</strong> St. Vincent Isl<strong>and</strong> on <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico<br />

coast, Florida, sou<strong>the</strong>astern U.S.A. Inset map shows <strong>the</strong> chain <strong>of</strong> barrier isl<strong>and</strong>s <strong>and</strong><br />

spits <strong>of</strong> which St. Vincent is a part.<br />

15<br />

Flint River


Figure 1.2. Beach ridge sets on St. Vincent Isl<strong>and</strong>. See Figure 1.1 for location (Source:<br />

Stapor, 1973).<br />

16


Figure 1.3. The Florida Platform. The edge <strong>of</strong> <strong>the</strong> platform is marked by <strong>the</strong> west<br />

Florida shelf <strong>and</strong> slope, which drop into <strong>the</strong> deep Gulf <strong>of</strong> Mexico. Note that Florida<br />

occupies approximately half <strong>of</strong> <strong>the</strong> carbonate platform. (Source: USGS, 2001).<br />

17


-100<br />

Figure 1.4. Pleistocene glacial advances <strong>and</strong> retreats, as recorded in benthic oxygen isotope<br />

records. The record shows <strong>the</strong> predicted sea level (solid line) <strong>and</strong> mean ocean 18 O (dashed line),<br />

derived from ice volume histories. (Source: Raymo et al., 2006).<br />

18


7,000<br />

25,000<br />

6,000<br />

5,000<br />

?<br />

4,000<br />

cal yr BP<br />

3,000<br />

Gulf <strong>of</strong> Mexico (Balsillie <strong>and</strong> Donoghue, 2004)<br />

Red Sea (Siddall et al. 2003)<br />

20,000<br />

15,000<br />

Cal Yr BP<br />

10,000<br />

Figure 1.5. Composite sea-level curves for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. The solid line<br />

adapted from Balsillie <strong>and</strong> Donoghue (2004) is a comprehensive compilation <strong>of</strong> radiocarbon<br />

dated sea-level indicators for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. The dashed curve is <strong>the</strong> global<br />

“eustatic” sea-level history from Red Sea benthic foraminifera data <strong>of</strong> Siddall et al. (2003).<br />

19<br />

Gulf <strong>of</strong> Mexico Younger Data Set<br />

2,000<br />

5,000<br />

1,000<br />

0<br />

0<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-100<br />

-110<br />

-120<br />

-130<br />

-10<br />

-12<br />

Meters MSL<br />

Sea Level (m)


Figure 1.6. The Apalachicola River drainage basin, northwest Florida. The boundaries <strong>of</strong> <strong>the</strong><br />

basin are shown by <strong>the</strong> solid black line. (Source: Northwest Florida Water Management District,<br />

1996). St. Vincent Isl<strong>and</strong> is located in <strong>the</strong> lower left center <strong>of</strong> <strong>the</strong> map.<br />

20


Figure 1.7. Model <strong>of</strong> beach ridge formation. (Source: Tanner et al., 1989).<br />

21


Figure 1.8. Global sea-level history from 400,000 years to present, based on dated shoreline<br />

indicators from Barbados <strong>and</strong> New Guinea (symbols) <strong>and</strong> oxygen isotope data from marine<br />

sediments (solid line). (Source: Lea et al., 2002).<br />

22


St. Vincent Isl<strong>and</strong><br />

CHAPTER 2<br />

STUDY AREA<br />

The Northwest coast <strong>of</strong> Florida is characterized by s<strong>and</strong>y beaches <strong>and</strong> extensive barrier<br />

isl<strong>and</strong>s. St. Vincent Isl<strong>and</strong> is a coastal barrier isl<strong>and</strong> located near <strong>the</strong> middle <strong>of</strong> <strong>the</strong> Florida<br />

panh<strong>and</strong>le coast, approximately 120 km southwest <strong>of</strong> Tallahassee, Florida (Figure 1.1). The<br />

isl<strong>and</strong> is located just west <strong>of</strong> <strong>the</strong> mouth <strong>of</strong> <strong>the</strong> Apalachicola River. The isl<strong>and</strong> is approximately<br />

0.5 km from <strong>the</strong> nearest point on <strong>the</strong> mainl<strong>and</strong>. It is 6 km wide at its east end, 14 km long <strong>and</strong><br />

covers an area <strong>of</strong> over 50 square km (Davis <strong>and</strong> Mokray, 2000). It is one <strong>of</strong> <strong>the</strong> largest Gulf<br />

coast barrier isl<strong>and</strong>s.<br />

The isl<strong>and</strong> has been inhabited sparsely <strong>and</strong> intermittently throughout its history. The<br />

oldest paleoindian pottery shards on <strong>the</strong> isl<strong>and</strong> date to approximately 4,000 yr B.P. (Miller et al.,<br />

1981). In 1633, <strong>the</strong> isl<strong>and</strong> was named by Franciscan Friars who were visiting <strong>the</strong> local<br />

Apalachee tribes. Around 1750, members <strong>of</strong> <strong>the</strong> Creek <strong>and</strong> Seminole tribes entered <strong>the</strong> area <strong>and</strong><br />

inhabited <strong>the</strong> isl<strong>and</strong>. By <strong>the</strong> 1960’s, <strong>the</strong> isl<strong>and</strong> was in private h<strong>and</strong>s, stocked with exotic game<br />

<strong>and</strong> was being used as a hunting ground. The isl<strong>and</strong> was later acquired by <strong>the</strong> federal<br />

government <strong>and</strong> in 1968, <strong>the</strong> U.S. Fish <strong>and</strong> Wildlife Service established <strong>the</strong> St. Vincent Isl<strong>and</strong><br />

National Wildlife Refuge (Davis <strong>and</strong> Mokray, 2000).<br />

Dominating <strong>the</strong> local geomorphology is a well-developed beach ridge plain that covers<br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> isl<strong>and</strong> (Figure 2.1). More than 100 ridges have been formed over <strong>the</strong> isl<strong>and</strong>’s<br />

approximately 4,000-year history. Many <strong>of</strong> <strong>the</strong>se ridges are marked by eolian decoration.<br />

Previous studies conducted by Stapor (1973, 1975) <strong>and</strong> Campbell (1986) have divided <strong>the</strong> beach<br />

ridge plain on <strong>the</strong> isl<strong>and</strong> into 12 ridge sets separated by erosional truncations (Figure 1.2). The<br />

oldest set (Set A) is on <strong>the</strong> nor<strong>the</strong>rnmost side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> <strong>and</strong> <strong>the</strong> youngest set (Set L) fronts a<br />

portion <strong>of</strong> <strong>the</strong> active modern beach on <strong>the</strong> sou<strong>the</strong>ast portion <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The ridges on St.<br />

Vincent Isl<strong>and</strong> are concave seaward. Ridges on <strong>the</strong> nor<strong>the</strong>rn half <strong>of</strong> <strong>the</strong> isl<strong>and</strong> generally have<br />

lower elevations than those on <strong>the</strong> sou<strong>the</strong>rn half. Ridges within sets A, B, C <strong>and</strong> D have crest<br />

elevations <strong>of</strong> approximately 1 m (Stapor <strong>and</strong> Tanner, 1977). Ridges within sets E, F, G, H, I, J,<br />

23


K <strong>and</strong> L have crest elevations <strong>of</strong> approximately 2.5 m (Stapor <strong>and</strong> Tanner, 1977). The ridge sets<br />

have been assigned relative ages inferred from <strong>the</strong> erosional truncations <strong>and</strong> based on field<br />

mapping <strong>and</strong> aerial photography. Archaeological evidence <strong>and</strong> a few scattered radiocarbon dates<br />

add corroborative evidence that <strong>the</strong> ridge sets developed in <strong>the</strong> order proposed by Stapor (1973)<br />

<strong>and</strong> shown in Figure 1.2. Few radiometric dates have been obtained prior to <strong>the</strong> current<br />

investigation. Those that have been obtained are based on shell deposits. To date, <strong>the</strong> geologic<br />

history <strong>of</strong> <strong>the</strong> isl<strong>and</strong> is based on relative dating <strong>and</strong> inference. The goal <strong>of</strong> this project was to<br />

directly date ridge depositional ages <strong>and</strong> use this information to reconstruct <strong>the</strong> isl<strong>and</strong>’s complex<br />

history.<br />

Stapor (1973) calculated coastal s<strong>and</strong> budgets for <strong>the</strong> past 100 to 150 years based on<br />

historic bathymetric chart comparisons <strong>and</strong> maintenance dredging data for coastal stretches<br />

between Pensacola <strong>and</strong> Dog Isl<strong>and</strong>. The results indicated that <strong>the</strong> northwest coast <strong>of</strong> Florida is<br />

characterized by many longshore drift cells <strong>and</strong> some <strong>of</strong> <strong>the</strong>se cells experience little net exchange<br />

<strong>of</strong> s<strong>and</strong> with adjacent cells or <strong>of</strong>fshore regions. The bulk <strong>of</strong> <strong>the</strong> coast is eroding, with eroded<br />

material being deposited at barrier isl<strong>and</strong> tips ra<strong>the</strong>r than being lost <strong>of</strong>fshore. The stretch <strong>of</strong> coast<br />

between Dog Isl<strong>and</strong> <strong>and</strong> <strong>the</strong> St. Joseph Peninsula contains at least 7 distinct cells, which<br />

experience little net exchange <strong>of</strong> s<strong>and</strong> (Figure 2.2). Dog Isl<strong>and</strong> is influenced by two longshore<br />

drift cells. One transports s<strong>and</strong> to <strong>the</strong> nor<strong>the</strong>ast <strong>and</strong> one to <strong>the</strong> southwest. The ends <strong>of</strong> <strong>the</strong> isl<strong>and</strong><br />

are growing, while <strong>the</strong> Gulf shoreline is eroding. St. George Isl<strong>and</strong> also has two longshore cells,<br />

one transports material to <strong>the</strong> nor<strong>the</strong>ast end <strong>of</strong> <strong>the</strong> isl<strong>and</strong> <strong>and</strong> <strong>the</strong> o<strong>the</strong>r to <strong>the</strong> southwest towards<br />

Cape St. George. The shoreline at <strong>the</strong> middle <strong>of</strong> <strong>the</strong> isl<strong>and</strong> has experienced extensive erosion as<br />

evidenced by <strong>the</strong> presence <strong>of</strong> exposed stumps on <strong>the</strong> isl<strong>and</strong>’s gulf front <strong>and</strong> <strong>the</strong> presence <strong>of</strong><br />

washover deposits extending into Apalachicola Bay. The lagoonal side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> has<br />

experienced accretion. The two cells are separated by a stretch <strong>of</strong> coast that has experienced no<br />

shoreline change between 1860 <strong>and</strong> 1943. A comparison <strong>of</strong> net erosion <strong>and</strong> deposition between<br />

<strong>the</strong> east <strong>and</strong> south shores <strong>of</strong> St. Vincent Isl<strong>and</strong>, <strong>the</strong> lunate bar across West Pass <strong>and</strong> <strong>the</strong> S<strong>and</strong><br />

Isl<strong>and</strong> region indicate that erosion <strong>and</strong> deposition rates are nearly equal. The same is true <strong>of</strong> <strong>the</strong><br />

St. Joseph Peninsula. The coast between Cape San Blas <strong>and</strong> St. Joseph Point contains a<br />

southward <strong>and</strong> a northward transporting drift cell. Cape San Blas is eroding, while St. Joseph<br />

Point is prograding. Figure 2.3 shows <strong>the</strong> shoreline changes for <strong>the</strong> barrier isl<strong>and</strong> chain <strong>of</strong> which<br />

24


St. Vincent is a part. Based on a mass balance <strong>of</strong> s<strong>and</strong>, Stapor (1973) concluded that <strong>the</strong> barrier<br />

isl<strong>and</strong> chain, including St. Vincent Isl<strong>and</strong>, is in a <strong>state</strong> <strong>of</strong> sedimentologic equilibrium.<br />

Barrier Isl<strong>and</strong> Evolution Inferred from Beach Ridge Patterns<br />

According to Stapor (1973) <strong>the</strong> direction toward which <strong>the</strong> beach ridge sets splay<br />

(represented by <strong>the</strong> widest part <strong>of</strong> each set) indicates <strong>the</strong> transport direction <strong>of</strong> <strong>the</strong> longshore drift<br />

cell that supplied <strong>the</strong> s<strong>and</strong> to build <strong>the</strong> beach ridge plain. If deposits are symmetric with little<br />

splay <strong>the</strong>y were likely constructed from <strong>of</strong>fshore s<strong>and</strong> delivered directly to <strong>the</strong> beach without<br />

significant longshore transport. The beach ridge sets on St. Vincent Isl<strong>and</strong> are shown in Figure<br />

1.2. Sets A, B <strong>and</strong> C are symmetric with very little splay. This indicates that <strong>of</strong>fshore s<strong>and</strong> was<br />

moved directly from <strong>the</strong> inner shelf onto <strong>the</strong> growing beach ridge plain <strong>and</strong> did not undergo<br />

significant longshore transport (Stapor, 1973). Sets D, E <strong>and</strong> F are tapered at <strong>the</strong> west end <strong>and</strong><br />

splay to <strong>the</strong> east. This suggests that <strong>the</strong> source <strong>of</strong> sediment for <strong>the</strong>se ridges was located to <strong>the</strong><br />

east <strong>of</strong> <strong>the</strong> isl<strong>and</strong> <strong>and</strong> was transported to <strong>the</strong> beach ridge plain by westward longshore drift. Sets<br />

G <strong>and</strong> K are not splayed, suggesting that <strong>the</strong>y were a product <strong>of</strong> sediment being delivered<br />

directly to <strong>the</strong> growing beach ridge plain. Sets H, I, J <strong>and</strong> L don’t follow any particular pattern.<br />

Set I is splayed to <strong>the</strong> west indicating a reversal in drift direction. Set L splays northwest,<br />

indicating that sediment was transported from <strong>the</strong> sou<strong>the</strong>ast. Sets H, I, J <strong>and</strong> L were likely<br />

deposited as a result <strong>of</strong> <strong>the</strong> migration <strong>of</strong> <strong>the</strong> West Pass lunate bar across <strong>the</strong> inlet. Sets A through<br />

D are thought to have been deposited when sea level was about 1.5 m lower than present (Stapor<br />

<strong>and</strong> Tanner, 1977). After <strong>the</strong> deposition <strong>of</strong> <strong>the</strong>se sets, sea level is interpreted to have risen<br />

approximately 2 m (Campbell, 1986).<br />

Each younger beach ridge set truncates <strong>the</strong> older ones. This is likely a result <strong>of</strong><br />

oscillating Holocene sea-level (Figure 2.3), which was responsible for fluctuations in volumes <strong>of</strong><br />

<strong>of</strong>fshore s<strong>and</strong> available for supply to <strong>the</strong> shoreface (Stapor, 1973). A drop in sea level would<br />

make additional s<strong>and</strong> available for erosion through <strong>the</strong> lowering <strong>of</strong> wave base (Stapor, 1973). A<br />

rise in sea level could drive new s<strong>and</strong> shoreward for shoreface deposition (Stapor, 1973).<br />

25


Geoarchaeology<br />

The earliest inhabitants <strong>of</strong> <strong>the</strong> Florida Panh<strong>and</strong>le were nomadic hunters pursuing <strong>the</strong> last<br />

<strong>of</strong> <strong>the</strong> Pleistocene megafauna (Braley, 1982). With <strong>the</strong> extinction <strong>of</strong> big game by about 8,000 yr<br />

B.P., <strong>the</strong> paleoindian diet shifted to plants, small animals <strong>and</strong> seafood (Braley, 1982). Sea-level<br />

changes have influenced <strong>the</strong> location <strong>of</strong> <strong>the</strong> Apalachicola River’s delta migration, <strong>and</strong><br />

progradation <strong>of</strong> <strong>the</strong> delta has in turn affected human settlement patterns (Donoghue <strong>and</strong> White,<br />

1995). Figure 2.4 illustrates this phenomenon. The distribution <strong>of</strong> archaeological sites is<br />

consistent with geological studies <strong>of</strong> sea-level history (Donoghue <strong>and</strong> White, 1995). Several <strong>of</strong><br />

<strong>the</strong>se early sites have been drowned by sea level rise. St. Vincent Isl<strong>and</strong> has a long history <strong>of</strong><br />

human occupation.<br />

There are 17 prehistoric sites on St. Vincent Isl<strong>and</strong> (Braley, 1982). One <strong>of</strong> <strong>the</strong>se sites is<br />

<strong>the</strong> Paradise Point Site (Florida State site number 8FR71). This is a stratified midden located on<br />

<strong>the</strong> north shore <strong>of</strong> St. Vincent Isl<strong>and</strong> (2.4 km northwest <strong>of</strong> St. Vincent Point, which is <strong>the</strong> eastern<br />

tip <strong>of</strong> <strong>the</strong> isl<strong>and</strong>) (Braley, 1982, Walker et al., 1995). The midden indicates two periods <strong>of</strong><br />

occupation. The earliest occupation has been radiocarbon dated at 240 A.D. (1,710 +/- 60 years<br />

B.P.), although that date may be in error (Braley, 1982). This occupation was terminated by<br />

rising sea level <strong>and</strong> ab<strong>and</strong>oned for several hundred years. After sea level fell, <strong>the</strong> site was<br />

reoccupied (900-1,100 A.D.). Evidence suggests that <strong>the</strong> Paradise Point site was occupied<br />

during <strong>the</strong> warmer months. In addition to <strong>the</strong> Paradise Point site, archaeological evidence from<br />

midden sites on <strong>the</strong> north side <strong>of</strong> St. Vincent Isl<strong>and</strong> reveal that <strong>the</strong> earliest occupation <strong>of</strong> <strong>the</strong><br />

isl<strong>and</strong> began during <strong>the</strong> Norwood Period, around 4,000 years B.P. Figure 2.5 shows <strong>the</strong> location<br />

<strong>of</strong> archaeological sites on St. Vincent Isl<strong>and</strong> that have been assigned archaeological ages.<br />

St. Vincent Isl<strong>and</strong> was selected as <strong>the</strong> focus <strong>of</strong> this investigation in part because it has not<br />

been studied in great detail in <strong>the</strong> past <strong>and</strong>, more importantly, because it contains a long term<br />

record <strong>of</strong> coastal <strong>evolution</strong> that is undisturbed, well-preserved <strong>and</strong> nearly continuous. The ridge<br />

complex on St. Vincent Isl<strong>and</strong> carries a record <strong>of</strong> changing sediment sources <strong>and</strong> changing<br />

oceanographic conditions over at least <strong>the</strong> past four millennia (Stapor 1973, 1975). Ano<strong>the</strong>r<br />

important factor in <strong>the</strong> selection <strong>of</strong> this site was <strong>the</strong> physical character <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The narrow<br />

geographic limits <strong>of</strong> <strong>the</strong> isl<strong>and</strong> <strong>and</strong> <strong>the</strong> regional tectonic stability <strong>of</strong> northwest Florida make it<br />

possible to collect hundreds <strong>of</strong> data points representing past sea level st<strong>and</strong>s without concern for<br />

26


effects like warping, tilting or compaction (Tanner et al., 1989). The isl<strong>and</strong> also has over 129 km<br />

<strong>of</strong> unpaved road, which makes sample collection a relatively simple task (Davis <strong>and</strong> Mokray,<br />

2000).<br />

27


Oyster Pond<br />

Figure 2.1. Infrared orthophoto image <strong>of</strong> St. Vincent Isl<strong>and</strong> showing <strong>the</strong> beach ridge plain that<br />

covers <strong>the</strong> surface <strong>of</strong> <strong>the</strong> isl<strong>and</strong> (USGS imagery). Location is shown in Figure 1.1.<br />

28<br />

Mallard Slough


Figure 2.2. Sediment transport rates in <strong>the</strong> Apalachicola barrier isl<strong>and</strong> chain. The arrows<br />

indicate <strong>the</strong> direction <strong>of</strong> transport <strong>and</strong> <strong>the</strong> numbers represent <strong>the</strong> volume (in 10 3 m 3 /yr) <strong>of</strong><br />

material deposited <strong>and</strong> eroded. (Source: Stapor, 1973).<br />

29


Figure 2.3. St. Vincent Isl<strong>and</strong> shoreline changes based on historic ch<strong>arts</strong>. (Source: Stapor, 1973).<br />

30


Figure 2.4. Age distribution <strong>of</strong> archaeological sites in <strong>the</strong> lower Apalachicola River watershed,<br />

including St. Vincent Isl<strong>and</strong>. Symbols indicate approximate known age <strong>of</strong> <strong>the</strong> oldest artifacts<br />

found at all dated sites within <strong>the</strong> lower watershed. Contours show <strong>the</strong> maximum age <strong>of</strong> <strong>the</strong><br />

enclosed sites, indicating a close connection between delta migration <strong>and</strong> human settlement<br />

patterns. Contours are dashed where uncertain. Patterned area northwest <strong>of</strong> <strong>the</strong> modern<br />

Apalachicola Delta is <strong>the</strong> “late Pleistocene” delta. (Source: Donoghue <strong>and</strong> White, 1995).<br />

31<br />

N


Pickalene Middens Paradise Point Site (8FR71)<br />

Figure 2.5. Archaeological sites on St. Vincent Isl<strong>and</strong>. (Source: Braley, 1982).<br />

32


Field Sampling<br />

CHAPTER 3<br />

METHODS<br />

Samples for sediment <strong>and</strong> geochronologic analyses were collected by two methods.<br />

Vibracores were used to collect deep sediment samples beneath <strong>the</strong> beach ridges. Additionally,<br />

whenever possible, trenches were excavated into selected ridges. All trenches were oriented<br />

perpendicular to <strong>the</strong> trend <strong>of</strong> <strong>the</strong> ridge crest. A total <strong>of</strong> 18 trenches were excavated. Samples for<br />

OSL dating were obtained by hammering 0.3 m sections <strong>of</strong> aluminum irrigation pipe horizontally<br />

into <strong>the</strong> vertical walls <strong>of</strong> <strong>the</strong> trenches or by subsampling sections <strong>of</strong> <strong>the</strong> aluminum vibracore<br />

tubes.<br />

For this investigation trenching was <strong>the</strong> preferred method <strong>of</strong> sample collection. However,<br />

sediment cores can also provide direct evidence <strong>of</strong> <strong>the</strong> lithologic character <strong>of</strong> <strong>the</strong> sediment.<br />

Vibracoring is one <strong>of</strong> many subsurface sediment acquisition techniques. Samples were collected<br />

by vibrating a core barrel into <strong>the</strong> sediment. By using this method it is possible to obtain cores <strong>of</strong><br />

up to 6.0 m in length in unconsolidated sediments. Vibratory corers have been in use for several<br />

decades <strong>and</strong> techniques have improved through <strong>the</strong> years as field experience has advanced. They<br />

are relatively simple devices comprised <strong>of</strong> a frame, coring tube, <strong>and</strong> drive head that consists <strong>of</strong><br />

ei<strong>the</strong>r a pneumatic, hydraulic or electrical vibrator. For this study a Stow vibrator powered by an<br />

8 horsepower Briggs <strong>and</strong> Stratton gas motor was used. The unit spins a flexible cable at a high<br />

speed that causes <strong>the</strong> unevenly weighted head to vibrate. The head was mounted by U bolts to<br />

an adaptor that was clamped to <strong>the</strong> 8-cm diameter aluminum core barrels. Once maximum<br />

penetration was achieved, <strong>the</strong> top <strong>of</strong> <strong>the</strong> core barrel was filled with water <strong>and</strong> capped. This<br />

created suction when <strong>the</strong> core was extracted <strong>and</strong> prevented <strong>the</strong> movement <strong>of</strong> sediment in <strong>the</strong> core<br />

barrel. A come-along <strong>and</strong> tripod were used to extract each core out <strong>of</strong> <strong>the</strong> ground. For this<br />

investigation, 8-cm diameter aluminum irrigation pipe cut into 3.0 to 6.0 m lengths was used.<br />

Vibracores were not logged because <strong>the</strong>y were opened under reduced light conditions for OSL<br />

sample collection. Figure 3.1 shows <strong>the</strong> sample collection methods employed in this<br />

investigation.<br />

33


At each vibracore or trench location, a benchmark (a piece <strong>of</strong> 3 cm diameter white pvc<br />

pipe ei<strong>the</strong>r with or without a stamped brass marker) was set to be used when surveying sample<br />

locations. Each monument was set in concrete in a protected location, away from <strong>the</strong> road <strong>and</strong><br />

clearly visible. Table 3.1 provides <strong>the</strong> locations <strong>of</strong> each benchmark set on <strong>the</strong> isl<strong>and</strong>.<br />

To accurately determine <strong>the</strong> elevation <strong>of</strong> each sample <strong>and</strong> beach ridge, which is a<br />

function <strong>of</strong> sea-level elevation, an extensive surveying study involving DGPS-based field survey<br />

techniques was carried out. All measurements were done relative to <strong>the</strong> benchmarks that were<br />

set up on <strong>the</strong> isl<strong>and</strong>. Survey methods will be described below.<br />

Geochronology<br />

Luminescence Dating<br />

Luminescence dating, in <strong>the</strong> form <strong>of</strong> optically stimulated luminescence (OSL) <strong>of</strong> quartz,<br />

was selected as <strong>the</strong> dating method for this investigation. OSL has only recently become<br />

available for determining <strong>the</strong> depositional age <strong>of</strong> coastal sediment deposits. OSL can provide<br />

ages for deposits that are not datable by o<strong>the</strong>r geochronometric methods (Berger, 1988). Figure<br />

3.2 outlines <strong>the</strong> basis <strong>of</strong> luminescence. At <strong>the</strong> time <strong>of</strong> sedimentation, <strong>the</strong> luminescence signal<br />

that was acquired in <strong>the</strong> past is set to zero. This zeroing is a response to <strong>the</strong> daylight or sunlight<br />

exposure that occurs during erosion <strong>and</strong> transport. Exposure to light releases electrons from<br />

higher energy traps <strong>and</strong> defects in <strong>the</strong> crystal structure, <strong>and</strong> returns <strong>the</strong>m to <strong>the</strong> lower-energy<br />

valence <strong>state</strong>. The mechanics <strong>of</strong> luminescence are explained using <strong>the</strong> conduction b<strong>and</strong> model<br />

(Figure 3.3).<br />

Luminescence dating is based on <strong>the</strong> accumulation <strong>of</strong> electrons in atomic lattice sites<br />

called defects or traps (Aitken, 1998). These sites are associated with impurities or structural<br />

defects in <strong>the</strong> crystal lattice that were incorporated during crystallization. In some cases, <strong>the</strong>y<br />

are associated with radiation damage (Hutt <strong>and</strong> Raukas, 1995). Ionizing radiation is produced by<br />

<strong>the</strong> decay <strong>of</strong> radioactive nuclides including 40 K, <strong>the</strong> uranium-series <strong>and</strong> <strong>the</strong> thorium-series<br />

elements <strong>and</strong> cosmic ray muons (Aitken, 1998) (Figure 3.4). As this radiation passes through a<br />

mineral, it ionizes <strong>the</strong> mineral’s binding electrons <strong>and</strong> excites <strong>the</strong>m above <strong>the</strong>ir ground <strong>state</strong>s. As<br />

<strong>the</strong>se electrons return to <strong>the</strong>ir ground <strong>state</strong>s, some become trapped in <strong>the</strong> defects <strong>and</strong> cannot be<br />

34


emoved without an additional input <strong>of</strong> energy (Aitken, 1998). If <strong>the</strong> defect is large enough,<br />

electrons can be held for long periods <strong>of</strong> geologic time. Therefore, over time, defect sites<br />

accumulate electrons. The magnitude <strong>of</strong> <strong>the</strong> accumulation is <strong>the</strong>refore a function <strong>of</strong> time <strong>and</strong> <strong>the</strong><br />

production rate <strong>of</strong> <strong>the</strong> trapped electrons. This <strong>the</strong>n forms <strong>the</strong> basis <strong>of</strong> a geochronologic method.<br />

The trapped electrons are released from <strong>the</strong> defects by exposure to light or heat. Not all electron<br />

traps have an equal probability <strong>of</strong> being emptied (Huntley, 1985). Such differences could be a<br />

result <strong>of</strong> attenuation <strong>of</strong> light while passing through a mineral grain or a result <strong>of</strong> differences in<br />

<strong>the</strong> physical properties <strong>of</strong> <strong>the</strong> traps (Huntley, 1985). The de-trapping process produces light, or<br />

luminescence, representing <strong>the</strong> release <strong>of</strong> photons as <strong>the</strong> electrons return to <strong>the</strong> ground <strong>state</strong>. The<br />

amount <strong>of</strong> light emitted is proportional to <strong>the</strong> number <strong>of</strong> trapped electrons, <strong>and</strong> thus <strong>the</strong> radiation<br />

dose accumulated since <strong>the</strong> sediment was last exposed to light (Huntley <strong>and</strong> Lian, 1999). If <strong>the</strong><br />

de-trapping mechanism is light energy, <strong>the</strong> method is referred to as optically stimulated<br />

luminescence (OSL). At <strong>the</strong> time <strong>of</strong> sedimentation, <strong>the</strong> luminescence signal that was acquired in<br />

<strong>the</strong> past is reset to zero. This zeroing is a response to <strong>the</strong> sunlight exposure that occurs during<br />

erosion <strong>and</strong> transport. After deposition, exposure to ambient radiation <strong>the</strong>n repopulates <strong>the</strong> traps<br />

(Huntley <strong>and</strong> Lian, 1999). This repopulation continues until <strong>the</strong> sediment is heated in <strong>the</strong> lab, or<br />

exposed to sunlight during ano<strong>the</strong>r sedimentation cycle.<br />

OSL was developed in 1985 (Huntley et al., 1985) as a method <strong>of</strong> determining when<br />

sediments were last exposed to sunlight. The method involves exciting <strong>the</strong> trapped electrons in<br />

<strong>the</strong> sediment by shining laser light on grains isolated from a sample <strong>and</strong> measuring <strong>the</strong><br />

wavelength <strong>and</strong> intensity <strong>of</strong> light emitted in response.<br />

To calculate OSL ages, <strong>the</strong> paleodose is divided by <strong>the</strong> annual dose rate. The dose rate is<br />

<strong>the</strong> rate at which energy is absorbed by <strong>the</strong> mineral grain from <strong>the</strong> incoming flux <strong>of</strong> radiation<br />

(Aitken, 1998). Its components are environmental beta <strong>and</strong> cosmic radiation, external <strong>and</strong><br />

internal beta radiation from K <strong>and</strong> Rb in <strong>the</strong> crystal lattice <strong>and</strong> internal alpha radiation from U<br />

<strong>and</strong> Th embedded in <strong>the</strong> grains (Mejdahl <strong>and</strong> Christiansen, 1994). This is shown schematically<br />

in Figure 3.4. There are also minor contributions to <strong>the</strong> dose rate from gamma radiation. The<br />

dose rate is determined by measuring <strong>the</strong> radioactivity <strong>of</strong> <strong>the</strong> surrounding sediment. The<br />

paleodose is <strong>the</strong> amount <strong>of</strong> radiation received since <strong>the</strong> traps were last emptied during a<br />

bleaching, or zeroing, event (Smith et al., 1986). The laboratory equivalent <strong>of</strong> <strong>the</strong> paleodose is<br />

<strong>the</strong> equivalent dose (DE) which is <strong>the</strong> laboratory dose <strong>of</strong> radiation that is needed to induce a<br />

35


luminescence signal equivalent to that acquired by <strong>the</strong> sample after <strong>the</strong> most recent bleaching<br />

event (Aitken, 1998). The DE is evaluated using ei<strong>the</strong>r <strong>the</strong> additive dose method or <strong>the</strong><br />

regenerative dose method. For <strong>the</strong> additive dose method, <strong>the</strong> sample aliquots being measured are<br />

divided into several groups. One group is used to measure <strong>the</strong> natural OSL. The remaining<br />

groups are given different radiation doses delivered by an artificial source before being<br />

measured. Dose is added with each measurement cycle to build a response curve (Folz <strong>and</strong><br />

Mercier, 1999). In <strong>the</strong> regeneration method, all aliquots are bleached to near zero <strong>and</strong> <strong>the</strong>n given<br />

a laboratory dose. The natural aliquots are not given a radiation dose. The natural OSL is <strong>the</strong>n<br />

compared to <strong>the</strong> OSL resulting from aliquots that received a dose.<br />

Advantages <strong>of</strong> Luminescence Dating for Coastal Sediment Deposits<br />

Radiocarbon dating has typically been used to date coastal deposits in environments<br />

similar to that <strong>of</strong> <strong>the</strong> present study. For example, Stapor <strong>and</strong> Tanner (1977) analyzed thirteen<br />

sediment samples from coastal deposits from <strong>the</strong> Apalachicola region <strong>and</strong> from nearshore s<strong>and</strong>s<br />

seaward <strong>of</strong> pre-Holocene barriers using radiocarbon dating. They obtained ages ranging between<br />

22,000 <strong>and</strong> 40,000 yr B.P. A study by Missimer (1973) examined dune ridges on Sanibel Isl<strong>and</strong>,<br />

a barrier isl<strong>and</strong> located 160 km south <strong>of</strong> Tampa, Florida. The isl<strong>and</strong> has seven to twelve sets <strong>of</strong><br />

subparallel ridges, which have been used to estimate <strong>the</strong> growth <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The age<br />

relationships between <strong>the</strong> ridge sets were determined using radiocarbon dates obtained from<br />

aragonitic mollusc shells. The dates ranged between 547 <strong>and</strong> 4,310 yr B.P. All ridges were<br />

found to have been deposited in <strong>the</strong> past 4,300 years <strong>and</strong> Missimer (1973) estimated that it takes<br />

14-18 years for each ridge to fully develop.<br />

As an alternative to <strong>the</strong>se methods, several studies have applied OSL dating to coastal<br />

deposits. Wintle et al. (1998) collected fifteen samples <strong>of</strong> dune s<strong>and</strong> <strong>and</strong> three samples from a<br />

core taken in <strong>the</strong> beach face <strong>of</strong> a s<strong>and</strong> spit that protrudes into Dingle Bay in southwest Irel<strong>and</strong>.<br />

Feldspar grains were dated using a single aliquot protocol for infrared stimulated luminescence.<br />

No ages over 600 years were obtained. The youngest age obtained was 150 years. These ages<br />

are consistent with <strong>the</strong> belief that <strong>the</strong> majority <strong>of</strong> dunes in Irel<strong>and</strong> formed within <strong>the</strong> last 6,000<br />

years (Carter, 1986). Jungner et al. (2001) collected eight sediment samples from a parabolic<br />

dune in Cape Kiw<strong>and</strong>a, which is part <strong>of</strong> a complex <strong>of</strong> four dunes formed by onshore winter storm<br />

36


winds. Seven samples were collected from exposed paleosols <strong>and</strong> one sample was collected<br />

from <strong>the</strong> base <strong>of</strong> <strong>the</strong> dune. Quartz within <strong>the</strong> 100-200 μm size fraction was dated using <strong>the</strong><br />

single aliquot regenerative (SAR) method. The resulting dates cover a period ranging from a few<br />

hundred years to 7,000 years.<br />

Luminescence dating has several advantages over o<strong>the</strong>r dating methods. Luminescence<br />

techniques can provide ages for deposits not datable by o<strong>the</strong>r geochronometric methods, such as<br />

C-14, since it can be applied directly to s<strong>and</strong> grains (Berger, 1988). Additionally, <strong>the</strong> age range<br />

for OSL is approximately 50-800,000 years B.P. (Berger, 1995). For some samples, both quartz<br />

<strong>and</strong> feldspar have sufficient sensitivity to produce ages as young as one year, but currently <strong>the</strong>re<br />

are no reliable techniques for doing this (Huntley <strong>and</strong> Lian, 1999).<br />

OSL versus Radiocarbon Dating<br />

Carbon-14 dating is geochronometric technique that is commonly used in coastal<br />

geology. It is based on <strong>the</strong> beta decay <strong>of</strong> 14 C atoms produced in <strong>the</strong> upper atmosphere (Bard,<br />

1998). This method has numerous disadvantages. It is not possible to measure <strong>the</strong> ratio between<br />

<strong>the</strong> parent isotope, 14 C <strong>and</strong> <strong>the</strong> daughter product, 14 N (Bard, 1998). To be able to calculate a true<br />

calendar age, <strong>the</strong> initial 14 C/ 12 C ratio <strong>of</strong> each sample must be known. A calibration is <strong>the</strong>refore<br />

needed, because <strong>the</strong> C-14 concentration in <strong>the</strong> atmosphere has fluctuated over time in response to<br />

variations in cosmic ray intensity, changes in climate, atomic bomb testing <strong>and</strong> <strong>the</strong> burning <strong>of</strong><br />

fossil fuels (Bard et al., 1990; Stuiver et al., 1991; Bard, 1997). Calibration involves evaluating<br />

past variations <strong>of</strong> atmospheric 14 C/ 12 C. For <strong>the</strong> Holocene period (<strong>the</strong> past 10,000 years) it is<br />

possible to find both living <strong>and</strong> fossil pines <strong>and</strong> oaks <strong>and</strong> compare 14 C levels to tree ring counts<br />

(Bard, 1998). Beyond <strong>the</strong> Holocene, calibration becomes difficult because <strong>the</strong>re are few living<br />

or fossil trees <strong>of</strong> that age. Extending <strong>the</strong> calibration curve beyond 10,000 years can be done by<br />

<strong>the</strong> high precision U-Th dating <strong>of</strong> corals (Bard et al., 1990; Bard et al., 1998). Using Carbon-14<br />

dating, it is possible to obtain maximum ages <strong>of</strong> 45,000 years B.P. However, OSL dating has a<br />

wider range <strong>and</strong> does not require extensive calibration. An additional advantage <strong>of</strong> OSL over<br />

radiocarbon is that it can be used in areas where quartz is more abundant than organic or shell<br />

material. This makes it an ideal method for dating deposits in coastal depositional environments.<br />

37


Application <strong>of</strong> OSL to Coastal Studies<br />

It is <strong>of</strong>ten difficult to obtain reliable chronologies for depositional events in coastal<br />

environments, particularly in <strong>the</strong> case <strong>of</strong> beach ridges that incorporate dune s<strong>and</strong> at some time<br />

after <strong>the</strong> creation <strong>of</strong> <strong>the</strong> beach deposit. This is because <strong>the</strong> sedimentary components dated may<br />

not all represent <strong>the</strong> time <strong>of</strong> deposition. The approaches most commonly taken to date such<br />

deposits include <strong>the</strong> radiocarbon dating <strong>of</strong> skeletal carbonate s<strong>and</strong>s <strong>and</strong> <strong>the</strong> dating <strong>of</strong> whole shells<br />

incorporated in <strong>the</strong> beach deposit, or dating basal peat deposits when available. Murray-Wallace<br />

et al. (2002) used <strong>the</strong> OSL <strong>of</strong> quartz sampled from relict beach ridges to evaluate <strong>the</strong> utility <strong>of</strong><br />

applying OSL to studies <strong>of</strong> dune dynamics <strong>and</strong> coastal progradation rates. It became <strong>the</strong> first<br />

study to examine <strong>the</strong> potential <strong>of</strong> using OSL to date Holocene beach ridges. The OSL ages<br />

obtained indicated a rapid period <strong>of</strong> sedimentation (1,600 linear meters within a few hundred<br />

years approximately 5,000 years ago) followed by a constant rate <strong>of</strong> progradation for <strong>the</strong> past<br />

4,000 years <strong>of</strong> 0.39 m/yr. Based on <strong>the</strong>se rates <strong>and</strong> <strong>the</strong> ages <strong>of</strong> <strong>the</strong> dune ridges, it was estimated<br />

that <strong>the</strong> average rate <strong>of</strong> dune development for <strong>the</strong> study site was one dune every 80 years. In a<br />

similar study, Ballarini et al. (2003), explored using OSL dating for reconstructing coastal<br />

<strong>evolution</strong> on a timescale <strong>of</strong> decades to a few hundreds years. Samples were collected from an<br />

accretionary barrier isl<strong>and</strong> in <strong>the</strong> nor<strong>the</strong>rn Ne<strong>the</strong>rl<strong>and</strong>s. The southwest part <strong>of</strong> <strong>the</strong> isl<strong>and</strong> is made<br />

up <strong>of</strong> a series <strong>of</strong> beach ridges. The isl<strong>and</strong> is growing in a southwesterly direction as a result <strong>of</strong><br />

shoals merging with it. The ages <strong>of</strong> <strong>the</strong> deposits are known from historical sources. OSL ages <strong>of</strong><br />

younger than 10 years were obtained on <strong>the</strong> youngest samples. The study showed that <strong>the</strong><br />

deposits on <strong>the</strong> isl<strong>and</strong> were formed over <strong>the</strong> last 300 years. This study illustrates <strong>the</strong> potential <strong>of</strong><br />

using OSL dating for <strong>the</strong> high-resolution reconstruction <strong>of</strong> coastal <strong>evolution</strong> over <strong>the</strong> past several<br />

centuries.<br />

Laboratory Analyses<br />

Optically stimulated luminescence (OSL) dating was applied to quartz grains, collected<br />

from <strong>the</strong> basal p<strong>arts</strong> <strong>of</strong> <strong>the</strong> beach ridges, in order to develop a chronology for <strong>the</strong> <strong>evolution</strong> <strong>of</strong> St.<br />

Vincent Isl<strong>and</strong> <strong>and</strong> to assess its response to oceanographic <strong>and</strong> climate changes. OSL dating<br />

measures <strong>the</strong> time <strong>of</strong> last exposure to sunlight, i.e., <strong>the</strong> time <strong>of</strong> deposition (Aitken, 1998). The<br />

38


time <strong>of</strong> deposition <strong>of</strong> s<strong>and</strong>y coastal features, such as beach ridges, represents <strong>the</strong> age <strong>of</strong> <strong>the</strong><br />

feature. The recent development <strong>of</strong> <strong>the</strong> single-aliquot regenerative-dose (SAR) protocol for<br />

quartz OSL, as used in <strong>the</strong> present study, has led to an increase in <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> dating<br />

method (e.g., Duller, 1991; Wintle, 1997; Murray <strong>and</strong> Roberts, 1998; Murray <strong>and</strong> Wintle, 2000;<br />

VanHeteren et al., 2000; Murray <strong>and</strong> Olley, 2002; Leigh et al., 2004). OSL has been found to<br />

be highly accurate in dating similar coastal s<strong>and</strong> features, when compared with known historical<br />

ages (Ballarini et al., 2003). For <strong>the</strong> present study, unexposed quartz s<strong>and</strong> samples extracted<br />

from <strong>the</strong> trench walls in beach ridges <strong>and</strong> from vibracores collected in beach ridges have been<br />

dated at <strong>the</strong> University <strong>of</strong> Georgia Luminescence Laboratory.<br />

St<strong>and</strong>ard OSL analytical techniques were applied. Sample preparation <strong>and</strong> h<strong>and</strong>ling for<br />

<strong>the</strong> OSL dating was conducted under subdued red-light conditions. Five centimeters <strong>of</strong> sediment<br />

was removed from each end <strong>of</strong> <strong>the</strong> aluminum sample tubes for dose-rate estimation.<br />

Luminescence measurements were made on <strong>the</strong> central section <strong>of</strong> <strong>the</strong> sediment cylinder, <strong>the</strong> part<br />

that was least likely to have been exposed to sunlight during sampling (Figure 3.5). All samples<br />

were treated with 10% HCl <strong>and</strong> 30% H2O2 to remove carbonate <strong>and</strong> organic matter. Samples<br />

were <strong>the</strong>n sieved to extract <strong>the</strong> 150-170 μm size fractions. Quartz <strong>and</strong> feldspar grains were<br />

separated by density, using Na-polytung<strong>state</strong> (ρ=2.58 g/cm 3 ). The quartz fraction was <strong>the</strong>n<br />

etched using 48% HF for 80 minutes followed by 36% HCl for 30 minutes to remove <strong>the</strong> outer<br />

surface, which might have been affected by alpha radiation. The quartz grains were mounted on<br />

stainless steel discs using Silkospray TM . Light stimulation <strong>of</strong> <strong>the</strong> quartz was achieved using a<br />

Risø array <strong>of</strong> blue LEDs centred at 470 nm. Detection optics comprised two Hoya 2.5 mm thick<br />

U340 filters <strong>and</strong> a 3 mm thick Schott GG420 filter coupled to an EMI 9635 QA photomultiplier<br />

tube. Luminescence Measurements were taken with a Risø TL-DA-15 reader as shown in Figure<br />

3.6. A 25-mCi 90 Sr/ 90 Y built in beta source was used for sample irradiation.<br />

The single aliquot regenerative dose (SAR) protocol (Murray <strong>and</strong> Wintle, 2000) was used<br />

to determine <strong>the</strong> paleodose. A five-point measurement strategy was used with three dose points<br />

to bracket <strong>the</strong> paleodose, a fourth zero dose <strong>and</strong> a fifth repeat-paleodose point. The repeat<br />

paleodose is measured to correct for changes in <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> sample to <strong>the</strong> applied<br />

radiation doses <strong>and</strong> to check that <strong>the</strong> protocol is working correctly. All measurements were made<br />

at 125°C for 100 seconds after a pre-heat to 220°C for 60 seconds. For all aliquots, <strong>the</strong> recycling<br />

39


atio between <strong>the</strong> first <strong>and</strong> <strong>the</strong> fifth point fell between 0.95-1.05. All OSL data were analyzed<br />

using <strong>the</strong> ANALYST s<strong>of</strong>tware package created by Duller (1999).<br />

Paleodose measurements were made on single aliquots <strong>of</strong> 9.6 mm diameter. In each case,<br />

13-20 aliquots from each sample were analyzed. The dose rate calculation relies on <strong>the</strong> thick-<br />

source ZnS (Ag) alpha counting technique for elemental concentration determination <strong>of</strong> uranium<br />

<strong>and</strong> thorium. Potassium was measured by ICP90 using <strong>the</strong> sodium peroxide fusion technique.<br />

The cosmic ray gamma contribution to <strong>the</strong> s<strong>and</strong>s was estimated for each sample as a function <strong>of</strong><br />

depth <strong>and</strong> elevation following Prescott <strong>and</strong> Hutton (1994).<br />

Water in <strong>the</strong> sediment absorbs part <strong>of</strong> <strong>the</strong> radiation that would o<strong>the</strong>rwise reach <strong>the</strong> grains<br />

(Aitken, 1998). The dose rate in sediment containing moisture is less than that in <strong>the</strong> same<br />

sediment if it is dry. If <strong>the</strong> effect <strong>of</strong> moisture is ignored <strong>the</strong> age may be underestimated. Water<br />

attenuates <strong>the</strong> radiation dose, <strong>the</strong>refore, <strong>the</strong> difference between using <strong>the</strong> higher versus <strong>the</strong> lower<br />

paleodose value in <strong>the</strong> age calculation may affect <strong>the</strong> outcome by several hundred years.<br />

Although moisture content can be measured when <strong>the</strong> sediment is collected <strong>and</strong> a correction<br />

obtained, it is <strong>the</strong> average moisture content over <strong>the</strong> entire burial period that is relevant (Aitken,<br />

1998). An estimate is made by taking into account <strong>the</strong> percent moisture as sampled, <strong>and</strong><br />

whatever indications are available about past variations (Aitken, 1998). The water content <strong>of</strong> <strong>the</strong><br />

samples is measured in <strong>the</strong> laboratory using st<strong>and</strong>ard methods. As <strong>the</strong>re is no way <strong>of</strong> knowing<br />

<strong>the</strong> average water content <strong>of</strong> <strong>the</strong> sediments since deposition, nor <strong>of</strong> knowing if <strong>the</strong> measured<br />

values are fully representative <strong>of</strong> present conditions, <strong>the</strong> ages <strong>of</strong> all samples are typically<br />

calculated using a value in <strong>the</strong> high range <strong>of</strong> water content <strong>and</strong> a value in <strong>the</strong> lower range <strong>of</strong><br />

water content. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> present project, given <strong>the</strong> fact that regional sea-level has been<br />

very close to present during <strong>the</strong> period in question, groundwater conditions have probably been<br />

close to present for most <strong>of</strong> <strong>the</strong> time since deposition <strong>of</strong> <strong>the</strong> s<strong>and</strong> ridges. Therefore, for <strong>the</strong> St.<br />

Vincent samples, <strong>the</strong> assumed mean water content estimates will likely provide <strong>the</strong> most accurate<br />

age estimates. The methodology described above was tested by collecting <strong>and</strong> dating a sample<br />

with a known age. This sample was collected from <strong>the</strong> modern beach surface <strong>and</strong> expected to<br />

yield an age <strong>of</strong> 0 years.<br />

40


Sediment Analyses<br />

In addition to samples collected for OSL dating, samples were collected for<br />

granulometric analysis. Samples were collected by pushing small, clear plastic sample vials<br />

horizontally into <strong>the</strong> trench face or by subsampling vibracores. Samples were brought back to<br />

<strong>the</strong> lab, weighed <strong>and</strong> dried to provide an estimate <strong>of</strong> modern moisture content. The samples were<br />

<strong>the</strong>n mechanically separated on a Ro-tap using 8-inch diameter screens stacked at ¼ phi intervals<br />

between (<strong>and</strong> including) 4.0 phi <strong>and</strong> –1.0 phi (1/16 mm to 2 mm). Based on <strong>the</strong> procedure<br />

outlined in Socci <strong>and</strong> Tanner (1980), each sample was shaken for 30 minutes. Each grain size<br />

fraction was weighed <strong>and</strong> results were analyzed using <strong>the</strong> GRANPLOTS program (Balsillie et<br />

al., 2002).<br />

Two additional sets <strong>of</strong> data were analyzed. Tanner (1992 <strong>and</strong> unpublished data) collected<br />

<strong>and</strong> analyzed a series <strong>of</strong> grab samples from several transects across St. Vincent Isl<strong>and</strong> in 1984<br />

<strong>and</strong> 1985. Samples were collected from <strong>the</strong> seaward faces <strong>of</strong> successive ridges from a depth <strong>of</strong><br />

30 cm. Figure 3.7 shows <strong>the</strong> locations <strong>of</strong> <strong>the</strong> samples that were collected by Tanner.<br />

The GRANPLOTS program provides complete granulometric analyses including data<br />

listing, moment measure calculations <strong>and</strong> frequency <strong>and</strong> cumulative plots. Probability plots were<br />

interpreted using Tanner’s (1986, 1991) SELF (Settling-Eolian-Littoral-Fluvial) method. In this<br />

method, basic line segment geometries are used to identify transpo-depositional signatures. The<br />

line geometries were determined by Tanner (1986, 1991) as a result <strong>of</strong> <strong>the</strong> analysis <strong>of</strong> over<br />

11,000 sediment samples from known environments. The basis <strong>of</strong> this method is shown in<br />

Figure 3.8. Line AEF represents <strong>the</strong> Gaussian distribution. Line segment B indicates that <strong>the</strong><br />

operating transpo-depositional element is wave activity. The point relative to segment E is <strong>the</strong><br />

so-called surf break. This gentle slope indicates s<strong>and</strong> deposition on a beach. The higher <strong>the</strong><br />

slope, <strong>the</strong> greater <strong>the</strong> wave energy. Segment C indicates eolian processes. The point relative to<br />

segment B is <strong>the</strong> so-called eolian hump. Segment G represents <strong>the</strong> low energy tail termed <strong>the</strong><br />

settling tail <strong>and</strong> may indicate a lowering <strong>of</strong> <strong>the</strong> depositional energy for <strong>the</strong> total distribution or for<br />

distribution segments containing coarser sediment. It signifies settling <strong>of</strong> sediment grains<br />

suspended in water. The data collected during <strong>the</strong> grain size analyses is presented in Chapter 4.<br />

41


Topographic Surveying<br />

Topographic surveying is a simple method <strong>of</strong> obtaining data that describes <strong>the</strong> nature <strong>of</strong><br />

<strong>the</strong> local terrain. Leveling is <strong>the</strong> process used to determine <strong>the</strong> elevation or <strong>the</strong> difference in<br />

elevation <strong>of</strong> points on <strong>the</strong> ground. All elevations are determined relative to a datum. During this<br />

investigation all elevations were measured relative to NAVD 88 (North American Vertical<br />

Datum). All leveling was done using a laser scanner <strong>and</strong> rod marked with encoding bar strips.<br />

The ground elevation was found by reading <strong>the</strong> rod values through <strong>the</strong> telescope lens at different<br />

points along <strong>the</strong> line. The rod was held on <strong>the</strong> points whose elevation was being measured. The<br />

horizontal position <strong>of</strong> <strong>the</strong> rod was determined by GPS. These elevations were based on a single<br />

frequency differential GPS survey using Magellan Mark I receivers. The base station was set at<br />

FDEP monument B396, which was located at <strong>the</strong> intersection <strong>of</strong> Road 2 <strong>and</strong> Road B. The<br />

accuracy <strong>of</strong> <strong>the</strong> measurements was +/- 10 cm (2 sigma) based on a two to three hour occupation<br />

<strong>of</strong> each survey site. The measurements were checked by replicate occupation <strong>of</strong> one survey site<br />

(located at <strong>the</strong> intersection <strong>of</strong> Road 3 <strong>and</strong> Road F) <strong>and</strong> laser leveling between two <strong>of</strong> <strong>the</strong> GPS<br />

stations. The data obtained during <strong>the</strong> topographic survey is presented in chapter 4.<br />

Airborne Remote Sensing<br />

Many techniques can be applied to <strong>the</strong> study <strong>of</strong> shoreline change (topographic maps,<br />

aerial photographs, ground based surveys, Light Detection <strong>and</strong> Ranging (LIDAR)). To<br />

complement <strong>the</strong> geochronologic, sedimentologic analyses <strong>and</strong> topographic data collected in this<br />

investigation, LIDAR was used to attempt to establish a correlation between sea-level history<br />

<strong>and</strong> mean ridge set height.<br />

Two main types <strong>of</strong> LIDAR are commonly used in coastal applications: 1) bathymetric<br />

LIDAR, which penetrates water <strong>and</strong> provides measures <strong>of</strong> water depth; <strong>and</strong> 2) topographic<br />

LIDAR, which measures subaerial topography (Sallenger et al., 2003).<br />

The LIDAR method measures <strong>the</strong> distance between airborne sensors <strong>and</strong> points on <strong>the</strong><br />

ground surface. Figure 3.9 depicts <strong>the</strong> basis <strong>of</strong> LIDAR. With this technique, it is possible to<br />

collect elevation data with a vertical accuracy <strong>of</strong> 15 cm (USACE, 2002). LIDAR<br />

instrumentation transmits light from a focused infrared laser that is beamed toward <strong>the</strong> ground<br />

42


across <strong>the</strong> flight path by a scanning mirror (USACE, 2002). Transmitted light interacts with <strong>and</strong><br />

is changed by <strong>the</strong> target. Some <strong>of</strong> <strong>the</strong> light is reflected/scattered back to <strong>the</strong> instrument where it is<br />

analyzed. Upon capture by a receiver unit reflectance from features are relayed to a<br />

discriminator <strong>and</strong> a time interval meter (measures <strong>the</strong> time elapsed between transmittal <strong>and</strong><br />

received signal (USACE, 2002). Changes in properties <strong>of</strong> <strong>the</strong> light allow some property <strong>of</strong> <strong>the</strong><br />

target to be determined. The first returns show <strong>the</strong> highest feature (i.e. tree canopy) <strong>and</strong> <strong>the</strong> final<br />

returns are from <strong>the</strong> ground surface. The time for light to travel out to <strong>the</strong> target <strong>and</strong> back is used<br />

to determine <strong>the</strong> range to <strong>the</strong> target. LIDAR collects measures <strong>of</strong> elevation every few square<br />

meters within a surveyed swath hundreds <strong>of</strong> meters wide (Sallenger et al., 2003). The system is<br />

capable <strong>of</strong> collecting elevation data with a vertical accuracy <strong>of</strong> 15 cm <strong>and</strong> a horizontal accuracy<br />

<strong>of</strong> 1/1000 th <strong>of</strong> <strong>the</strong> flight height (USACE, 2002). Raw LIDAR data is in <strong>the</strong> form <strong>of</strong> x,y,z<br />

coordinates (ASCII file) for each object <strong>the</strong> laser hits, measures <strong>and</strong> records distance to (USACE,<br />

2002). The raw data is combined with GPS positional data to georeference datasets (USACE,<br />

2002). The data is <strong>the</strong>n edited <strong>and</strong> processed to generate surface models, elevation models <strong>and</strong><br />

contours (USACE, 2002). With <strong>the</strong> data it is possible to create Digital Elevation Models (DEM)<br />

with vertical accuracies <strong>of</strong> 0.15-1 m (Gibeaut et al., 2003).<br />

In addition to using LIDAR data to study shoreline change, Syn<strong>the</strong>tic Aperture Radar<br />

(SAR) data can also be used. This was done to a limited extent for this project. SAR uses a<br />

small antenna that transmits a broad radar beam. A digital system records <strong>the</strong> amplitude <strong>and</strong><br />

phase history <strong>of</strong> <strong>the</strong> returns from each target as <strong>the</strong> repeated radar beams pass across a target.<br />

The digital record is computer processed to produce an image (Sabins, 1997).<br />

Ground Penetrating Radar (GPR)<br />

Ground penetrating radar (GPR), was developed in <strong>the</strong> 1970s to map near subsurface<br />

geologic structures. GPR is a non-destructive geophysical method that provides a continuous<br />

cross sectional pr<strong>of</strong>ile or record <strong>of</strong> subsurface features without drilling, probing or digging. The<br />

method is based on wave propagation <strong>and</strong> reflection <strong>of</strong> microwave range electromagnetic<br />

radiation (Van Dam <strong>and</strong> Schlager, 2000). It uses short pulses <strong>of</strong> high frequency (microwave<br />

range) electromagnetic energy (radar pulses) (Harari, 1996). These pulses are propagated into<br />

<strong>the</strong> ground by a transmitting antenna that is placed on <strong>the</strong> ground surface (Harari, 1996). The<br />

43


time elapsed between when this energy is transmitted <strong>and</strong> received back at <strong>the</strong> surface is<br />

measured. The delay between <strong>the</strong> transmitted pulse <strong>and</strong> <strong>the</strong> arrival <strong>of</strong> a reflection is proportional<br />

to <strong>the</strong> depth <strong>of</strong> <strong>the</strong> subsurface feature that generated <strong>the</strong> reflection (Harari, 1996). A receiving<br />

antenna detects <strong>the</strong> waves that are reflected back up to <strong>the</strong> ground surface when <strong>the</strong> transmitted<br />

pulse encounters a subsurface interface (Harari, 1996). All sedimentary layers <strong>and</strong> o<strong>the</strong>r buried<br />

materials have particular physical <strong>and</strong> chemical properties that affect <strong>the</strong> velocity <strong>of</strong><br />

electromagnetic energy propagation. Changes in <strong>the</strong>se properties can be a result <strong>of</strong> changes in<br />

water content, grain size, porosity or mineralogy (Davis <strong>and</strong> Annan, 1989; Van Dam <strong>and</strong><br />

Schlager, 2000; Best et al., 2003). The greater <strong>the</strong> change in velocity at an interface, <strong>the</strong> higher<br />

<strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> reflected wave. The antenna receives <strong>the</strong> reflected waves <strong>and</strong> stores <strong>the</strong>m in<br />

a digital control unit. The reflected signal is amplified, recorded <strong>and</strong> processed (Best et al.,<br />

2003). Once thous<strong>and</strong>s <strong>of</strong> reflections have been measured <strong>and</strong> recorded, a two-dimensional<br />

picture is created. The depth <strong>of</strong> penetration is determined by <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> antenna used.<br />

Low frequency antennas (25-200 MHz) obtain subsurface reflections from great depths (30-100<br />

ft) but have low resolution. High frequency antennas (300-1000 MHz) obtain reflections from<br />

shallower depths <strong>and</strong> provide a higher resolution.<br />

A GPR transect <strong>of</strong> <strong>the</strong> isl<strong>and</strong> using a MALA CU-II GPR system was conducted. A 100<br />

MHz unshielded antenna with a 1 m separation was used. A repeat transect with a shielded 250<br />

MHz antenna <strong>and</strong> with a 50 MHz unshielded antenna was later carried out over <strong>the</strong> same<br />

transect. Figure 3.10 illustrates how <strong>the</strong> GPR surveys were carried out. All data was analyzed<br />

using MALA Ground Vision S<strong>of</strong>tware. The data was filtered for DC removal <strong>and</strong> time varying<br />

gain (TVG). The time to depth conversion assumed a velocity <strong>of</strong> 60 meters/microsecond. The<br />

GPR pr<strong>of</strong>iles were not corrected for elevation. They were conducted along a road that cut<br />

through, ra<strong>the</strong>r than over <strong>the</strong> beach ridges. The road was essentially horizontal, with a slight<br />

sou<strong>the</strong>rly dip. Therefore, <strong>the</strong> pr<strong>of</strong>ile is more or less representative <strong>of</strong> <strong>the</strong> actual depth <strong>of</strong> <strong>the</strong><br />

beach ridge reflectors. All GPR data was processed <strong>and</strong> stored at <strong>the</strong> Florida Geologic Survey.<br />

A summary <strong>of</strong> <strong>the</strong> data is presented in chapter 4.<br />

44


Table 3.1. Location <strong>of</strong> benchmarks on St. Vincent Isl<strong>and</strong>.<br />

Sample Site ID # Marker UTM Coordinates<br />

Type Easting Northing<br />

SVI 001 S001 8cm diameter white PVC tube with brass plate 684196 3285439<br />

SVI 002 unlabelled unlabelled FDEP BM with witness post 681337 3283301<br />

SVI 003 unlabelled wooden stake 681246 3282625<br />

SVI 004 SV2 3cm white PVC tube 680714 3282056<br />

SVI 005 unlabelled wooden stake 675248 3285006<br />

SVI 006 unlabelled wooden stake 678074 3284862<br />

SVI 007 unlabelled wooden stake 681439 3283681<br />

SVI 008 S008 8cm diameter white PVC tube with brass plate 679254 3284589<br />

SVI 009 SV1 8cm diameter grey PVC tube with brass plate 679129 3282465<br />

SVI 010 SV4 3cm white PVC tube with brass plate 678418 3281687<br />

SVI 011 SV8 3cm white PVC tube with brass plate 678194 3281453<br />

SVI 012 SV11 3cm white PVC tube with brass plate 679752 3281093<br />

SVI 013 SV5 3cm white PVC tube with brass plate 680380 3280580<br />

SVI 014 SV6 3cm white PVC tube with brass plate 681225 3282490<br />

SVI 015 FDEP 8cm diameter grey PVC tube with brass plate 686275 3284212<br />

SVI 016 SV7 3cm white PVS tube with brass plate 681373 3283440<br />

SVI 017 SV3 3cm white PVC tube with brass plate 680174 3281487<br />

SVI 018 unlabelled 3cm white PVC tube 684868 3283462<br />

SVI 019 - no monument set 683912 3279534<br />

SVI 020 unlabelled 3cm white PVC tube 678888 3282175<br />

SVI 021 SV9 3cm white PVC tube 679450 3283213<br />

SVI 022 SV12 3 cm white PVC tube with brass plate 679195 3282556<br />

SVI 023 unlabelled 3cm white PVC tube 678618 3281906<br />

SVI 024 unlabelled 3cm white PVC tube 680954 3280002<br />

SVI 025 unlabelled 3cm white PVC tube 679150 3280692<br />

SVI 026 unlabelled 3cm white PVC tube 679516 3280800<br />

SVI 027 unlabelled 3cm white PVC tube 683777 3279928<br />

SVI 028 unlabelled 8cm white PVC tube 675060 3283664<br />

SVI 029 unlabelled 3cm white PVC tube 677821 3284287<br />

SVI 030 unlabelled 3 inch diameter aluminum core tube 684890 3281906<br />

* Note: All coordinates are reported in meters, UTM Zone 16, NAD 83.<br />

45


a)<br />

b)<br />

Figure 3.1. a) Collecting a vibracore. b) Collecting samples by trenching <strong>and</strong> hammering a short<br />

section <strong>of</strong> aluminum pipe into <strong>the</strong> vertical face.<br />

46


Figure 3.2. Demonstration <strong>of</strong> <strong>the</strong> basics <strong>of</strong> luminescence dating. The event being dated is <strong>the</strong><br />

setting to zero <strong>of</strong> <strong>the</strong> luminescence signal that was acquired at some point in <strong>the</strong> past. The<br />

zeroing <strong>of</strong> this signal occurs through exposure to sunlight during erosion, transport <strong>and</strong><br />

deposition. Once <strong>the</strong> material is buried, <strong>the</strong> signal begins to build again. (Source: Lepper., K.<br />

NDSU, http://www.ndsu.nodak.edu/ndsu/klepper/).<br />

47


Increasing energy<br />

T<br />

CONDUCTION BAND<br />

T<br />

VALENCE BAND<br />

Figure 3.3. OSL processes represented by <strong>the</strong> conduction b<strong>and</strong> model. The mineral is exposed<br />

to nuclear radiation. The binding electrons are excited above <strong>the</strong>ir ground <strong>state</strong>s. As <strong>the</strong><br />

electrons return to <strong>the</strong>ir ground <strong>state</strong>s, some become trapped in defects in <strong>the</strong> crystal lattice<br />

(represented by “T”). When <strong>the</strong> mineral is exposed to light or heat <strong>the</strong> defects are emptied <strong>and</strong><br />

light is emitted. (Source: Aitken, 1991).<br />

48<br />

T


Figure 3.4. Effects <strong>of</strong> natural radiation on sediment particles. Silt-sized grains are<br />

irradiated by alpha, beta, gamma <strong>and</strong> cosmic radiation but s<strong>and</strong>-sized grains are only<br />

irradiated by beta, gamma <strong>and</strong> cosmic radiation, since alpha particles have a short range<br />

<strong>and</strong> only penetrate <strong>the</strong> outer rind <strong>of</strong> s<strong>and</strong>-sized grains. Of <strong>the</strong> four radiation types that<br />

contribute to <strong>the</strong> dose rate, cosmic radiation has <strong>the</strong> greatest penetration (Source: Aitken,<br />

1998).<br />

49


Figure 3.5. Sample removed from large core samples. The shaded area represents <strong>the</strong> 100<br />

grams collected as a dating sample. (Source: Forrest, 2003).<br />

50


Figure 3.6 – Riso TL/OSL measurement system schematic in side view. This system consists <strong>of</strong><br />

a turntable in which <strong>the</strong>re can be 48 sample aliquot positions. The table rotates <strong>and</strong> when a<br />

sample disc reaches <strong>the</strong> position <strong>of</strong> <strong>the</strong> lift, it is raised for measurement <strong>of</strong> luminescence. A beta<br />

source (i.e. Sr-90) is positioned remotely from <strong>the</strong> measurement position <strong>and</strong> preheating is<br />

carried out on a heating element. The system is fully automated. (Source: Aitken, 1998).<br />

51


Figure 3.7. Location <strong>of</strong> samples collected specifically for grain size analysis. The closed green<br />

circles represent samples collected in 2005 <strong>and</strong> 2006 by <strong>the</strong> author. The closed blue <strong>and</strong> red<br />

circles represent samples collected in 1984 <strong>and</strong> 1985, respectively, by Tanner <strong>and</strong> colleagues.<br />

(Map Source: Miller et al., 1981).<br />

52


Figure 3.8. Method <strong>of</strong> SELF determination. (Source: Balsillie, 1995).<br />

53


Figure 3.9. Basis <strong>of</strong> airborne LIDAR surveying. (Source: USACE, 2002).<br />

54


a)<br />

b) c) d)<br />

Figure 3.10. GPR survey techniques. a) GPR setup. b) 100 mHz antenna unit. c)<br />

250 mHz antenna unit. d) 50 mHz antenna unit.<br />

55<br />

c)


Sample Sites<br />

CHAPTER 4<br />

RESULTS<br />

A total <strong>of</strong> twenty-nine sites were investigated on St. Vincent Isl<strong>and</strong>. Of <strong>the</strong>se twenty-nine<br />

sites, eight were dated using Optically Stimulated Luminescence (OSL). Figure 4.1 shows <strong>the</strong><br />

location <strong>of</strong> <strong>the</strong> samples collected over <strong>the</strong> course <strong>of</strong> this investigation <strong>and</strong> indicates which were<br />

vibracores <strong>and</strong> which were trenches. Each sampling site is briefly described below. Note: All<br />

coordinates are UTM Zone 16 (NAD 83). Table 4.1 lists all sample site numbers <strong>and</strong> sample<br />

locations.<br />

Beach ridge type is related to environmental conditions. The identification <strong>of</strong> beach ridge<br />

type is, <strong>the</strong>refore, important. Taylor <strong>and</strong> Stone (1996) <strong>and</strong> Tanner (1995) discuss <strong>the</strong> multiple<br />

origins <strong>of</strong> beach ridges, noting that morphology alone does not distinguish swash-built ridges<br />

from aeolian or storm-deposited ridges. However, internal structure is diagnostic. Beach ridge<br />

internal structure is difficult to observe <strong>and</strong> measure. This problem is in large part solved by <strong>the</strong><br />

excavation <strong>of</strong> trenches. In this investigation, trenches enabled direct observation <strong>of</strong> <strong>the</strong> basal<br />

deposits <strong>of</strong> former shoreline ridges, <strong>and</strong>, <strong>the</strong>refore, enabled sampling <strong>of</strong> only <strong>the</strong> wave-deposited<br />

portions <strong>of</strong> complex beach ridges that include aeolian deposition on <strong>the</strong>ir surface. In <strong>the</strong> ridges<br />

trenched, those that have visible bedding surfaces reveal a wave-built structure, with some<br />

aeolian decoration <strong>and</strong> no evidence <strong>of</strong> storm influence (i.e., <strong>the</strong> ridges exhibit seaward-dipping<br />

units throughout <strong>the</strong> ridge strata). This supports <strong>the</strong> swash-built hypo<strong>the</strong>sis for beach ridge<br />

formation, proposed by Stapor (1973, 1975), Stapor et al. (1991) <strong>and</strong> Tanner (1995), <strong>and</strong> serves<br />

as good evidence that each ridge represents a former shoreline position. By collecting samples<br />

from <strong>the</strong> exposed walls <strong>of</strong> trenches it was also possible to avoid collecting samples from areas<br />

that had been affected by bioturbation. An example <strong>of</strong> a typical trench is shown in Figure 4.2. A<br />

total <strong>of</strong> 18 trenches were excavated. Sample sites are described below. All information relevant<br />

to each site is presented in Table 4.1.<br />

SVI 001<br />

This site, located within ridge set A, is referred to as <strong>the</strong> “Paradise Point Site”. It is <strong>the</strong><br />

location <strong>of</strong> <strong>the</strong> complex midden site described in chapter 3. This site was first visited on July 23,<br />

56


2004. A small test pit adjacent to <strong>the</strong> midden site was excavated <strong>and</strong> revealed that <strong>the</strong> upper 1 m<br />

<strong>of</strong> <strong>the</strong> midden was comprised <strong>of</strong> oyster shell <strong>and</strong> pottery fragments. Near <strong>the</strong> base <strong>of</strong> <strong>the</strong> pit was<br />

a clay-rich deposit with some quartz. The site was visited a second time on January 5, 2005.<br />

Ano<strong>the</strong>r test pit near <strong>the</strong> midden site was excavated. It revealed a similar internal structure. The<br />

material graded from oyster shell in <strong>the</strong> upper meter <strong>of</strong> <strong>the</strong> pit into clean quartz s<strong>and</strong> at <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> pit. A sample site was selected on <strong>the</strong> shoreline to avoid having to core through <strong>the</strong> oyster<br />

shell layer <strong>of</strong> <strong>the</strong> upper midden. A vibracore was collected <strong>and</strong> 3.5 m <strong>of</strong> sediment was<br />

recovered. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong><br />

site. Figure 4.3 shows <strong>the</strong> sample location.<br />

SVI002<br />

Site SVI002 was located within ridge set E, at <strong>the</strong> intersection <strong>of</strong> Road 5 <strong>and</strong> Road G.<br />

The site was visited on July 24, 2004. A 3 m deep trench was excavated perpendicular to <strong>the</strong><br />

dune crest. Three push cores were collected from <strong>the</strong> trench face, for OSL dating. At each <strong>of</strong> <strong>the</strong><br />

push core locations a small grab sample was collected for granulometric analysis. A vibracore<br />

was taken from <strong>the</strong> center <strong>of</strong> <strong>the</strong> trench floor. Only 0.6 m <strong>of</strong> sediment was recovered because <strong>the</strong><br />

vibracore hit resistance during penetration. The site location is shown in Figure 4.1. Table 4.1<br />

lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.4 shows <strong>the</strong> sample location.<br />

SVI003<br />

Site SVI003 is located within ridge set E, at <strong>the</strong> intersection <strong>of</strong> Road 5 <strong>and</strong> Insulator<br />

Road. This site was visited on July 23, 2004. A trench was excavated. The trench faces showed<br />

evidence <strong>of</strong> iron staining <strong>and</strong> bioturbation. Care was taken to avoid <strong>the</strong>se areas during sample<br />

collection. Three push cores were collected for OSL dating <strong>and</strong> three grab samples from <strong>the</strong><br />

same locations were collected for granulometric analysis. The site location is shown in Figure<br />

4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. The sample locations are shown in Figure<br />

4.5.<br />

SVI004<br />

This site is located 50 m north <strong>of</strong> Road E, on Road 5. This site is located within ridge set<br />

F. The site was visited on July 23, 2004. A small area on <strong>the</strong> crest <strong>of</strong> <strong>the</strong> ridge was cleared <strong>and</strong> a<br />

vibracore was collected. 1.9 m <strong>of</strong> sediment was recovered. The site location is shown in Figure<br />

4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.6 shows <strong>the</strong> location <strong>of</strong> <strong>the</strong><br />

vibracore collection.<br />

57


SVI005<br />

This site is located just west <strong>of</strong> Pickalene Bar, on <strong>the</strong> south side <strong>of</strong> Pickalene Road. The<br />

site is within ridge set C. The site was visited on January 4, 2005. A 0.4 m deep test pit was<br />

excavated. The pit showed gray s<strong>and</strong> with a small amount <strong>of</strong> clay. The base <strong>of</strong> <strong>the</strong> trench<br />

contacted <strong>the</strong> water table. A vibracore was <strong>the</strong>n collected using a 20-foot section <strong>of</strong> aluminum<br />

irrigation pipe. 3.4 m <strong>of</strong> sediment was recovered. The site location is shown in Figure 4.1.<br />

Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site.<br />

SVI006<br />

This site is a midden site located just <strong>of</strong>f <strong>of</strong> Pickalene Road within ridge C. SVI006 was<br />

visited on January 4, 2005. A sample trench was excavated by h<strong>and</strong> adjacent to <strong>the</strong> midden. The<br />

trench showed clay-rich sediment, grading into s<strong>and</strong>y clay. A push core was collected for OSL<br />

dating from <strong>the</strong> lower s<strong>and</strong>y clay layer. The site location is shown in Figure 4.1. Table 4.1 lists<br />

<strong>the</strong> samples collected at <strong>the</strong> site.<br />

SVI007<br />

This site is located at <strong>the</strong> nor<strong>the</strong>rn end <strong>of</strong> Road 5 <strong>and</strong> represents <strong>the</strong> oldest ridge within<br />

ridge set D. The site was visited on January 4, 2005. A vibracore was collected from <strong>the</strong> middle<br />

<strong>of</strong> <strong>the</strong> road after verifying that <strong>the</strong>re were few signs <strong>of</strong> disturbance. Approximately 4.7 m <strong>of</strong><br />

sediment was recovered. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples<br />

collected at <strong>the</strong> site.<br />

SVI008<br />

This site is located on <strong>the</strong> nor<strong>the</strong>rn shore <strong>of</strong> Big Bayou. It is only accessible by boat.<br />

The site was visited on January 5, 2005 <strong>and</strong> a vibracore was collected. Approximately 1.9 m <strong>of</strong><br />

sediment was recovered. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples<br />

collected at <strong>the</strong> site.<br />

SVI009<br />

This site is located on <strong>the</strong> west side <strong>of</strong> Road 4, just north <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 4 <strong>and</strong><br />

Road D. The site was visited on May 5, 2005 <strong>and</strong> a trench was excavated perpendicular to <strong>the</strong><br />

ridge crest. This ridge is one <strong>of</strong> <strong>the</strong> largest in ridge set G. The site location is shown in Figure<br />

4.1. Two push cores for OSL dating <strong>and</strong> eight grab samples for granulometric analysis were<br />

collected. Four <strong>of</strong> <strong>the</strong> grab samples were collected along a bedding plane. The remainder <strong>of</strong> <strong>the</strong><br />

samples were collected along a transect stretching from <strong>the</strong> top <strong>of</strong> <strong>the</strong> trench to <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

58


trench. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.7 shows <strong>the</strong> location <strong>of</strong> all<br />

samples that were collected at this site.<br />

SVI010<br />

This site is located on Road 4, approximately 120 m north <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 4<br />

<strong>and</strong> Road A. The site was visited on May 5, 2005. A trench was excavated <strong>and</strong> 1 push core <strong>and</strong><br />

3 granulometry samples were collected for analysis. The site location is shown in Figure 4.1.<br />

Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.8 shows <strong>the</strong> location <strong>of</strong> <strong>the</strong> samples that<br />

were collected from this trench.<br />

SVI011<br />

This site was visited on May 5, 2005. The site is located on Road 4. A trench was<br />

excavated in <strong>the</strong> crest <strong>of</strong> <strong>the</strong> first ridge north <strong>of</strong> <strong>the</strong> beach. This ridge represented one <strong>of</strong> <strong>the</strong><br />

youngest ridges in ridge set K. One push core for OSL dating <strong>and</strong> two grab samples for<br />

granulometric analysis were collected from <strong>the</strong> trench. The site location is shown in Figure 4.1.<br />

Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.9 shows <strong>the</strong> samples collected from this<br />

site.<br />

SVI012<br />

This site is located at <strong>the</strong> intersection <strong>of</strong> Road 5 <strong>and</strong> Road B, within ridge set G. The site<br />

was visited on May 5, 2005. A trench was excavated <strong>and</strong> one push core for OSL dating <strong>and</strong> 2<br />

grab samples for granulometric analysis were collected. The trench showed l<strong>and</strong>ward dipping<br />

features that would suggest that <strong>the</strong> feature being sampled was a dune ra<strong>the</strong>r than a beach ridge.<br />

The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure<br />

4.10 shows <strong>the</strong> trench excavated at this site.<br />

SVI013<br />

This site is located 143 m north <strong>of</strong> Road B on Road D within ridge set H. The site was<br />

visited on May 5, 2005. A trench was excavated <strong>and</strong> 1 push core for OSL dating <strong>and</strong> 2 grab<br />

samples for granulometric analyses were collected. The trench showed l<strong>and</strong>ward-dipping<br />

features that indicated that <strong>the</strong> feature was ei<strong>the</strong>r dune decorated or was entirely dune. The site<br />

location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.11<br />

shows <strong>the</strong> trench excavated at this site.<br />

SVI014<br />

This site is located south <strong>of</strong> Insulator Road, within ridge set F. A trench was excavated<br />

on May 5, 2005 <strong>and</strong> <strong>the</strong> site was re-visited <strong>the</strong> following day. An overnight rainstorm had<br />

59


collapsed <strong>the</strong> trench. Therefore, a vibracore was collected in place <strong>of</strong> push cores or<br />

granulometry samples. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples<br />

collected at <strong>the</strong> site. Figure 4.12 shows <strong>the</strong> sample site.<br />

SVI015<br />

This site is located within ridge set B, 28 m west <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Tahiti Beach Road<br />

<strong>and</strong> <strong>the</strong> last road before St. Vincent Point. The actual sample site was approximately 3 m <strong>of</strong>f <strong>the</strong><br />

west side <strong>of</strong> <strong>the</strong> road. A vibracore was collected on May 6, 2005 <strong>and</strong> <strong>the</strong>n discarded because <strong>of</strong> a<br />

high abundance <strong>of</strong> shells in <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> core. The absence <strong>of</strong> oysters indicated that it was a<br />

natural shell deposit <strong>and</strong> not a midden. A second attempt at collecting a vibracore was made. A<br />

small hole was dug to get below <strong>the</strong> shell layer <strong>and</strong> a vibracore was collected at <strong>the</strong> bottom <strong>of</strong><br />

this hole. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong><br />

site. Figure 4.13 shows <strong>the</strong> sample location.<br />

SVI016<br />

This site is located, within ridge set D, on Road 5 just south <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 5<br />

<strong>and</strong> Road H. The site was visited on May 6, 2005 <strong>and</strong> a vibracore was collected. The site<br />

location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. Figure 4.14<br />

shows <strong>the</strong> location <strong>of</strong> <strong>the</strong> vibracore.<br />

SVI017<br />

No sample was collected at this site. Once <strong>the</strong> trench had been excavated it was evident<br />

by <strong>the</strong> sedimentary structures that <strong>the</strong> site represented a dune <strong>and</strong> not a beach ridge. The site<br />

location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site.<br />

SVI018<br />

This site is located 0.6 km from <strong>the</strong> intersection <strong>of</strong> Tahiti Beach Road <strong>and</strong> Road I, within<br />

ridge set C. The site was visited on January 6, 2006. A 60-cm deep hole was dug <strong>and</strong> a<br />

vibracore was collected from <strong>the</strong> base <strong>of</strong> <strong>the</strong> hole. Approximately 1.5 m <strong>of</strong> sediment was<br />

recovered. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong><br />

site.<br />

SVI019<br />

A push core was collected from <strong>the</strong> beach surface, within set L on January 9, 2006. The<br />

sample represented a potential zero-age OSL sample, having been collected from <strong>the</strong> active part<br />

<strong>of</strong> <strong>the</strong> youngest developing ridge on <strong>the</strong> isl<strong>and</strong>. The site is located 100 m south <strong>of</strong> <strong>the</strong> end <strong>of</strong><br />

60


West Pass Road. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at<br />

<strong>the</strong> site.<br />

SVI020<br />

This site is located 100 m south <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 4 <strong>and</strong> Road C, within ridge<br />

set G. The site was visited on January 10, 2006 <strong>and</strong> a trench was excavated on <strong>the</strong> east side <strong>of</strong><br />

Road 4. Three push cores for OSL dating <strong>and</strong> three grab samples for granulometric analysis<br />

were collected from <strong>the</strong> trench face. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong><br />

samples collected at <strong>the</strong> site. Figure 4.15 shows <strong>the</strong> site location.<br />

SVI021<br />

This site is located 50 m north <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 4 <strong>and</strong> Road F, within ridge set<br />

F. The site is on <strong>the</strong> east side <strong>of</strong> Road 4. A trench was excavated on January 10, 2006 <strong>and</strong> two<br />

push cores <strong>and</strong> 2 grab samples were collected for analysis. The site location is shown in Figure<br />

4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site.<br />

SVI022<br />

This site is located on Road 4, 50 m south Road D on <strong>the</strong> east side <strong>of</strong> <strong>the</strong> road, within<br />

ridge set G. A trench was excavated on January 10, 2006 <strong>and</strong> 2 push cores <strong>and</strong> 2 grab samples<br />

were collected. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at<br />

<strong>the</strong> site. The trench is shown in Figure 4.16.<br />

SVI023<br />

This site is located on <strong>the</strong> northwest corner <strong>of</strong> <strong>the</strong> intersection <strong>of</strong> Road 4 <strong>and</strong> Road B,<br />

within ridge set G. A trench was excavated on <strong>the</strong> east side <strong>of</strong> <strong>the</strong> road <strong>and</strong> 2 push cores <strong>and</strong> 2<br />

grab samples were collected. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong><br />

samples collected at <strong>the</strong> site. Figure 4.17 shows <strong>the</strong> trench <strong>and</strong> samples collected from <strong>the</strong><br />

trench.<br />

SVI024<br />

This site is located on Road A, 300 m west <strong>of</strong> Charlie Road, on <strong>the</strong> North side <strong>of</strong> <strong>the</strong><br />

road, within <strong>the</strong> oldest part <strong>of</strong> ridge set J. A trench was excavated on January 10, 2006 <strong>and</strong> 2<br />

push cores <strong>and</strong> 2 grab samples were collected for analysis. The site location is shown in Figure<br />

4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site. This site is shown in Figure 4.18.<br />

61


SVI025<br />

This site is located within ridge set I, on Rattlesnake Road, just south <strong>of</strong> Oyster Pond. A<br />

trench was excavated on January 11, 2006 <strong>and</strong> 2 push cores <strong>and</strong> 2 grab samples were collected.<br />

The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong> site.<br />

SVI026<br />

This site is located on Rattlesnake Road, just north <strong>of</strong> Oyster Pond, within ridge set I.<br />

The site was visited on January 11, 2006. A trench was excavated <strong>and</strong> one push core <strong>and</strong> one<br />

grain size sample was collected. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong><br />

samples collected at <strong>the</strong> site.<br />

SVI027<br />

This site is located on West Pass Road, 300 m south <strong>of</strong> <strong>the</strong> cabin on <strong>the</strong> east side <strong>of</strong> <strong>the</strong><br />

road. The site was within ridge set L. A trench was excavated at this site <strong>and</strong> 2 push cores <strong>and</strong> 2<br />

grab samples were collected for analysis. The site location is shown in Figure 4.1. Table 4.1<br />

lists <strong>the</strong> samples collected at <strong>the</strong> site. The trench <strong>and</strong> sample locations are shown in Figure 4.19.<br />

SVI028<br />

This site is <strong>the</strong> second ridge south <strong>of</strong> Road A, on Road 2. The site is located<br />

approximately 300 m south <strong>of</strong> Road A, within ridge set G. The site was visited on January 12,<br />

2006 <strong>and</strong> a trench was excavated on <strong>the</strong> west side <strong>of</strong> <strong>the</strong> road. Two push cores <strong>and</strong> two grab<br />

samples were collected from <strong>the</strong> trench. The site location is shown in Figure 4.1. Table 4.1 lists<br />

<strong>the</strong> samples collected at <strong>the</strong> site. The location <strong>of</strong> <strong>the</strong>se samples is shown in Figure 4.20.<br />

SVI029<br />

This site is located on Road 3, approximately 300 m south <strong>of</strong> Road G, in <strong>the</strong> low part <strong>of</strong><br />

ridge set D. A trench was excavated on January 12, 2006 <strong>and</strong> one push core was collected for<br />

OSL dating. The site location is shown in Figure 4.1. Table 4.1 lists <strong>the</strong> samples collected at <strong>the</strong><br />

site.<br />

In addition to <strong>the</strong> vibracores collected during this investigation, Stapor collected a Dutch<br />

gouge auger in 1979 at Tahiti Beach in <strong>the</strong> vicinity <strong>of</strong> Mallard Slough (<strong>the</strong> location <strong>of</strong> Mallard<br />

Slough is shown in Figure 2.1). Figure 4.21 is a log <strong>of</strong> <strong>the</strong> auger core. In addition to <strong>the</strong> auger<br />

sample, two boreholes were drilled by Schnable (1966) from <strong>the</strong> isl<strong>and</strong>’s nor<strong>the</strong>rn shore (Figure<br />

4.22).<br />

62


Surface <strong>and</strong> Subsurface Morphology <strong>of</strong> <strong>the</strong> Beach Ridge Plain<br />

A summary <strong>of</strong> <strong>the</strong> characteristics <strong>of</strong> each beach ridge set, including average ridge crest<br />

elevation, average swale elevation, ridge orientation, direction <strong>of</strong> ridge splay <strong>and</strong> width <strong>of</strong> each<br />

beach ridge set at its widest point, is shown in Table 4.2.<br />

Topographic Survey Results<br />

A leveling pr<strong>of</strong>ile was conducted along a north-south transect across <strong>the</strong> isl<strong>and</strong>, following<br />

Road 4. This line crossed <strong>the</strong> trend <strong>of</strong> most <strong>of</strong> <strong>the</strong> beach ridge sets. The goal <strong>of</strong> <strong>the</strong> survey was<br />

to accurately measure <strong>the</strong> elevations <strong>of</strong> individual beach ridge crests <strong>and</strong> swales <strong>and</strong> <strong>the</strong> mean<br />

elevation <strong>of</strong> ridge sets. The location <strong>of</strong> <strong>the</strong> topographic survey line conducted across St. Vincent<br />

Isl<strong>and</strong> is shown in Figure 4.23. As discussed in Chapter 3, a benchmark was set at each sample<br />

location. The elevations <strong>of</strong> <strong>the</strong>se benchmarks were measured as part <strong>of</strong> <strong>the</strong> topographic survey.<br />

Figure 4.24 shows <strong>the</strong> result <strong>of</strong> <strong>the</strong> topographic survey. Table 4.3 shows <strong>the</strong> measured elevations<br />

<strong>of</strong> each benchmark. The blue line represents <strong>the</strong> survey conducted by Stapor as part <strong>of</strong> his<br />

dissertation work in 1973. The red line represents <strong>the</strong> survey conducted Stapor <strong>and</strong> Tanner<br />

(1977). The red line represents <strong>the</strong> survey conducted during this investigation. The two<br />

independent surveys are in reasonably good agreement. The green line represents <strong>the</strong> elevation<br />

<strong>of</strong> <strong>the</strong> road, which was also determined as part <strong>of</strong> this investigation. Since <strong>the</strong> road cuts through<br />

<strong>the</strong> high ridges, it mutes <strong>the</strong> natural topography. The boundaries between <strong>the</strong> ridge sets<br />

intersected by this transect have been superimposed on Figure 4.24, in addition to <strong>the</strong> locations<br />

<strong>of</strong> all samples that were collected along Road 4.<br />

Several features are apparent in Figure 4.24:<br />

1) The pr<strong>of</strong>ile obtained during this study closely agrees with <strong>the</strong> pr<strong>of</strong>ile obtained by<br />

Stapor <strong>and</strong> Tanner (1977). However, one beach ridge within set K has been eroded in<br />

<strong>the</strong> time elapsed between <strong>the</strong> current study <strong>and</strong> <strong>the</strong> Stapor <strong>and</strong> Tanner (1977) study.<br />

2) Set K has one ridge with an elevation <strong>of</strong> 3.8 m.<br />

3) The average elevation <strong>of</strong> <strong>the</strong> ridges in ridge set G is 2.4 m. Within this set <strong>the</strong>re are<br />

two high ridges (containing sample sites SVI 009 <strong>and</strong> SVI 023) with elevations <strong>of</strong> 4.4<br />

63


m <strong>and</strong> 3.7 m respectively. A cross section <strong>of</strong> <strong>the</strong> high ridge at SVI 009, <strong>the</strong> highest<br />

ridge surveyed, is shown in Figure 4.25.<br />

4) There are low lying areas on <strong>the</strong> isl<strong>and</strong> transect pr<strong>of</strong>ile between 500 <strong>and</strong> 600 m, at<br />

1,600 m <strong>and</strong> at <strong>the</strong> boundary between ridge sets K <strong>and</strong> G. These low elevation areas<br />

correspond to low-lying, water-logged sloughs visible on <strong>the</strong> aerial photographs <strong>of</strong><br />

<strong>the</strong> isl<strong>and</strong> (Figure 4.23).<br />

5) Ridges within set F have an average elevation <strong>of</strong> 3.5 m.<br />

6) Ridges within set E have an average elevation <strong>of</strong> 1.6 m.<br />

7) With some exceptions, ridge height increases from north to south on <strong>the</strong> isl<strong>and</strong>, as<br />

indicated in Figure 4.26. This implies an increase in wave energy in more recent<br />

years.<br />

8) The average elevation <strong>of</strong> <strong>the</strong> swales between <strong>the</strong> ridges ranges from 0.9 m (set K) to<br />

1.5 m (set F). The swales within sets E <strong>and</strong> G have average elevations <strong>of</strong> 0.95 m <strong>and</strong><br />

1.0 m respectively.<br />

The relationship <strong>of</strong> <strong>the</strong>se features to sea-level change will be discussed in chapter 5.<br />

GPR Transect Results<br />

The ground penetrating radar (GPR) transects were set up to cross <strong>the</strong> majority <strong>of</strong> <strong>the</strong><br />

beach ridge sets on <strong>the</strong> central portion <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The location <strong>of</strong> <strong>the</strong> GPR transect, which<br />

was also along Road 4, is shown in Figure 4.23. Figure 4.27 shows <strong>the</strong> results <strong>of</strong> <strong>the</strong> GPR<br />

survey conducted using <strong>the</strong> MALA 100 MHz unshielded antenna unit with a 1 m antenna<br />

separation. The GPR pr<strong>of</strong>ile was conducted along <strong>the</strong> same transect as <strong>the</strong> topographic pr<strong>of</strong>ile.<br />

The left (south) side <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile is <strong>the</strong> Gulf shoreline <strong>of</strong> St. Vincent Isl<strong>and</strong> while <strong>the</strong> right<br />

(north) side is <strong>the</strong> bay. The pr<strong>of</strong>ile was conducted from south to north along <strong>the</strong> same line as <strong>the</strong><br />

topographic pr<strong>of</strong>ile. Cross-bedded units have been identified on <strong>the</strong> pr<strong>of</strong>iles <strong>and</strong> <strong>the</strong>ir trend has<br />

been demarcated by blue lines. The GPR survey enabled penetration to approximately 15 m<br />

subsurface, providing an image <strong>of</strong> <strong>the</strong> internal structure <strong>of</strong> <strong>the</strong> str<strong>and</strong>plain. The pr<strong>of</strong>ile shown in<br />

Figure 4.27 has been divided into ridge sets. The average depth <strong>of</strong> penetration was 8 – 12 m.<br />

All ridges within sets E, F <strong>and</strong> G, show seaward dipping subsurface features that extend to<br />

approximately 4 to 5 m <strong>and</strong> <strong>the</strong>n taper <strong>of</strong>f at <strong>the</strong> base <strong>of</strong> <strong>the</strong> shoreface. The low angle reflectors<br />

at about 8 m likely represent <strong>the</strong> contact between Pleistocene s<strong>and</strong> <strong>and</strong> <strong>the</strong> overlying Holocene<br />

64


s<strong>and</strong>s. The exception is one <strong>of</strong> <strong>the</strong> ridges within set K. The ridge at site SVI 011 shows<br />

l<strong>and</strong>ward dipping structures within <strong>the</strong> upper 4 m. Below a depth <strong>of</strong> 4 m, all structures are<br />

seaward dipping. This implies that <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> ridge is dune decorated. Figure 4.28 is a<br />

close-up <strong>of</strong> <strong>the</strong> portion <strong>of</strong> <strong>the</strong> 100 MHz survey that covered site SVI 009. The pr<strong>of</strong>ile shows two<br />

sets <strong>of</strong> seaward dipping reflectors. The upper set (<strong>the</strong> upper 6 m <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile) is steeply dipping<br />

while <strong>the</strong> lower set (<strong>the</strong> lower 3 m <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile) has a lower angle <strong>of</strong> dip. The low angle cross-<br />

beds at an 8 m depth could potentially represent <strong>the</strong> depth to <strong>the</strong> pre-barrier Pleistocene surface.<br />

Repeat pr<strong>of</strong>iles were conducted along <strong>the</strong> line shown in Figure 4.23 using a 250 MHz<br />

shielded unit <strong>and</strong> a 50 MHz unshielded antenna with a 2 m separation. Penetration was shallow.<br />

Therefore, little useful information was obtained.<br />

Granulometric Results<br />

Figure 3.7 shows <strong>the</strong> location <strong>of</strong> <strong>the</strong> samples collected during this study <strong>and</strong> those<br />

collected by Tanner (unpublished report, 1992). Table 4.4 provides a summary <strong>of</strong> <strong>the</strong> grain size<br />

statistics for all <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> samples that were analyzed over <strong>the</strong> course <strong>of</strong> this<br />

study. The table also includes <strong>the</strong> samples that were collected by Tanner along four sample<br />

traverses across <strong>the</strong> isl<strong>and</strong> in 1984 <strong>and</strong> 1985. Between <strong>the</strong> Tanner studies <strong>and</strong> this current<br />

investigation, one sample from each <strong>of</strong> sets A, B, C <strong>and</strong> D, two samples from set H, three<br />

samples from sets I <strong>and</strong> K, five samples from sets E <strong>and</strong> F, seven samples from set K, nine<br />

samples from set L <strong>and</strong> twenty-six samples from set G were analyzed. This constitutes a total <strong>of</strong><br />

sixty-four samples. A full sieve analysis report for each sample is provided in Appendix A. The<br />

Appendix is arranged in <strong>the</strong> order shown in Table 4.4. Both are arranged according to ridge set<br />

location (from north to south) <strong>and</strong> according to ridge position within each set (from north to<br />

south), in o<strong>the</strong>r words, chronologically from older to younger.<br />

Sample mean grain sizes range from 1.8 phi to 2.4 phi. Samples from set K, one <strong>of</strong> <strong>the</strong><br />

youngest sets, have <strong>the</strong> highest set means, <strong>and</strong> are, <strong>the</strong>refore, <strong>the</strong> most coarse-grained, while<br />

samples from set B, one <strong>of</strong> <strong>the</strong> oldest sets, have <strong>the</strong> lowest means <strong>and</strong> are, <strong>the</strong>refore, <strong>the</strong> most<br />

fine-grained. The st<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> sediment samples ranges from 0.3 phi units to 0.6<br />

phi units, with set D having <strong>the</strong> lowest st<strong>and</strong>ard deviation (best sorting) <strong>and</strong> set C having <strong>the</strong><br />

highest (poorest sorting). Figure 4.29 is a scatterplot <strong>of</strong> suite mean versus suite st<strong>and</strong>ard<br />

deviation. The plot <strong>and</strong> <strong>the</strong> table reveal that <strong>the</strong> s<strong>and</strong> that has formed <strong>the</strong> beach ridges <strong>of</strong> St.<br />

65


Vincent Isl<strong>and</strong> has changed little over <strong>the</strong> long history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The s<strong>and</strong> diameter has<br />

remained in <strong>the</strong> fine s<strong>and</strong> range <strong>and</strong> <strong>the</strong> st<strong>and</strong>ard deviation values have fallen in <strong>the</strong> “well-sorted”<br />

category, using <strong>the</strong> terminology <strong>of</strong> Friedman (1962). There is only one exception to this rule, a<br />

sample in set C, which falls in <strong>the</strong> “moderately well-sorted” range. O<strong>the</strong>r than that single<br />

sample, <strong>the</strong> only real trend revealed by <strong>the</strong> scatterplot is that <strong>the</strong> s<strong>and</strong> comprising <strong>the</strong> younger<br />

sets is generally slightly better sorted than that found in <strong>the</strong> older sets. Like <strong>the</strong> ridge set height<br />

results, this finding also implies an increase in wave energy in recent years. This will be fur<strong>the</strong>r<br />

discussed in Chapter 5.<br />

Individual sample kurtosis values range from 2.6 to 8.5. The highest values are found in<br />

samples from <strong>the</strong> north side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> in <strong>the</strong> older ridge sets, while <strong>the</strong> lowest values are seen<br />

in samples from <strong>the</strong> south side. Figure 4.30 is a scatterplot <strong>of</strong> suite mean vs. suite kurtosis. The<br />

sou<strong>the</strong>rn beach ridge sets (G, H, I, J, K, <strong>and</strong> L) have <strong>the</strong> lowest suite mean kurtosis values. The<br />

kurtosis values for <strong>the</strong>se sets are statistically indistinguishable, with values that fall between 3.5<br />

<strong>and</strong> 3.9. The nor<strong>the</strong>rn (older) beach ridge sets (A, B, C, D, E <strong>and</strong> F) show a wider spread in<br />

kurtosis values (4.2 to 5.6) than <strong>the</strong> sou<strong>the</strong>rn sets. Kurtosis values exceeding 5.0 are seen in <strong>the</strong><br />

ridge sets north <strong>of</strong> Big Bayou (shown in Fig. 4.23). These relationships can be seen in Figure<br />

4.31 Some (e.g., Tanner, 1990) believe that kurtosis is a function <strong>of</strong> <strong>the</strong> hydrodynamic regime <strong>of</strong><br />

an area, with higher kurtosis values resulting from lower wave energy, <strong>and</strong> vice-versa. If this is<br />

<strong>the</strong> case, <strong>the</strong> trends seen on St. Vincent Isl<strong>and</strong> could suggest that <strong>the</strong> older ridges on <strong>the</strong> isl<strong>and</strong><br />

were formed during a time <strong>of</strong> lower wave energy than <strong>the</strong> younger sets. The data shown in<br />

Figure 4.30 do not show any correlation between mean grain size <strong>and</strong> kurtosis.<br />

Skewness values range from –0.7 (strongly coarse skewed) to 1.3 (strongly fine skewed).<br />

Sets B, C, E <strong>and</strong> H are positively (coarse) skewed while <strong>the</strong> remaining sets are negatively (fine)<br />

skewed. Figure 4.32 is a scatterplot <strong>of</strong> suite mean versus suite skewness. There does not appear<br />

to be a relationship between skewness <strong>and</strong> mean grain size.<br />

Sorting <strong>and</strong> kurtosis values were compared to <strong>the</strong> mean ridge set heights shown in Figure<br />

4.26. Figure 4.31 shows <strong>the</strong> relationship between age <strong>and</strong> suite kurtosis while Figure 4.33 is a<br />

plot <strong>of</strong> relative age versus suite st<strong>and</strong>ard deviation. These figures demonstrate that kurtosis <strong>and</strong><br />

sorting increase with age. It appears that ridge sets on <strong>the</strong> sou<strong>the</strong>rn or Gulf (younger) side <strong>of</strong> <strong>the</strong><br />

isl<strong>and</strong> (Sets G through L) have lower sorting <strong>and</strong> kurtosis values than ridges on <strong>the</strong> north or bay<br />

side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> (Sets A through F). This implies that <strong>the</strong> s<strong>and</strong> making up <strong>the</strong> ridges on <strong>the</strong><br />

sou<strong>the</strong>rn portion <strong>of</strong> <strong>the</strong> isl<strong>and</strong> is better sorted than s<strong>and</strong> making up <strong>the</strong> ridges on <strong>the</strong> nor<strong>the</strong>rn<br />

66


portion <strong>of</strong> <strong>the</strong> isl<strong>and</strong>, <strong>and</strong> is fur<strong>the</strong>r evidence that wave energy has increased during <strong>the</strong> more<br />

recent history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>.<br />

Tanner’s method <strong>of</strong> settling-eolian-littoral-fluvial (SELF) determination was applied to<br />

all <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> samples. A summary <strong>of</strong> <strong>the</strong> results <strong>of</strong> this analysis is provided in<br />

Table 4.5. Ten <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> samples collected in 2005 <strong>and</strong> 2006 had an eolian<br />

component (samples 011006-06,09,10, 011106-09, 050505-01B, 02A, 02B, 03A, 04B, 05A).<br />

The determination <strong>of</strong> which samples had an eolian component, was based on <strong>the</strong> application <strong>of</strong><br />

Tanners method <strong>of</strong> SELF determination. A plot <strong>of</strong> phi grain size versus cumulative percent was<br />

produced for each sample. The plots were <strong>the</strong>n compared to Figure 3.8 <strong>and</strong> each segment was<br />

identified <strong>and</strong> labelled. Table 4.5 provides a summary <strong>of</strong> <strong>the</strong> results <strong>of</strong> <strong>the</strong>se analyses. Those<br />

samples with a segment “c” (as shown in Figure 3.8) were taken to represent sediments that had<br />

an eolian component. Of <strong>the</strong>se ten samples, four were collected from <strong>the</strong> base <strong>of</strong> a trench<br />

(samples 011006-06, 011006-09, 050505-04B, 011006-10). The remaining six samples that<br />

showed an eolian signature came from <strong>the</strong> tops <strong>of</strong> <strong>the</strong> ridges from which <strong>the</strong>y were collected<br />

(samples 050505-01B, 02A, 02B, 03A, 05A <strong>and</strong> 011106-09).<br />

The results <strong>of</strong> <strong>the</strong> granulometric analyses were fur<strong>the</strong>r analyzed using two <strong>of</strong> <strong>the</strong> plots<br />

developed by Tanner (1991). Figure 4.34 is a “tail <strong>of</strong> fines” plot. This is a plot <strong>of</strong> suite mean vs.<br />

suite st<strong>and</strong>ard deviation. All <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> samples plot just outside <strong>of</strong> <strong>the</strong> field in<br />

which river-deposited sediments are located. Figure 4.35 is a plot <strong>of</strong> skewness versus kurtosis.<br />

With <strong>the</strong> exception <strong>of</strong> sets B <strong>and</strong> C, <strong>the</strong> St. Vincent Isl<strong>and</strong> samples plot within <strong>the</strong> beach/river<br />

field. Set B plots in <strong>the</strong> eolian field. Set C plots outside <strong>the</strong> limits <strong>of</strong> <strong>the</strong> graph. Since sets B <strong>and</strong><br />

C are only represented by single samples, both with high positive skewness values, <strong>the</strong> results <strong>of</strong><br />

<strong>the</strong> SELF-analysis cannot be considered descriptive in <strong>the</strong> case <strong>of</strong> those ridge sets. These results<br />

<strong>of</strong> <strong>the</strong> SELF-analysis generally seem to corroborate <strong>the</strong> conclusion that <strong>the</strong> sediments comprising<br />

<strong>the</strong> beach ridge plain on St. Vincent Isl<strong>and</strong> have changed little over <strong>the</strong> history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>, <strong>and</strong><br />

that <strong>the</strong> original source <strong>of</strong> <strong>the</strong>se sediments was <strong>the</strong> nearby Apalachicola River mouth.<br />

Previous studies have analyzed <strong>the</strong> grain size characteristics <strong>of</strong> various locations along<br />

<strong>the</strong> Panh<strong>and</strong>le coast. Balsillie (1995) provides a summary <strong>of</strong> <strong>the</strong> granulometric results <strong>of</strong> <strong>the</strong>se<br />

studies. This data has been plotted on Figure 4.36. The data cover <strong>the</strong> Panh<strong>and</strong>le coast <strong>of</strong><br />

Florida. Figure 4.37 is a plot <strong>of</strong> relative sample location versus mean grain size. The plot shows<br />

that grain size is largest closest to <strong>the</strong> Apalachicola River mouth <strong>and</strong> decreases with distance<br />

away from <strong>the</strong> river mouth. Figure 4.38 shows relative location versus st<strong>and</strong>ard deviation<br />

67


(sorting). St<strong>and</strong>ard deviation decreases with distance away from <strong>the</strong> river mouth. This suggests<br />

that sorting improves with distance away from <strong>the</strong> Apalachicola River mouth. Figure 4.39 shows<br />

<strong>the</strong> relationship between skewness <strong>and</strong> river mouth location. Skewness is smallest at <strong>the</strong> river<br />

mouth <strong>and</strong> increases to <strong>the</strong> east <strong>and</strong> to <strong>the</strong> west <strong>of</strong> <strong>the</strong> river mouth. Figure 4.40 shows kurtosis<br />

versus relative location. Kurtosis appears to increase from west to east.<br />

The suite <strong>of</strong> samples collected from site SVI 009 were also analyzed. The results <strong>of</strong> <strong>the</strong><br />

analyses are presented in Table 4.4. The samples collected along <strong>the</strong> bedding plane show<br />

minimal change in mean grain size, kurtosis, skewness <strong>and</strong> st<strong>and</strong>ard deviation. There is also<br />

minimal change in sediment characteristics along <strong>the</strong> transect from <strong>the</strong> top <strong>of</strong> <strong>the</strong> trench to <strong>the</strong><br />

base <strong>of</strong> <strong>the</strong> trench. This suggests that <strong>the</strong> bedding planes within <strong>the</strong> beach ridges on St. Vincent<br />

Isl<strong>and</strong> are not readily identifiable based solely on granulometry.<br />

Geochronologic Results<br />

Optically stimulated luminescence (OSL) ages were derived from single samples taken<br />

from near <strong>the</strong> bases <strong>of</strong> <strong>the</strong> beach ridges at sites SVI 002, 004, 015, 023, 024 <strong>and</strong> 025, plus three<br />

samples dated in a vertical pr<strong>of</strong>ile down <strong>the</strong> ridge at site SVI 003. A sample was also collected<br />

from <strong>the</strong> modern (zero-age) beach surface at site SVI 019 to test <strong>the</strong> robustness <strong>of</strong> <strong>the</strong> dating<br />

technique used. Table 4.6 lists <strong>the</strong> OSL ages obtained in this study. The OSL depositional ages<br />

range from zero to approximately 4,100 years. The ridge with <strong>the</strong> oldest age is <strong>the</strong> nor<strong>the</strong>rnmost<br />

site <strong>and</strong> <strong>the</strong> ridge with <strong>the</strong> youngest age is <strong>the</strong> sou<strong>the</strong>rnmost site. The three ages from <strong>the</strong> vertical<br />

pr<strong>of</strong>ile at side SVI 003 are statistically indistinguishable. An average <strong>of</strong> <strong>the</strong> three ages is used<br />

for <strong>the</strong> depositional age <strong>of</strong> <strong>the</strong> ridge. Figure 4.41 is a map showing <strong>the</strong> OSL ages relative to <strong>the</strong><br />

beach ridge sets delineated by Stapor (1973).<br />

Ages were calculated using both <strong>the</strong> measured moisture content <strong>and</strong> average estimated<br />

moisture content. The importance <strong>of</strong> moisture content <strong>and</strong> <strong>the</strong> methods followed to measure<br />

moisture content are discussed in Chapter 3. Both measured <strong>and</strong> estimated moisture contents are<br />

shown in Table 4.6. The water content <strong>of</strong> <strong>the</strong> samples varied from 2.3 to 27.8%. However, it is<br />

possible that water may have been lost from some shallower samples by drying <strong>of</strong> <strong>the</strong> trench<br />

walls as a result <strong>of</strong> horizontal flow <strong>and</strong> also evaporation. Given that regional sea-level has been<br />

very close to present or slightly above it since isl<strong>and</strong> sediment deposition began (Figure 1.5), <strong>and</strong><br />

given that 5 <strong>of</strong> <strong>the</strong> 10 samples have a water content near 20%, it is likely that water content has<br />

68


not varied much outside <strong>of</strong> 15-25% since ridge deposition. Therefore, all sample ages shown in<br />

Table 4.6 were calculated using an assumed water content <strong>of</strong> 20±5%. OSL ages were also<br />

calculated using an assumed moisture content <strong>of</strong> 5±2% to determine <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> age<br />

calculations to water content (Table 4.7). Water content variation represents approximately 3-<br />

12% <strong>of</strong> <strong>the</strong> calculated sample ages.<br />

Mean progradation rates for <strong>the</strong> isl<strong>and</strong> <strong>and</strong> <strong>the</strong>ir associated sea level status were<br />

determined based on <strong>the</strong> dated sites. Table 4.8 shows <strong>the</strong> calculated rates <strong>and</strong> sea level status.<br />

The calculated rates were <strong>the</strong>n plotted against age <strong>and</strong> superimposed on <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong><br />

Mexico sea level curve <strong>of</strong> Balsillie <strong>and</strong> Donoghue (2004) (Figure 4.42). The progradation rate <strong>of</strong><br />

<strong>the</strong> beach ridge plain has varied over <strong>the</strong> isl<strong>and</strong>’s 4000+year history.<br />

The distances between <strong>the</strong> dated sites were determined using one <strong>of</strong> two methods. For<br />

dated sites that were located along <strong>the</strong> same transect, a straight-line distance was measured. For<br />

those dated sites that were not on <strong>the</strong> same transect, an orthogonal distance was measured based<br />

on <strong>the</strong> measured straight line distance between <strong>the</strong> sites <strong>and</strong> angular difference between <strong>the</strong><br />

straight line drawn between <strong>the</strong> sites <strong>and</strong> <strong>the</strong> angle <strong>of</strong> strike <strong>of</strong> <strong>the</strong> ridges at <strong>the</strong> sites. The<br />

distances were <strong>the</strong>n used to calculate <strong>the</strong> progradation rates. Two <strong>of</strong> <strong>the</strong> sites (SVI 003 <strong>and</strong> SVI<br />

004) had identical ages. To determine <strong>the</strong> progradation rate between <strong>the</strong>se two sites, <strong>the</strong><br />

analytical error <strong>of</strong> +/-300 years between was used to represent <strong>the</strong> estimated maximum time<br />

interval between <strong>the</strong> two dated ridges. The error associated with each calculated rate is based on<br />

<strong>the</strong> OSL age errors shown in Table 4.6. The errors associated with <strong>the</strong> horizontal position <strong>of</strong><br />

each site are on <strong>the</strong> order <strong>of</strong> 1-4 cm. These errors are negligible <strong>and</strong> were not taken into account<br />

in <strong>the</strong> progradation rate calculations.<br />

Mean progradation rates ranged from 0.7±0.3 to 4.3±3.0 m/yr. The distance <strong>of</strong> 2,550 m<br />

between sites SVI 015 <strong>and</strong> SVI002 equates to a progradation rate <strong>of</strong> 4.3±3.0 m/yr. There is a<br />

distance <strong>of</strong> 682 m between sites SVI 002 <strong>and</strong> SVI 003, which equates to a progradation rate <strong>of</strong><br />

0.7±0.3 m/yr. The spacing between sites SVI 003 <strong>and</strong> SVI 004 is 779 m, which provides a rate<br />

<strong>of</strong> progradation <strong>of</strong> 2.6±0 m/yr. There is 1,350 m between SVI 004 <strong>and</strong> SVI 023, which works<br />

out to a rate <strong>of</strong> 1.0±0.2 m/yr. Between sites SVI 024 <strong>and</strong> SVI 025 <strong>the</strong>re is a distance <strong>of</strong> 816 m,<br />

which equates to a progradation rate <strong>of</strong> 2.0±0.5 m/yr. There is a distance <strong>of</strong> 775 m between <strong>the</strong><br />

two sou<strong>the</strong>rnmost dated sites, which represents a progradation rate <strong>of</strong> 1.9±0.5 m/yr. The lowest<br />

rate <strong>of</strong> progradation was between 3,500 <strong>and</strong> 2,500 years ago <strong>and</strong> <strong>the</strong> highest rate was between<br />

69


4,100 <strong>and</strong> 3,500 years ago. The correlation between progradation rates <strong>and</strong> sea-level change will<br />

be discussed in detail in Chapter 5.<br />

Based on <strong>the</strong> topographic survey, GPR survey <strong>and</strong> <strong>the</strong> OSL dates, an attempt was made<br />

to relate <strong>the</strong> beach ridges to paleosealevel positions. Table 4.9 summarizes <strong>the</strong> results. The GPR<br />

pr<strong>of</strong>ile was inspected for locations showing <strong>the</strong> base <strong>of</strong> <strong>the</strong> shoreface. For <strong>the</strong> identified sites an<br />

age was estimated based on <strong>the</strong>ir location relative to <strong>the</strong> dated ridges. For each location, <strong>the</strong><br />

elevation <strong>of</strong> <strong>the</strong> ridge crest <strong>and</strong> <strong>the</strong> elevation <strong>of</strong> <strong>the</strong> road were determined from <strong>the</strong> topographic<br />

survey. The estimated paleosealevel positions do not agree with <strong>the</strong> with sea level positions<br />

shown on <strong>the</strong> Balsillie <strong>and</strong> Donoghue (2004) sea level curve. Although <strong>the</strong> directions <strong>of</strong> sea<br />

level change are not in agreement, <strong>the</strong> magnitudes are within 0.5 m to 1.0 m. These estimates are<br />

based on a limited amount <strong>of</strong> data <strong>and</strong> interpolated ages.<br />

70


Table 4.1. Summary <strong>of</strong> beach ridge sediment sample data<br />

Site Samples Beach Sample Sampling UTM<br />

Name Collected Ridge Type Date<br />

Set (mm/dd/yy) E N<br />

SVI-001 - A - 7/23/04 684196 3285439<br />

SVI-001 010505-01 A Vibracore 1/5/05 684149 3285414<br />

SVI-015 050605-01 B Vibracore 5/6/05 686090 3284110<br />

- no sample collected 5/6/05 686275 3284212<br />

SVI-018 010906-01 C Vibracore 01/09/2006 684868 3283462<br />

SVI-008 010505-02 C Vibracore 1/5/05 679254 3284589<br />

SVI-006 010405-02 C? Push core 1/4/05 678074 3284862<br />

SVI-005 010405-01 C? Vibracore 1/4/05 675248 3285006<br />

SVI-007 010405-03 D Vibracore 1/4/05 681439 3283681<br />

SVI-016 050605-02 D Vibracore 5/6/05 681373 328344<br />

SV-029 011206-05 D push core 01/12/2006 677821 3284287<br />

SV-030 011206-06 D ziploc bag 01/12/2006 684890 3281906<br />

SVI-002 072304-01 E Push core 7/23/04 681337 3283301<br />

072304-02 Push core<br />

072304-03 Push core<br />

072304-04 Vibracore<br />

SVI-003 072304-05 E Push core 7/23/04 681246 3282625<br />

072304-06 Push core<br />

072304-07 Push core<br />

SVI-021 011006-07 F Push core 01/10/2006 679429 3283214<br />

011006-08 Push core<br />

011006-09 grain size sample<br />

011006-10 grain size sample<br />

SVI-014 050505-06 F Vibracore 5/5/05 681225 3282490<br />

SVI-004 072304-08 F Vibracore 7/23/04 680714 3282056<br />

SVI-022 011006-11 G Push core 01/10/2006 679182 3282551<br />

011006-12 Push core<br />

011006-13 grain size sample<br />

011006-14 grain size sample<br />

SVI-020 011006-01 G Push core 01/10/2006 678888 3282175<br />

011006-02 Push core<br />

011006-03 Push core<br />

011006-04 grain size sample<br />

011006-05 grain size sample<br />

011006-06 grain size sample<br />

71


Table 4.1 Continued<br />

Site Samples Beach Sample Sampling<br />

Name Collected Ridge Type Date<br />

72<br />

UTM<br />

Set (mm/dd/yy) E N<br />

SVI-014 050505-06 F Vibracore 5/5/05 681225 3282490<br />

SVI-015 050605-01 B Vibracore 5/6/05 686090 3284110<br />

- no sample collected 5/6/05 686275 3284212<br />

SVI-016 050605-02 D Vibracore 5/6/05 681373 328344<br />

SVI-017 - G no sample collected 5/6/05 680174 3281487<br />

SVI-018 010906-01 C Vibracore 01/09/2006 684868 3283462<br />

SVI-019 010906-02 L Push core (vertical) 01/09/2006 683912 3279534<br />

SVI-020 011006-01 G Push core 01/10/2006 678888 3282175<br />

011006-02 Push core<br />

011006-03 Push core<br />

011006-04 grain size sample<br />

011006-05 grain size sample<br />

011006-06 grain size sample<br />

SVI-021 011006-07 F Push core 01/10/2006 679429 3283214<br />

011006-08 Push core<br />

011006-09 grain size sample<br />

011006-10 grain size sample<br />

SVI-022 011006-11 G Push core 01/10/2006 679182 3282551<br />

011006-12 Push core<br />

011006-13 grain size sample<br />

011006-14 grain size sample<br />

SVI-023 011006-15 G Push core 01/10/2006 678618 3281906<br />

011006-16 Push core<br />

011006-17 grain size sample<br />

011006-18 grain size sample<br />

SVI-024 011006-19 J Push core 01/10/2006 680954 3280002<br />

011006-20 Push core<br />

011006-21 grain size sample<br />

011006-22 grain size sample<br />

SVI-025 011106-01 I Push core 01/11/2006 679150 3280692<br />

011106-02 Push core<br />

011106-03 grain size sample<br />

011106-04 grain size sample<br />

SVI-026 011106-05 I Push core 01/11/2006 679516 3280800<br />

011106-06 grain size sample


Table 4.1 Continued<br />

Site Samples Beach Sample Sampling<br />

Name Collected Ridge Type Date<br />

73<br />

UTM<br />

Set (mm/dd/yy) E N<br />

SVI-024 011006-19 J Push core 01/10/2006 680954 3280002<br />

011006-20 Push core<br />

011006-21 grain size sample<br />

011006-22 grain size sample<br />

SVI-011 050505-03A K 2 grain-size samples 5/5/05 678194 3281453<br />

050505-03B<br />

050505-03C Push core " " "<br />

SVI-027 011106-07 L Push core 01/11/2006 683777 3279928<br />

011106-08 Push core<br />

011106-09 grain size sample<br />

011106-10 grain size sample<br />

SVI-019 010906-02 L Push core (vertical) 01/09/2006 683912 3279534<br />

Table 4.2. Summary <strong>of</strong> beach ridge set characteristics<br />

Ridge Set Average<br />

Ridge Set<br />

Crest<br />

Elevation (m<br />

NAVD 88)<br />

Average Ridge<br />

Set Swale<br />

Elevation (m<br />

NAVD 88)<br />

Orientation <strong>of</strong><br />

Beach Ridge<br />

Sets<br />

Width <strong>of</strong> <strong>the</strong><br />

Beach Ridge<br />

set at its<br />

widest point<br />

(km)<br />

Direction <strong>of</strong><br />

Splay<br />

A NW-SE 0.5 None<br />

B NW-SE 0.3 None<br />

C NW-SE 0.7 None<br />

D NW-SE 1.3 East<br />

E 1.6 0.95 NW-SE 1.4 East<br />

F 3.5 1.5 NW-SE 0.9 East<br />

G 2.4 1.0 NW-SE 1.5 None<br />

H NW-SE 0.6 None<br />

I NW-SE 0.9 West<br />

J NW-SE 0.8 West<br />

K 3.8 0.9 NW-SE 0.4 None<br />

L NE-SW 1 Northwest<br />

Note: Average beach ridge crest heights <strong>and</strong> swale heights for <strong>the</strong> sets were determined only for<br />

ridge sets crossed by <strong>the</strong> topographic survey pr<strong>of</strong>ile.


Table 4.3. Measured elevations <strong>of</strong> St. Vincent Isl<strong>and</strong> benchmarks<br />

Sample Site ID # Monument<br />

Elevation (m)<br />

SVI 001 S001 1.057<br />

SVI 002 unlabelled 0.556<br />

SVI 003 unlabelled 0.768<br />

SVI 004 SV2 0.782<br />

SVI 005 unlabelled *<br />

SVI 006 unlabelled *<br />

SVI 007 unlabelled 1.862<br />

SVI 008 S008 1.355<br />

SVI 009 SV1 4.234<br />

SVI 010 SV4 0.399<br />

SVI 011 SV8 2.463<br />

SVI 012 SV11 1.187<br />

SVI 013 SV5 *<br />

SVI 014 SV6 1.540<br />

SVI 015 FDEP 0.641<br />

SVI 016 SV7 0.579<br />

SVI 017 SV3 *<br />

SVI 018 unlabelled *<br />

SVI 019 - bch. Surface<br />

SVI 020 unlabelled 0.975<br />

SVI 021 SV9 0.433<br />

SVI 022 SV12 1.439<br />

SVI 023 unlabelled 0.357<br />

SVI 024 unlabelled 0.738<br />

SVI 025 unlabelled 0.671<br />

SVI 026 unlabelled 1.055<br />

SVI 027 unlabelled 0.320<br />

SVI 028 unlabelled 1.655<br />

SVI 029 unlabelled 1.000<br />

SVI 030 unlabelled *<br />

*Benchmarks set as part <strong>of</strong> this project, but elevation not measured<br />

Note: Elevation measurements are relative to NAVD 88 datum. Elevations were measured by<br />

differential GPS survey relative to USGS benchmark FDEP B396.<br />

74


Table 4.4 – Summary <strong>of</strong> granulometry data<br />

Sample ID Sample Site Ridge Set Mean (phi) St<strong>and</strong>ard Deviation (phi units) Skewness Kurtosis Source <strong>of</strong> Data<br />

7 - A 2.2058 0.4555 -0.1042 4.6490 Tanner<br />

49 - B 2.1024 0.3706 0.4194 5.6464 Tanner<br />

1 - C 2.1858 0.6022 0.9259 5.6283 Tanner<br />

011206-06 SVI 030 D 2.2742 0.3528 -0.5522 4.1597 Forrest<br />

28 - E 2.3725 0.4335 -0.6741 5.5548 Tanner<br />

46 - 2.2747 0.3916 -0.0555 3.5078 Tanner<br />

38 - 2.1112 0.4726 0.2950 5.2034 Tanner<br />

42 - 2.0430 0.4190 -0.1975 4.3023 Tanner<br />

40 - 2.1698 0.4320 0.6986 5.8567 Tanner<br />

SET MEAN - 2.1942 0.4297 0.0133 4.8850<br />

011006-09 SVI 021 F 2.2818 0.3654 -0.5602 3.8016 Forrest<br />

011006-10 SVI 021 2.0200 0.4910 -0.4400 3.1088 Forrest<br />

24 - 2.2291 0.3960 -0.3099 3.1358 Tanner<br />

34 - 2.1104 0.4517 1.2963 8.5148 Tanner<br />

32 - 2.1882 0.3504 -0.1472 4.0672 Tanner<br />

SET MEAN - 2.1659 0.4109 -0.0322 4.5256<br />

011206-03 SVI 028 G 2.3452 0.2929 -0.0817 4.2704 Forrest<br />

011206-04 SVI 028 2.3533 0.3366 -0.2294 3.8368 Forrest<br />

050505-01A SVI 009 2.2653 0.3677 -0.2822 3.5151 Forrest<br />

050505-01B SVI 009 2.3122 0.3865 -0.7156 6.4527 Forrest<br />

050505-01C SVI 009 2.3329 0.3427 -0.1406 3.8129 Forrest<br />

050505-01D SVI 009 2.2088 0.3431 -0.2195 3.6313 Forrest<br />

050505-01E SVI 009 2.2684 0.3564 -0.2606 3.5549 Forrest<br />

050505-01F SVI 009 2.3045 0.3315 -0.1585 3.8125 Forrest<br />

050505-01G SVI 009 2.2175 0.3518 -0.1023 3.8065 Forrest<br />

050505-01H SVI 009 2.2730 0.3254 -0.0025 3.9712 Forrest<br />

050505-01I SVI 009 2.1842 0.3564 -0.1274 3.3849 Forrest<br />

011006-13 SVI 022 2.2110 0.3650 -0.2549 3.7698 Forrest<br />

011006-14 SVI 022 2.3898 0.3284 -0.2814 4.2771 Forrest<br />

20 - 2.2508 0.3661 0.0053 3.2923 Tanner<br />

011006-05 SVI 020 1.7582 0.3671 0.0480 3.5309 Forrest<br />

011006-06 SVI 020 1.9091 0.3439 -0.2017 3.3181 Forrest<br />

011006-04 SVI 020 1.9532 0.3701 -0.0413 3.3393 Forrest<br />

16 - 2.0047 0.4206 0.0798 3.7312 Tanner<br />

14 - 2.2113 0.3628 0.0733 3.3964 Tanner<br />

011006-17 SVI 023 2.0988 0.3622 0.0011 3.7515 Forrest<br />

011006-18 SVI 023 2.0656 0.3912 -0.0692 3.5844 Forrest<br />

050505-02A SVI 010 2.2227 0.4472 -0.3477 3.0736 Forrest<br />

050505-02B SVI 010 2.2497 0.3941 -0.3428 3.7180 Forrest<br />

050505-02C SVI 010 2.1714 0.4133 -0.2591 3.0446 Forrest<br />

050505-04A SVI 012 2.1076 0.3480 -0.1357 3.0057 Forrest<br />

050505-04B SVI 012 1.8853 0.3797 0.3407 2.5948 Forrest<br />

SET MEAN - 2.1607 0.3676 -0.1415 3.6404<br />

050505-05A SVI 013 H 2.2646 0.3657 0.0419 3.3728 Forrest<br />

050505-05B SVI 013 2.2102 0.3577 0.0030 3.6563 Forrest<br />

SET MEAN - 2.2374 0.3617 0.0225 3.5146<br />

011106-06 SVI 026 I 2.2065 0.3668 -0.1190 2.9809 Forrest<br />

011106-03 SVI 025 2.1902 0.3859 -0.3417 3.5196 Forrest<br />

011106-04 SVI 025 2.2522 0.3569 -0.2864 3.2744 Forrest<br />

SET MEAN - 2.1902 0.3859 -0.3417 3.5196<br />

H - J 2.0969 0.3629 -0.2394 3.6943 Tanner<br />

I - 2.2105 0.4279 -0.1677 3.5673 Tanner<br />

011006-21 SVI 024 2.2172 0.3423 -0.3466 3.2828 Forrest<br />

011006-22 SVI 024 2.0985 0.3885 -0.3167 3.1175 Forrest<br />

J - 2.2480 0.4425 0.3455 5.2082 Tanner<br />

K - 2.1629 0.4111 -0.1736 3.7896 Tanner<br />

L - 2.1240 0.4538 -0.3261 3.3757 Tanner<br />

SET MEAN - 2.1654 0.4041 -0.1749 3.7193<br />

12 - K 2.2911 0.4013 -0.3534 3.9231 Tanner<br />

050505-03A SVI 011 2.2907 0.4119 -0.6416 3.9062 Forrest<br />

050505-03B SVI 011 2.3081 0.3428 -0.2263 3.5255 Forrest<br />

SET MEAN - 2.2966 0.3853 -0.4071 3.7849<br />

D - L 2.2340 0.4344 -0.0197 5.0218 Tanner<br />

C - 2.0337 0.4055 -0.0781 3.3175 Tanner<br />

G - 2.1679 0.4231 0.2212 4.6612 Tanner<br />

011106-10 SVI 027 2.1602 0.3464 -0.3573 3.3575 Forrest<br />

011106-09 SVI 027 2.3906 0.3443 -0.4242 3.7121 Forrest<br />

F - 2.0421 0.4563 0.0251 2.7627 Tanner<br />

B - 2.2516 0.4344 -0.1795 3.6611 Tanner<br />

A - 2.2096 0.4019 -0.1952 3.7798 Tanner<br />

E - 2.2689 0.3864 -0.0712 3.7990 Tanner<br />

SET MEAN - 2.1725 0.4203 -0.0425 3.8576<br />

75


Table 4.5. Application <strong>of</strong> Tanner’s (1986,1991) method <strong>of</strong> SELF (settling-eolian-littoral-fluvial)<br />

determination to <strong>the</strong> St. Vincent Isl<strong>and</strong> samples<br />

Note: Each “x” represents <strong>the</strong> presence <strong>of</strong> a segment<br />

76<br />

SEGMENT(S) IDENTIFIED<br />

Sample ID Sample Site Ridge Set Settling Lag Central Fluvial Littoral Eolian<br />

7 - A X X X X<br />

49 - B X X X<br />

1 - C X X X<br />

011206-06 SVI 030 D X X X<br />

28 - E X X X X<br />

46 - X X X<br />

38 - X X X<br />

42 - X X X X<br />

40 - X X<br />

011006-09 SVI 021 F X X X X<br />

011006-10 SVI 021 X X X X<br />

24 - X X X<br />

34 - X X X<br />

32 - X X X<br />

011206-03 SVI 028 G X X X X<br />

011206-04 SVI 028 X X X X<br />

050505-01A SVI 009 X X X X<br />

050505-01B SVI 009 X X X X<br />

050505-01C SVI 009 X X X X<br />

050505-01D SVI 009 X X X<br />

050505-01E SVI 009 X X X<br />

050505-01F SVI 009 X X X X<br />

050505-01G SVI 009 X X X<br />

050505-01H SVI 009 X X X X<br />

050505-01I SVI 009 X X X X<br />

011006-13 SVI 022 X X X X<br />

011006-14 SVI 022 X X X X<br />

20 - X X X X<br />

011006-05 SVI 020 X X X<br />

011006-06 SVI 020 X X X X<br />

011006-04 SVI 020 X X<br />

16 - X X<br />

14 - X X X X<br />

011006-17 SVI 023 X X X<br />

011006-18 SVI 023 X X X X<br />

050505-02A SVI 010 X X X X X<br />

050505-02B SVI 010 X X X X X<br />

050505-02C SVI 010 X X X<br />

050505-04A SVI 012 X X X X<br />

050505-04B SVI 012 X X X X X<br />

050505-05A SVI 013 H X X X<br />

050505-05B SVI 013 X X X<br />

011106-06 SVI 026 I X X X X<br />

011106-03 SVI 025 X X X X<br />

011106-04 SVI 025 X X X X<br />

H - J X X X<br />

I - X X X<br />

011006-21 SVI 024 X X X<br />

011006-22 SVI 024 X X X X<br />

J - X X X<br />

K - X X X<br />

L - X X X<br />

12 - K X X X<br />

050505-03A SVI 011 X X X X X<br />

050505-03B SVI 011 X X X X<br />

D - L X X X<br />

C - X X X<br />

G - X X X<br />

011106-10 SVI 027 X X X X<br />

011106-09 SVI 027 X X X X X<br />

F - X X<br />

B - X X X<br />

A - X X X<br />

E - X X X


Table 4.6 – OSL age calculations<br />

Sample Site Sample Subsurface No. <strong>of</strong> U Th k Cosmic Radiation Paleodose Water Content (%) Dose Rate Age<br />

Depth (m) Aliquots (ppm) (ppm) (%) Dose (Gy/ka) (Gy) Measured Assumed Mean (Gy/ka) (ka)<br />

SVI002 072304-04B 3.46 13 0.26+/-0.04 0.39+/-0.14 0.06 0.13 0.88+/-0.07 21.6 20+/-5 0.25+/-0.01 3.5+/-0.3<br />

SVI003 072304-05 1.93 14 0.27+/-0.03 0.30+/-0.12 0.05 0.16 0.62+/-0.06 19.9 20+/-5 0.27+/-0.01 2.3+/-0.2<br />

SVI003 072304-06 1.37 20 0.23+/-0.02 0.42+/-0.10 0.01 0.17 0.65+/-0.10 2.3 20+/-5 0.25+/-0.01 2.6+/-0.4<br />

SVI003 072304-07 0.82 15 0.61+/-0.07 0.96+/-0.27 0.02 0.19 0.95+/-0.08 5.6 20+/-5 0.37+/-0.02 2.6+/-0.3<br />

SVI004 072304-08 2.75 13 0.33+/-0.04 0.36+/-0.15 0.04 0.14 0.63+/-0.07 17.0 20+/-5 0.26+/-0.01 2.5+/-0.3<br />

SVI015 050605-01 2.04 19 0.80+/-0.04 0.39+/-0.19 0.08 0.159 1.59+/-0.09 8.05 20+/-5 0.4+/-0 4.1+/-0.3<br />

SVI023 011006-16 1.426 17 0.58+/-0.05 0.63+/-0.22 0.02 0.197 0.43+/-0.02 4.4 20+/-5 0.4+/-0 1.2+/-0.1<br />

SVI024 011006-19 1.722 18 0.34+/-0.02 0.34+/-0.11 0.04 0.1661 0.11+/-0.01 26.2 20+/-5 0.3+/-0 0.4+/-0.0<br />

SVI025 011106-02 1.389 18 0.33+/-0.03 0.48+/-0.13 0.05 0.1736 0.23+/-0.02 27.8 20+/-5 0.3+/-0 0.8+/-0.1<br />

SVI019 010906-02 beach surface 7 - - - - 0 - 20+/-5 - 0<br />

77<br />

* OSL age includes two-sigma uncertainty due to systematic errors such as inhomogeneous bleaching, disc to disc variations in<br />

paleodose, errors due to counting statistics in alpha counters, errors due to curve fitting <strong>and</strong> water content.<br />

* All OSL measurements <strong>and</strong> age calculations were done at <strong>the</strong> University <strong>of</strong> Georgia Luminescence Laboratory


Table 4.7. OSL age calculations using assumed moisture contents <strong>of</strong> 20+/-5% <strong>and</strong> 5+/-2%<br />

Sample Site Sample Age (ka)<br />

Age (ka)<br />

(moisture content = 20+/-5%) (moisture content = 5+/-2%)<br />

SVI 002 072304-04B 3.5+/-0.3 3.2+/-0.3<br />

SVI 003 072304-05 2.3+/-0.2 2.1+/-0.2<br />

SVI 003 072304-06 2.6+/-0.4 2.5+/-0.4<br />

SVI 003 072304-07 2.6+/-0.3 2.3+/-0.2<br />

SVI 004 072304-08 2.5+/-0.3 2.2+/-0.3<br />

78


Table 4.8. Calculated progradation rates <strong>and</strong> ridge growth rates, based on OSL ages <strong>and</strong> distances between ridges<br />

Sample Elapsed Progradation # Ridges Years Sea Level<br />

Site Distance Age<br />

Time Rate Between per<br />

No. From To (meters) (method) (ka) (yr) (m/yr) Sites Ridge<br />

SVI015 4.1+/-0.3 4100<br />

SVI002 SVI-015 SVI-002 2555 (orthogonal*) 3.5+/-0.3 3500 600+/-424 4.3+/-3.0 25 24 Falling<br />

SVI003 SVI-002 SVI-003 682 (map dist.) 2.5+/-0.2 2500 1000+/-360 0.7+/-0.3 19 53 Rising<br />

SVI004 SVI-003 SVI-004 779 (map dist.) 2.5+/-0.3 2500 0+/-361 2.6+/-0 @ 15 0 Falling<br />

SVI023 SVI-004 SVI-023 1350 (orthogonal**) 1.2+/-0.1 1200 1300+/-316 1.0+/-0.2 25 52 Rising/Falling/Stable<br />

SVI025 SVI-023 SVI-025 852 (orthogonal**) 0.8+/-0.1 800 400+/-141 - - - -<br />

SVI024 SVI-025 SVI-024 816 (orthogonal***) 0.4+/-0.0 400 400+/-100 2.0+/-0.5 7 57 Falling<br />

SVI019 SVI-024 SVI-019 775 (orthogonal****) 0 0 400+/-100 1.9+/-0.5 18 22 Stable<br />

* Based on an angle <strong>of</strong> 32 degrees between <strong>the</strong> ridge axis <strong>and</strong> a straight line between <strong>the</strong> two dated points<br />

** Based on an angle <strong>of</strong> 40 degrees between <strong>the</strong> ridge axis <strong>and</strong> a straight line between <strong>the</strong> two dated points<br />

*** Based on an angle <strong>of</strong> 25 degrees between <strong>the</strong> ridge axis <strong>and</strong> a straight line between <strong>the</strong> two dated points<br />

**** Based on an angle <strong>of</strong> 15 degrees between <strong>the</strong> ridge axis <strong>and</strong> a straight line between <strong>the</strong> two dated points<br />

@ Based on progradation <strong>of</strong> 780 meters within <strong>the</strong> error limits <strong>of</strong> two identical OSL ages (300 yr)<br />

79<br />

Note: Sea level was determined by plotting <strong>the</strong> ages <strong>and</strong> progradation rates on <strong>the</strong> Gulf <strong>of</strong> Mexico sea-level curve <strong>of</strong> Balsillie <strong>and</strong><br />

Donoghue (2004)


Table 4.9. Paleosealevel position estimates<br />

Location Age (ka) 1 Sea Level<br />

Elevation,<br />

MSL 2<br />

Road Elevation<br />

above MSL<br />

(m) 3<br />

Elevation <strong>of</strong><br />

ridge crest<br />

above MSL<br />

(m) 3<br />

Subsurface<br />

depth <strong>of</strong><br />

shoreface<br />

(m) 4<br />

Corrected Estimated<br />

elevation <strong>of</strong> Paleosealevel<br />

base <strong>of</strong><br />

shoreface,<br />

below MSL<br />

(m)<br />

5<br />

SVI009 2.0 0.26 1.9 4.4 7.0 -5.1 -0.35<br />

SVI010 1.0 -0.01 1.6 2.8 6.0 -4.4 -0.80<br />

SVI020 1.6 0.58 1.8 2.4 6.0 -4.2 -0.90<br />

N <strong>of</strong> SVI021 3.0 -0.69 2.7 3.6 6.0 -3.3 0.15<br />

80<br />

1<br />

Age estimated based on interpolation using OSL dated ridges<br />

2<br />

Sea level elevation estimated from Balsillie <strong>and</strong> Donoghue (2004) sea level curve<br />

3<br />

Road elevation <strong>and</strong> ridge crest elevations determined from <strong>the</strong> topographic survey<br />

4<br />

Subsurface depth <strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> shoreface determined from <strong>the</strong> GPR pr<strong>of</strong>ile<br />

5<br />

Paleosealevel taken as <strong>the</strong> midpoint between <strong>the</strong> ridge crest <strong>and</strong> base <strong>of</strong> <strong>the</strong> shoreface


SVI 005<br />

SVI 028<br />

SVI 029<br />

SVI 011<br />

SVI 006<br />

SVI 021<br />

SVI 022<br />

SVI 009 SVI 020<br />

SVI 023<br />

SVI 010<br />

SVI 026<br />

SVI 025<br />

Figure 4.1. Sample sites on St. Vincent Isl<strong>and</strong>. The blue circles represent sites where a<br />

vibracore was collected. The black circles represent sites where samples were collected from <strong>the</strong><br />

vertical wall <strong>of</strong> a trench. The approximate locations <strong>of</strong> Roads 4 <strong>and</strong> 5 are shown in red.<br />

81<br />

SVI 008<br />

SVI 012<br />

SVI 007<br />

SVI 016<br />

SVI 002<br />

SVI 003<br />

SVI 014<br />

SVI 004<br />

SVI 013<br />

SVI 024<br />

SVI 001<br />

SVI 018<br />

SVI 027<br />

SVI 015<br />

Stapor’s<br />

dutch auger<br />

core


Figure 4.2. Example <strong>of</strong> a trench through a beach ridge on St. Vincent Isl<strong>and</strong>. The trench axis<br />

is perpendicular to <strong>the</strong> shoreline. Seaward direction is to <strong>the</strong> left. Note <strong>the</strong> seaward dipping<br />

beds at all levels in <strong>the</strong> ridge, shown by <strong>the</strong> solid black line <strong>and</strong> <strong>the</strong> dashed lines. Vertical<br />

structures in <strong>the</strong> upper section are root casts. White circles indicate sediment sample locations.<br />

82


Figure 4.3. Site SVI 001 (Paradise Point Site). Location <strong>of</strong> vibracore site SVI 001 was just<br />

<strong>of</strong>fshore. Site location is shown in Figure 4.1. Samples collected from this site are listed in<br />

Table 4.1.<br />

Figure 4.4. Site SVI 002. Push cores 072304-01,02 <strong>and</strong> 03 were collected from this trench for<br />

OSL dating. Vibracore 072304-04 was also collected from <strong>the</strong> floor <strong>of</strong> this trench. Site location<br />

is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

83


Figure 4.5. Site SVI 003. Trench excavated at site SVI 003. Push cores 072304-05,06 <strong>and</strong> 07<br />

were collected for OSL dating. Site location is shown in Figure 4.1. Samples collected from this<br />

site are listed in Table 4.1.<br />

84


Figure 4.6. Site SVI 004. Vibracore 072304-08 was collected from this site. Site location is<br />

shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

85


a)<br />

b)<br />

050505-01E<br />

050505-01K<br />

050505-01B<br />

050505-01C<br />

050505-01D<br />

050505-01F<br />

050505-01J<br />

050505-01G<br />

050505-01I<br />

Figure 4.7. Site SVI 009. a) OSL dating samples. b) Samples collected for grain size analysis.<br />

Site location is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

86<br />

050505-01A<br />

050505-01H


050505-02A<br />

050505-02B<br />

050505-02C 050505-02D<br />

Figure 4.8. Site SVI 010. Location <strong>of</strong> three samples collected for grain size analysis (050505-<br />

02A,B,C) <strong>and</strong> one sample collected for OSL dating (050505-02D). Site location is shown in<br />

Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

Figure 4.9. Site SVI 011. Location <strong>of</strong> two samples collected for grain size analysis (050505-<br />

03A,B) <strong>and</strong> one sample collected for OSL dating (050505-03C). Site location is shown in Figure<br />

4.1. Samples collected from this site are listed in Table 4.1.<br />

87<br />

050505-03A<br />

050505-03B<br />

050505-03C


a)<br />

b)<br />

050505-04C<br />

050505-04A<br />

Figure 4.10. Site SVI 012. a) Trench excavated. b) Location <strong>of</strong> two samples collected for grain<br />

size analysis (050505-04A,B) <strong>and</strong> one sample collected for OSL dating (050505-04C). Site<br />

location is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

88<br />

050505-04B


050505-05A<br />

050505-05C<br />

Figure 4.11. Site SVI 013. Location <strong>of</strong> two samples collected for grain size analysis (050505-<br />

05A,B) <strong>and</strong> one sample collected for OSL dating (050505-05C). Site location is shown in Figure<br />

4.1. Samples collected from this site are listed in Table 4.1.<br />

Figure 4.12. Site SVI 014. Vibracore 050505-06 was collected from this location. Site location<br />

is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

89<br />

050505-05B


Figure 4.13. Site SVI 015. Vibracore 050605-01 was collected from this location. Site location<br />

is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

Figure 4.14. Site SVI 016. Vibracore 050605-02 was collected from this location. Site location<br />

is shown in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

90


011006-03<br />

011006-02<br />

011006-06<br />

Figure 4.15. Site SVI 020. Samples 011006-01, 02 <strong>and</strong> 03 were collected for OSL dating.<br />

Samples 011006-04, 05 <strong>and</strong> 06 were collected for grain size analysis. Site location is shown in<br />

Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

011006-14<br />

011006-04<br />

011006-12<br />

011006-05<br />

011006-01<br />

011006-11 011006-13<br />

Figure 4.16. Site SVI 022. Two grain size samples (011006-13,14) <strong>and</strong> two OSL samples were<br />

collected (011006-11,12). Site location is shown in Figure 4.1. Samples collected from this site<br />

are listed in Table 4.1.<br />

91


a)<br />

b)<br />

011006-15<br />

011006-16<br />

Figure 4.17. Site SVI 023. a) Trench. b) Samples 011006-15 <strong>and</strong> 16 were collected for OSL<br />

dating. Samples 011006-17 <strong>and</strong> 18 were collected for grain size analysis. Site location is shown<br />

in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

92<br />

011006-18<br />

011006-17


a)<br />

b)<br />

011006-22<br />

011006-19<br />

Figure 4.18. Site SVI 024. a) Trench. b) Samples 011006-19 <strong>and</strong> 20 were collected for OSL<br />

dating. Samples 011006-21 <strong>and</strong> 22 were collected for grain size analysis. Site location is shown<br />

in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

93<br />

011006-20<br />

011006-21


a)<br />

b)<br />

011106-08<br />

011106-07 011106-10<br />

Figure 4.19. Site SVI 027. a) Trench. b) Samples 011106-07 <strong>and</strong> 08 were collected for OSL<br />

dating. Samples 011106-09 <strong>and</strong> 10 were collected for grain size analysis. Site location is shown<br />

in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

94<br />

011106-09


a)<br />

b)<br />

011206-04<br />

011206-03<br />

011206-02<br />

011206-01<br />

Figure 4.20. Site SVI 028. a) Trench. b) Samples 011206-01 <strong>and</strong> 02 were collected for OSL<br />

dating. Samples 011206-03 <strong>and</strong> 04 were collected for grain size analysis. Site location is shown<br />

in Figure 4.1. Samples collected from this site are listed in Table 4.1.<br />

95


Figure 4.21. Dutch gouge-auger core taken at Tahiti Beach in <strong>the</strong> vicinity <strong>of</strong> Mallard Slough in<br />

January 1979. The approximate location <strong>of</strong> <strong>the</strong> core is shown in Figure 4.1. Note <strong>the</strong> pre-barrier<br />

Pleistocene surface (indicated by <strong>the</strong> arrow) at approximately 8.7 meters depth in <strong>the</strong> core.<br />

(Source: Stapor, pers. comm.)<br />

96


Figure 4.22. Boreholes drilled in <strong>the</strong> St. Vincent Isl<strong>and</strong> vicinity. Inset map shows <strong>the</strong> location <strong>of</strong><br />

<strong>the</strong> three cores. The pre-barrier Pleistocene surface appears in <strong>the</strong> two St. Vincent boreholes<br />

(Holes IL <strong>and</strong> IM) at approximately 22 feet below MSL (6.7 meters).(Source: Schnable, 1966).<br />

97


Figure 4.23. Line A-A’ represents <strong>the</strong> location <strong>of</strong> <strong>the</strong> topographic survey transect across St.<br />

Vincent Isl<strong>and</strong>. That pr<strong>of</strong>ile is shown in Figure 4.24. The pr<strong>of</strong>ile follows isl<strong>and</strong> Road 4. Line<br />

A-A’ also represents <strong>the</strong> location <strong>of</strong> <strong>the</strong> GPR survey transect across St. Vincent Isl<strong>and</strong>, which is<br />

shown in Figure 4.27 <strong>and</strong> 4.28.<br />

98


8<br />

K G F E<br />

7<br />

KISH SURVEY STAPOR SURVEY ROAD - KISH<br />

6<br />

SVI 009<br />

5<br />

SVI 023<br />

SVI 021<br />

4<br />

Elevation (m)<br />

99<br />

3<br />

SVI 022<br />

2<br />

SVI 011<br />

SVI 020<br />

SVI 010<br />

1<br />

0<br />

3,000<br />

2,900<br />

2,800<br />

2,700<br />

2,600<br />

2,500<br />

2,400<br />

2,300<br />

2,200<br />

2,100<br />

2,000<br />

1,900<br />

1,800<br />

1,700<br />

1,600<br />

1,500<br />

1,400<br />

1,300<br />

1,200<br />

1,100<br />

1,000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Gulf <strong>of</strong> Mexico Distance (m)<br />

Big Bayou<br />

Figure 4.24. North-south topographic pr<strong>of</strong>ile across St. Vincent Isl<strong>and</strong>, along Road 4. North is to <strong>the</strong> right. See Figure 4.23 for pr<strong>of</strong>ile location. The blue<br />

line represents <strong>the</strong> transect conducted by Stapor <strong>and</strong> Tanner (1977) (referred to as “Stapor Survey”). The green line represents <strong>the</strong> road <strong>and</strong> <strong>the</strong> red line<br />

represents <strong>the</strong> survey conducted during this study (referred to as “Kish Survey”. Vertical exaggeration is 200x.


Elevation (m) NAVD 88<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Cross Section <strong>of</strong> SVI 009<br />

0 20 40 60 80 100 120 140<br />

Distance (m)<br />

Figure 4.25. Topographic pr<strong>of</strong>ile across <strong>the</strong> beach ridges located at site SVI 009. The ridges<br />

are located on isl<strong>and</strong> Road 4, <strong>and</strong> are part <strong>of</strong> <strong>the</strong> topographic <strong>and</strong> GPR transect <strong>of</strong> <strong>the</strong> isl<strong>and</strong>.<br />

Vertical exaggeration is 17x. North is to <strong>the</strong> right <strong>and</strong> south (seaward) is to <strong>the</strong> left. Site<br />

location is shown in Figure 4.1.<br />

100


Mean set height (m) NAVD 88<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Set K<br />

Set G<br />

-500 0 500 1000 1500 2000 2500 3000<br />

Distance (m)<br />

Gulf <strong>of</strong> Mexico Bay<br />

Figure 4.26. Mean ridge set height vs distance along <strong>the</strong> pr<strong>of</strong>ile. Pr<strong>of</strong>ile location shown<br />

in Figure 4.23. Mean heights taken from Fig. 4.24.<br />

101<br />

Set F<br />

Set E


1200 +/- 100 yr<br />

102<br />

Figure 4.27. GPR pr<strong>of</strong>ile across St.Vincent Isl<strong>and</strong>. Gulf <strong>of</strong> Mexico (south) is to <strong>the</strong> left side <strong>of</strong> <strong>the</strong> figure. Vertical <strong>and</strong> horizontal scales are in meters. The red vertical lines<br />

delineate <strong>the</strong> low areas between individual beach ridges. The blue lines represent <strong>the</strong> trend <strong>of</strong> <strong>the</strong> crossbeds within each beach ridge.


Gulf <strong>of</strong><br />

Mexico<br />

High-angle, seaward<br />

dipping reflectors<br />

Pleistocene/Holocene<br />

Contact<br />

Figure 4.28. Close-up <strong>of</strong> <strong>the</strong> section <strong>of</strong> <strong>the</strong> 100 MHz GPR survey that covered site SVI 009.<br />

Site location is shown in Figure 4.1 <strong>and</strong> 4.27. South (seaward) is to left.<br />

103<br />

SVI 009<br />

St. Vincent<br />

Sound<br />

0 m<br />

4 m<br />

8 m


0.65<br />

Set C<br />

0.6<br />

0.55<br />

0.5<br />

Set A<br />

0.45<br />

Set E<br />

Set L<br />

104<br />

Set F<br />

0.4<br />

Set St<strong>and</strong>ard Deviation (phi units)<br />

Set J<br />

Set K<br />

Set H<br />

Set I<br />

Set D<br />

Set G<br />

Set B<br />

0.35<br />

0.3<br />

2.05 2.10 2.15 2.20 2.25 2.30 2.35<br />

Set Mean Diameter (phi units)<br />

Figure 4.29. Suite mean versus suite st<strong>and</strong>ard deviation


6.3<br />

Set B Set C<br />

5.3<br />

Set E<br />

Set F<br />

Set D<br />

Set A<br />

4.3<br />

Set K<br />

Set L<br />

Set H<br />

Set J<br />

Set I<br />

Set G<br />

3.3<br />

Average Kurtosis<br />

105<br />

2.3<br />

1.3<br />

0.3<br />

2.0500 2.1000 2.1500 2.2000 2.2500 2.3000 2.3500<br />

Average Mean (phi)<br />

Figure 4.30. Suite mean versus suite kurtosis.


6<br />

Set B<br />

Set C<br />

Set E<br />

5<br />

Set A<br />

Set F<br />

Set D<br />

Set F/G<br />

Set K Set J<br />

Set L<br />

Set I<br />

4<br />

Set G<br />

Set H<br />

3<br />

y = 0.1504x + 3.2072<br />

R2 = 0.6013<br />

Suite Kurtosis<br />

106<br />

2<br />

1<br />

0<br />

0 2 4 6 8 10 12 14<br />

Relative Age<br />

Figure 4.31. Relative age versus suite kurtosis. Note: Relative age is unitless. Ridge sets were assigned numbers from 1 to 13<br />

with <strong>the</strong> youngest represented by “1” <strong>and</strong> <strong>the</strong> oldest represented by “13”.


1<br />

Set C<br />

0.8<br />

0.6<br />

0.4<br />

Set B<br />

0.2<br />

Set E<br />

Set H<br />

Set F<br />

0<br />

Set L<br />

2.0500 2.1000 2.1500 2.2000 2.2500 2.3000 2.3500<br />

Set A<br />

Set J Set G<br />

-0.2<br />

Average Skewness<br />

107<br />

Set K<br />

Set I<br />

-0.4<br />

Set D<br />

-0.6<br />

-0.8<br />

Average mean (phi)<br />

Figure 4.32. Suite mean versus suite skewness.


0.7<br />

Set C<br />

0.6<br />

Set A<br />

0.5<br />

Set E<br />

Set F<br />

Set I<br />

Set L<br />

Set G<br />

Set J<br />

Set B<br />

Set H<br />

Set K<br />

Set F/G Set D<br />

0.4<br />

0.3<br />

108<br />

y = 0.0055x + 0.369<br />

R 2 = 0.1055<br />

Suite Std. Dev. (phi units)<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10 12 14<br />

Relative Age<br />

Figure 4.33. Plot <strong>of</strong> relative age versus suite st<strong>and</strong>ard deviation. Note: Relative age is unitless. Ridge sets were assigned<br />

numbers from 1 to 13 with <strong>the</strong> youngest represented by “1” <strong>and</strong> <strong>the</strong> oldest represented by “13”.


ENVIRONMENTS OF DEPOSITION -- St. Vincent Isl<strong>and</strong> Samples<br />

10<br />

Closed Basin<br />

1<br />

River<br />

Dune<br />

0.1<br />

Set Std. Dev. (phi-units)<br />

109<br />

0.01<br />

Mature<br />

Beach<br />

0.001<br />

0.0001 0.001 0.01 0.1 1 10 100<br />

Set Mean (phi)<br />

Set A mean Set B mean Set C mean Set E mean Set F mean Set G mean Set H mean Set J mean<br />

Set K mean Set L mean Set D mean Set I mean<br />

Figure 4.34. Tail <strong>of</strong> fines plot. Plot derived from Tanner (1991).


ENVIRONMENTS OF DEPOSITION -- SKEWNESS VS. KURTOSIS<br />

SHOALS<br />

10<br />

EOLIAN <strong>and</strong><br />

SETTLING<br />

BEACHES<br />

RIVERS<br />

RIVERS<br />

EOLIAN;<br />

SETTLING<br />

Set B<br />

5<br />

Set C<br />

Set D<br />

SHOALS<br />

BEACHES<br />

Average<br />

Kurtosis<br />

Set E<br />

110<br />

Set F<br />

Set G<br />

Set K<br />

Set I<br />

Set H<br />

1<br />

Set J<br />

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Average Skewness<br />

Figure 4.35. Skewness versus kurtosis. Plot derived from Tanner (1991).


N<br />

9<br />

1.59<br />

0.31<br />

0.06<br />

3.82<br />

1<br />

4<br />

1<br />

3<br />

2.06<br />

0.31<br />

0.02<br />

3.52<br />

2.31<br />

0.47<br />

0.01<br />

3.79<br />

2<br />

1.84<br />

0.03<br />

0.08<br />

6.11<br />

2.17<br />

0.47<br />

0.03<br />

3.59<br />

2.47<br />

0.38<br />

-0.13<br />

3.28<br />

8<br />

111<br />

Numbers are<br />

averages for suite<br />

statistics in <strong>the</strong><br />

following order:<br />

1.66<br />

0.33<br />

0.03<br />

5.41<br />

2.35<br />

0.40<br />

-0.002<br />

3.85<br />

2.34<br />

0.56<br />

-0.42<br />

4.21<br />

1.8-2.4<br />

0.3-0.6<br />

-0.7-1.3<br />

2.6-8.5<br />

Mean (phi)<br />

St<strong>and</strong>ard Dev.<br />

(phi)<br />

Skewness<br />

Kurtosis<br />

5 6<br />

7<br />

Figure 4.36. Grain size characteristics <strong>of</strong> <strong>the</strong> isl<strong>and</strong>s that rim <strong>the</strong> Apalachicola River mouth. The numbers from 1 to 9<br />

correspond to <strong>the</strong> relative locations plotted in Figures 4.37 to 4.40. (Source: Balsillie, 1995)


mean grain size (phi)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

y = 0.0035x 3 - 0.0781x 2 + 0.4018x + 1.7739<br />

112<br />

R 2 = 0.7321<br />

0 1 2 3 4 5 6 7 8 9 10<br />

location relative to Apalachicola River<br />

Figure 4.37. Location relative to <strong>the</strong> Apalachicola River mouth versus mean<br />

grain size. Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered<br />

locations in Figure 4.36. (Data source: Balsillie, 1995)<br />

st<strong>and</strong>ard deviation (phi)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

y = 0.0041x 3 - 0.075x 2 + 0.3689x - 0.0346<br />

R 2 = 0.6093<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

location relative to Apalachicola River<br />

Figure 4.38. Location relative to <strong>the</strong> Apalachicola River mouth versus<br />

st<strong>and</strong>ard deviation. Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong><br />

numbered locations in Figure 4.36. (Data source: Balsillie, 1995)


skewness<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

0 1 2 3 4 5 6 7 8 9 10<br />

y = 0.001x 6 - 0.031x 5 + 0.3704x 4 - 2.1684x 3 + 6.422x 2 - 8.9073x +<br />

4.3342<br />

113<br />

R 2 = 0.6864<br />

location relative to Apalachicola River<br />

Figure 4.39. Location relative to <strong>the</strong> Apalachicola River mouth versus skewness.<br />

Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered locations in<br />

Figure 4.36. (Data source: Balsillie, 1995)<br />

kurtosis<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0.2232x + 3.0597<br />

R 2 = 0.4137<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

location relative to Apalachicola River<br />

Figure 4.40. Location relative to <strong>the</strong> Apalachicola River mouth versus kurtosis.<br />

Note: Numbers shown on <strong>the</strong> x-axis correspond to <strong>the</strong> numbered locations in<br />

Figure 4.36. (Data source: Balsillie, 1995)


SVI 015<br />

SVI 002<br />

SVI 003<br />

114<br />

SVI 004<br />

SVI 023<br />

SVI 025<br />

SVI 024<br />

SVI 019<br />

Figure 4.41. OSL ages for samples collected from St. Vincent Isl<strong>and</strong>.


6<br />

4<br />

2<br />

Sea Level (m)<br />

0<br />

-2<br />

-4<br />

-6<br />

1.9<br />

4.3 0.7 2.6 1.0 2.0<br />

?<br />

-8<br />

Progradation<br />

Rates (m/yr)<br />

-10<br />

Gulf <strong>of</strong> Mexico Younger Data Set<br />

115<br />

-12<br />

0<br />

1,000<br />

2,000<br />

3,000<br />

4,000<br />

5,000<br />

6,000<br />

7,000<br />

cal yr BP<br />

Figure 4.42. St. Vincent Isl<strong>and</strong> progradation rates. The red solid line adapted from Balsillie <strong>and</strong> Donoghue (2004) is a comprehensive<br />

compilation <strong>of</strong> radiocarbon dated sea-level indicators for <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico. The numerical values represent <strong>the</strong> rates <strong>of</strong><br />

progradation <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridge plain based on <strong>the</strong> OSL dated sites on <strong>the</strong> isl<strong>and</strong>. The blue arrows represent <strong>the</strong><br />

OSL dates obtained during <strong>the</strong> investigation.


CHAPTER 5<br />

DISCUSSION<br />

The beach ridges making up <strong>the</strong> St.Vincent Isl<strong>and</strong> beach ridge plain have been<br />

investigated using a variety <strong>of</strong> techniques. The surface <strong>and</strong> subsurface morphology <strong>of</strong> <strong>the</strong> beach<br />

ridge plain was studied by using GPR <strong>and</strong> high-precision topographic surveys. Borehole records<br />

from previous studies were accessed to gain additional subsurface information. The<br />

granulometric characteristics <strong>of</strong> <strong>the</strong> beach ridge plain were quantified based on <strong>the</strong> analysis <strong>of</strong><br />

samples that were collected by vibracoring <strong>and</strong> trenching. The sediment analyses involved<br />

determining <strong>the</strong> grain size characteristics <strong>of</strong> each sample by sieving <strong>and</strong> using <strong>the</strong> GRANPLOTS<br />

sediment statistical program (Balsillie et al., 2002) <strong>and</strong> by employing a series <strong>of</strong> probability plots<br />

developed by Tanner (1986, 1991). Selected beach ridge sediment samples were dated using<br />

OSL techniques. These several techniques can be syn<strong>the</strong>sized in order to reconstruct <strong>the</strong><br />

depositional history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. Additionally, a comparison <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s growth history<br />

with <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico sea-level history enables a better underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong><br />

relationship between sea-level change <strong>and</strong> barrier <strong>evolution</strong>, as will be discussed below.<br />

Surface <strong>and</strong> Subsurface Morphology <strong>of</strong> <strong>the</strong> Beach Ridge Plain<br />

GPR has proven to be a useful tool for analyzing <strong>the</strong> internal structure <strong>of</strong> <strong>the</strong> St. Vincent<br />

Isl<strong>and</strong> str<strong>and</strong>plain. Previous studies conducted on <strong>the</strong> isl<strong>and</strong> have provided estimates <strong>of</strong> <strong>the</strong><br />

depth <strong>of</strong> <strong>the</strong> pre-barrier surface beneath <strong>the</strong> isl<strong>and</strong> (Figures 4.21 <strong>and</strong> 4.22). This boundary is a<br />

sharp contact between brightly colored (yellow <strong>and</strong> orange mottled) Pleistocene s<strong>and</strong> <strong>and</strong><br />

overlying dark gray Holocene muddy s<strong>and</strong> (Figure 4.21). Oxidation, <strong>the</strong> process that has given<br />

<strong>the</strong> Pleistocene s<strong>and</strong>s <strong>the</strong>ir orange color, tends to occur above <strong>the</strong> water table where atmospheric<br />

oxygen is readily available (Ritter, 1986). The Pleistocene period was a time <strong>of</strong> widespread<br />

glaciation. With water locked up in <strong>the</strong> ice sheets, <strong>the</strong> climate was drier than present. Sea level,<br />

as <strong>the</strong> Wisconsinan glaciers began to retreat, was much lower than present (Figure 1.5, lower<br />

sea-level curve). Towards <strong>the</strong> end <strong>of</strong> <strong>the</strong> final Pleistocene ice advance, about 20,000 years ago,<br />

sea level began to fluctuate <strong>and</strong> rise (Figure 1.5). By <strong>the</strong> mid-Holocene, <strong>the</strong> nor<strong>the</strong>rn hemisphere<br />

116


continental glaciers were virtually gone, sea level was at or near present, <strong>and</strong> coastal morphology<br />

began to undergo rapid change.<br />

The Pleistocene pre-barrier surface was estimated to be at a depth <strong>of</strong> approximately 8.7 m<br />

based on <strong>the</strong> Dutch gouge auger core collected by Stapor (Figure 4.21) at Tahiti Beach in <strong>the</strong><br />

vicinity <strong>of</strong> Mallard Slough, on <strong>the</strong> central part <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s eastern shore. Schnable (1966)<br />

placed its depth below <strong>the</strong> nor<strong>the</strong>rn side <strong>of</strong> St. Vincent Isl<strong>and</strong> at 6.7 m based on <strong>the</strong> two<br />

boreholes collected from <strong>the</strong> isl<strong>and</strong>’s nor<strong>the</strong>rn shore (Figure 4.22). The borehole data imply that<br />

<strong>the</strong> Pleistocene surface dips slightly toward <strong>the</strong> sou<strong>the</strong>ast. The GPR pr<strong>of</strong>iles run during this<br />

investigation (Figure 4.27) do not in all cases penetrate to <strong>the</strong>se depths, but low angle reflectors<br />

at about 8 m, are seen in places (Figure 4.28). Based on its very low angle <strong>of</strong> dip <strong>and</strong> its depth<br />

beneath <strong>the</strong> isl<strong>and</strong>, this reflector may represent <strong>the</strong> Pleistocene contact. It does closely correlate<br />

to <strong>the</strong> depth <strong>of</strong> 8.7 m estimated by Stapor. If this is <strong>the</strong> case, <strong>the</strong>se three studies provide values<br />

for <strong>the</strong> depth <strong>of</strong> <strong>the</strong> pre-barrier surface contact that are in reasonably close agreement. This<br />

contact is significant because it represents <strong>the</strong> surface on which <strong>the</strong> isl<strong>and</strong> was constructed.<br />

In addition to providing glimpses <strong>of</strong> <strong>the</strong> depth to <strong>the</strong> pre-barrier surface, GPR also<br />

provided an image <strong>of</strong> <strong>the</strong> subsurface structure <strong>of</strong> <strong>the</strong> str<strong>and</strong>plain. With <strong>the</strong> exception <strong>of</strong> two<br />

ridges within set K, all ridges that were imaged were characterized by low-angle, seaward-<br />

dipping subsurface reflectors that extend to approximately 4-5 m <strong>and</strong> <strong>the</strong>n taper <strong>of</strong>f at <strong>the</strong> base <strong>of</strong><br />

<strong>the</strong> shoreface (Figure 4.27). These seaward-dipping reflectors are consistent with beach ridge<br />

deposition by swash processes. Storm waves can act like regular, non-storm waves in building<br />

or eroding beach ridges <strong>and</strong> can have similar effects. However, large storms, with overwash <strong>of</strong><br />

<strong>the</strong> ridges, cause l<strong>and</strong>ward dipping beds to be deposited on <strong>the</strong> top <strong>of</strong> <strong>the</strong> ridge. These should be<br />

visible in <strong>the</strong> GPR pr<strong>of</strong>iles <strong>and</strong> trenches. Since this is not <strong>the</strong> case, it can be assumed that storms<br />

are not a major factor in ridge formation. The two ridges that showed l<strong>and</strong>ward-dipping<br />

reflectors are consistent with dune formation or washover processes. However, <strong>the</strong> abundance<br />

<strong>of</strong> low-angle seaward-dipping reflectors indicates that swash processes, as opposed to storm<br />

events, were predominantly responsible for forming <strong>the</strong> St. Vincent beach ridges.<br />

GPR is also a useful tool when applied to luminescence studies. Before any sample is<br />

analyzed using luminescence techniques, it is important for <strong>the</strong> researcher to be certain that <strong>the</strong><br />

sample has a meaningful relationship to <strong>the</strong> stratigraphy <strong>and</strong> geomorphology <strong>of</strong> <strong>the</strong> site in<br />

question (Aitken, 1998). Luminescence studies typically involve collecting samples from a<br />

117


vibracore or trench, both <strong>of</strong> which provide a limited underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> stratigraphy. GPR can<br />

serve to enhance stratigraphic information <strong>and</strong> provide confidence that <strong>the</strong> dated material is in<br />

fact part <strong>of</strong> <strong>the</strong> geomorphic feature whose age is sought. In this investigation, GPR was a<br />

valuable tool because it was used to ensure that <strong>the</strong> samples collected for OSL dating did in fact<br />

represent <strong>the</strong> basal ridge deposit <strong>and</strong> not <strong>the</strong> eolian or dune decorated part <strong>of</strong> <strong>the</strong> ridge in<br />

question.<br />

Granulometric Data from <strong>the</strong> Beach Ridge Samples<br />

The granulometric data (mean grain size, st<strong>and</strong>ard deviation, kurtosis, skewness)<br />

collected over <strong>the</strong> course <strong>of</strong> this investigation provide information about <strong>the</strong> nature <strong>and</strong> source <strong>of</strong><br />

<strong>the</strong> sediment making up <strong>the</strong> beach ridges on St. Vincent Isl<strong>and</strong>. When used in conjunction with<br />

Tanner’s method <strong>of</strong> SELF (settling-eolian-littoral-fluvial) determination (Figure 3.8) it is<br />

possible to make some predictions as to depositional origin <strong>of</strong> <strong>the</strong> sediment making up <strong>the</strong> isl<strong>and</strong>.<br />

The mean grain sizes obtained during this study (Table 4.4) indicate that <strong>the</strong> s<strong>and</strong><br />

comprising <strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridge plain is fine-grained. However, <strong>the</strong> younger sets<br />

appear to be composed <strong>of</strong> slightly coarser grained s<strong>and</strong> than <strong>the</strong> older sets. St<strong>and</strong>ard deviation is<br />

related to <strong>the</strong> mean grain size. It refers to <strong>the</strong> spread <strong>of</strong> values about <strong>the</strong> mean <strong>and</strong> is an indicator<br />

<strong>of</strong> sorting (Leeder, 1982). Generally, mature beaches have st<strong>and</strong>ard deviations that range from<br />

0.3 to 0.5 phi (Tanner, 1995). S<strong>and</strong>s that fall within this range are considered well-sorted (Folk,<br />

1974). All <strong>of</strong> <strong>the</strong> samples collected from <strong>the</strong> beach ridges on St. Vincent Isl<strong>and</strong> fall within this<br />

range (Table 4.4).<br />

Based on mean grain size <strong>and</strong> st<strong>and</strong>ard deviation, <strong>the</strong> material making up <strong>the</strong> beach<br />

ridges on St. Vincent Isl<strong>and</strong> can be classified as well-sorted, mature, fine-grained s<strong>and</strong>. This has<br />

held true over <strong>the</strong> course <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s history as shown in Table 4.4. However, <strong>the</strong> s<strong>and</strong><br />

comprising <strong>the</strong> younger sets is generally slightly better sorted <strong>and</strong> slightly coarser grained than<br />

that found in <strong>the</strong> older sets. This implies an increase in wave energy in recent years. This<br />

increase in wave energy was likely a direct result <strong>of</strong> sea- level rise. Alternatively, this could be a<br />

result <strong>of</strong> increased storm frequency in recent times.<br />

Kurtosis is a measure <strong>of</strong> <strong>the</strong> sorting in <strong>the</strong> “tails” <strong>of</strong> <strong>the</strong> grain size distribution curve <strong>and</strong><br />

<strong>the</strong> sorting in <strong>the</strong> central portion <strong>of</strong> <strong>the</strong> curve (Boggs, 1995). If <strong>the</strong> central portion is better sorted<br />

118


than <strong>the</strong> tails, <strong>the</strong> curve is excessively “peaked” (Boggs, 1995). If, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> tails<br />

are better sorted than central portion, <strong>the</strong> curve is “flat-peaked” (Boggs, 1995). The geological<br />

significance <strong>of</strong> kurtosis is unknown <strong>and</strong> many believe it has little value in interpretive grain size<br />

statistics (Boggs, 1995). O<strong>the</strong>rs believe that kurtosis is related to hydrodynamics <strong>and</strong> is a good<br />

indicator <strong>of</strong> energy levels <strong>and</strong> wave height (Doeglas, 1946; Haan, 1977; Tanner, 1990). They<br />

believe that <strong>the</strong> factors that can alter <strong>the</strong> hydrodynamic regime <strong>of</strong> an area <strong>and</strong>, thus, kurtosis,<br />

include sea-level rise, seasonal changes <strong>and</strong> storm tide <strong>and</strong> wave impact events. According to<br />

Tanner (1990) kurtosis values close to 3.0 are indicative <strong>of</strong> high-energy environments with large<br />

wave heights. Tanner (1990) <strong>state</strong>d that kurtosis values <strong>of</strong> 4.0 <strong>and</strong> higher are indicative <strong>of</strong> low<br />

energy environments with smaller wave heights. Where wave energies are low, kurtosis may be<br />

a useful tool for estimating changes in ancient sea-level (Tanner, 1990). In general, <strong>the</strong> kurtosis<br />

values for <strong>the</strong> east coast <strong>of</strong> Florida range from 3.0 to 3.5 (Balsillie, 1995). The lower Gulf coast<br />

has kurtosis values on <strong>the</strong> order <strong>of</strong> 3.5 or greater (Balsillie, 1995). Kurtosis differs between <strong>the</strong>se<br />

two regions because waves are higher along <strong>the</strong> east coast than <strong>the</strong> lower Gulf coast.<br />

For <strong>the</strong> panh<strong>and</strong>le coast wave heights <strong>and</strong> energy are low. Therefore, following Tanner’s<br />

reasoning, kurtosis values should be high. The St. Vincent Isl<strong>and</strong> data obtained in this<br />

investigation supports this assumption. Kurtosis values are high, ranging from 3 to 9 (Table 4.4).<br />

If kurtosis is related to wave energy, <strong>the</strong> trends seen could suggest that <strong>the</strong> most recent beach<br />

ridge sets (sets G, H, I, J, K <strong>and</strong> L) on St. Vincent Isl<strong>and</strong>, which encompass <strong>the</strong> past 2,000 years<br />

or so, were formed during a time <strong>of</strong> higher wave energy while <strong>the</strong> older ridges (Sets A, B, C, D,<br />

E <strong>and</strong> F) were formed during a time when wave energy was lower than it is today (Table 4.4).<br />

This trend was also seen in <strong>the</strong> mean grain size <strong>and</strong> st<strong>and</strong>ard deviation results. Since <strong>the</strong><br />

formation <strong>of</strong> <strong>the</strong> oldest set <strong>of</strong> beach ridges approximately 4,000 years ago (Table 4.6), wave<br />

energy has increased to modern levels. This increase in energy could be related to sea level<br />

change. As a general rule, as sea level increases, wave energy should also increase. This<br />

follows <strong>the</strong> Bruun Rule, which <strong>state</strong>s that as <strong>the</strong> nearshore water depth is increased, more wave<br />

energy is brought to <strong>the</strong> beach face (Douglas et al., 2001). These changes in energy, <strong>and</strong><br />

potentially in sea level, can be seen in <strong>the</strong> sediment characteristics <strong>of</strong> St. Vincent Isl<strong>and</strong>,<br />

particularly in <strong>the</strong> mean grain size, st<strong>and</strong>ard deviation <strong>and</strong> kurtosis. These changes in energy<br />

could also be related to an increase in storm frequency related to a changing climate.<br />

119


Skewness can be used to identify <strong>the</strong> source <strong>of</strong> <strong>the</strong> material making up <strong>the</strong> beach ridges<br />

on <strong>the</strong> isl<strong>and</strong>. Positive skewness values indicate <strong>the</strong> presence <strong>of</strong> excessive fine grains, while<br />

negative skewness is indicative <strong>of</strong> excessive coarse grains (Leeder, 1982). Skewness is sensitive<br />

to depositional environment. River s<strong>and</strong>s generally show a positive skewness because fine<br />

grains are selectively winnowed by constant wave action, leaving a tail <strong>of</strong> coarser grains. Wind<br />

blown s<strong>and</strong>s tend to be positively skewed because <strong>of</strong> <strong>the</strong> low efficiency <strong>of</strong> wind in moving<br />

coarse particles, which end up being left behind as a lag deposit. The scatterplot <strong>of</strong> suite mean<br />

versus suite skewness for <strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridge samples (Figure 4.32) does not show<br />

a correlation between mean grain size <strong>and</strong> skewness. This would suggest that skewness <strong>and</strong><br />

grain size are not related for <strong>the</strong>se samples. The skewness results, which range from –0.003 to<br />

1.3 (Table 4.4), indicate that <strong>the</strong> s<strong>and</strong> that makes up <strong>the</strong> majority <strong>of</strong> beach ridges on <strong>the</strong> isl<strong>and</strong><br />

has a beach or riverine source. There also appears to be a relationship between mean grain size,<br />

skewness, st<strong>and</strong>ard deviation, kurtosis <strong>and</strong> location relative to <strong>the</strong> Apalachicola River mouth.<br />

The coarsest material is deposited near <strong>the</strong> river mouth while <strong>the</strong> finer material is deposited on<br />

<strong>the</strong> barrier isl<strong>and</strong>s to <strong>the</strong> east <strong>and</strong> west <strong>of</strong> <strong>the</strong> river (Figure 4.37). Figure 4.38 shows that <strong>the</strong><br />

sediment deposited on <strong>the</strong> barriers near <strong>the</strong> river mouth is poorly sorted. Skewness is lowest in<br />

close proximity to <strong>the</strong> river mouth (Figure 4.39), suggesting that <strong>the</strong> isl<strong>and</strong>s close to <strong>the</strong> river<br />

mouth have an excess <strong>of</strong> coarse-grained material. Kurtosis appears to increase from east to west<br />

<strong>and</strong> doesn’t appear to be related to <strong>the</strong> location <strong>of</strong> <strong>the</strong> Apalachicola River (Figure 4.40).<br />

The samples that showed an eolian signature after being subjected to Tanner’s method <strong>of</strong><br />

SELF determination (Tanner, 1986, 1991) suggest eolian decoration at <strong>the</strong> top <strong>of</strong> <strong>the</strong> beach<br />

ridges. The three anomalous samples that had an eolian signature deep within <strong>the</strong> ridge could be<br />

a result <strong>of</strong> bioturbation that mixed sediment from <strong>the</strong> top <strong>of</strong> <strong>the</strong> ridge with sediment towards <strong>the</strong><br />

base <strong>of</strong> <strong>the</strong> ridge or could represent a period <strong>of</strong> eolian deposition preceding ridge formation.<br />

The results <strong>of</strong> <strong>the</strong> granulometric analyses were fur<strong>the</strong>r analyzed using two <strong>of</strong> <strong>the</strong> plots<br />

developed by Tanner (1991). Figure 4.34 is a tail <strong>of</strong> fines plot. This plot is dependent on <strong>the</strong><br />

fluid dynamics <strong>of</strong> <strong>the</strong> environments <strong>of</strong> deposition. The suite mean separates a large new<br />

sediment supply (river or closed basin sediments) from winnowing or sorting products (beach<br />

<strong>and</strong> dune s<strong>and</strong>s). The suite st<strong>and</strong>ard deviation separates mature sediments <strong>and</strong> large mass<br />

density differences from settling <strong>and</strong> winnowing products. The downfall <strong>of</strong> this plot is that it<br />

doesn’t always provide <strong>the</strong> final agent <strong>of</strong> transport <strong>and</strong> deposition but may provide <strong>the</strong> previous<br />

120


transpo-depositional history <strong>of</strong> a sample. Not all s<strong>and</strong> masses are moved by a single transport<br />

agent. S<strong>and</strong> deposits delivered from one agent to ano<strong>the</strong>r, may not lose <strong>the</strong> granulometric<br />

fingerprint <strong>of</strong> <strong>the</strong> first until considerable time has passed (Balsillie, 1995). It is important to<br />

recognize that <strong>the</strong>re may be two or more agents responsible for transport. Since all <strong>of</strong> <strong>the</strong> St.<br />

Vincent Isl<strong>and</strong> samples plot at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> river field in Figure 4.34, at first glance this would<br />

suggest that <strong>the</strong> last transport <strong>and</strong> depositional agent was riverine. However, <strong>the</strong> ridges on <strong>the</strong><br />

isl<strong>and</strong> are composed <strong>of</strong> beach s<strong>and</strong> <strong>and</strong> were not directly formed by riverine processes. The<br />

sediment may have had a riverine source (<strong>the</strong> nearby Apalachicola River <strong>and</strong> delta whose<br />

locations are shown in Figure 1.6) originally but it is likely that several o<strong>the</strong>r transpo-<br />

depositional processes were involved before <strong>the</strong> sediment was used to construct <strong>the</strong> beach ridges<br />

on <strong>the</strong> isl<strong>and</strong>, with not enough time having elapsed to erase <strong>the</strong> initial riverine signature.<br />

Figure 4.35 is a plot <strong>of</strong> skewness versus kurtosis. In general, beach <strong>and</strong> river s<strong>and</strong>s tend<br />

to be skewed to <strong>the</strong> coarse side (skewness < 0.1). Settling tail or closed basin sediments are<br />

skewed to <strong>the</strong> fine side (skewness > 0.1). Eolian s<strong>and</strong>s also tend to show a positive skewness.<br />

With <strong>the</strong> exception <strong>of</strong> sets B <strong>and</strong> C, <strong>the</strong> St. Vincent Isl<strong>and</strong> samples are beach or river s<strong>and</strong>s. Set<br />

B plots as eolian <strong>and</strong> Set C is unknown since it plots outside <strong>of</strong> <strong>the</strong> limits <strong>of</strong> <strong>the</strong> graph.<br />

Based on Figures 4.34 <strong>and</strong> 4.35, it is evident that one <strong>of</strong> <strong>the</strong> previous transpo-depositional<br />

mechanisms for <strong>the</strong> St. Vincent Isl<strong>and</strong> samples has been riverine. The sediment making up <strong>the</strong><br />

isl<strong>and</strong> was likely originally derived from <strong>the</strong> Apalachicola River mouth <strong>and</strong> underwent several<br />

modes <strong>of</strong> transport before being incorporated into <strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridge sets.<br />

However, it is difficult to make firm conclusions about <strong>the</strong> depositional agents because <strong>the</strong><br />

number <strong>of</strong> samples collected from <strong>the</strong> ridge sets is variable (Table 4.4). Sets A, B, C <strong>and</strong> D are<br />

represented by single samples. Sets E, F, H, I, J, K <strong>and</strong> L are represented by fewer than 10<br />

samples. Twenty-six samples were collected from set G. With <strong>the</strong> possible exception <strong>of</strong> set G,<br />

any predictions drawn about <strong>the</strong> transpo-depositional mechanisms <strong>of</strong> <strong>the</strong> beach ridge sets on St.<br />

Vincent Isl<strong>and</strong> are tentative.<br />

Geochronologic Data from <strong>the</strong> Beach Ridge Samples<br />

Prior to <strong>the</strong> present study, three dates were available for <strong>the</strong> isl<strong>and</strong>. One is an<br />

archaeological date <strong>of</strong> 3,000-3,500 years on midden ceramics from <strong>the</strong> northwest part <strong>of</strong> <strong>the</strong><br />

121


isl<strong>and</strong>. Ano<strong>the</strong>r is a C-14 date <strong>of</strong> 2,110±130 years from a shell (Mulinia sp.) exposed 15 cm<br />

above mean sea level on <strong>the</strong> surface <strong>of</strong> a beach ridge on <strong>the</strong> east side <strong>of</strong> <strong>the</strong> isl<strong>and</strong> on Tahiti<br />

Beach near Mallard Slough (Stapor, 1973). Since this date is based on a single shell that may<br />

have been reworked, it is suspect. The last is <strong>the</strong> historical record <strong>of</strong> <strong>the</strong> closure <strong>of</strong> Oyster Pond<br />

(location shown in Figure 2.1) 200 years ago for <strong>the</strong> sou<strong>the</strong>rn coast <strong>of</strong> <strong>the</strong> isl<strong>and</strong>, which is based<br />

on historical ch<strong>arts</strong> (Stapor, pers. comm.). These ages provide some limited time constraint. The<br />

oldest ages reported on <strong>the</strong> isl<strong>and</strong> are archaeological ages from <strong>the</strong> oldest ridge sets, comprising<br />

artifacts in paleoindian middens dated at 3,000-3,500 years BP. Based on this previous work, all<br />

ridge ages were expected to fall between 0 <strong>and</strong> about 4,000 years.<br />

The OSL ages obtained during this investigation (Table 4.6) fall within <strong>the</strong> expected age<br />

range based on <strong>the</strong> inferred progradation history <strong>of</strong> <strong>the</strong> isl<strong>and</strong> (Stapor 1973, 1975). Progradation<br />

rates were calculated for <strong>the</strong> beach ridge plain based on <strong>the</strong> dated samples. The calculations <strong>and</strong><br />

<strong>the</strong> <strong>state</strong> <strong>of</strong> sea level associated with each calculated rate are shown in Table 4.8. The calculated<br />

rates were <strong>the</strong>n superimposed on <strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico sea level curve created by Balsillie<br />

<strong>and</strong> Donoghue (2004) (Figure 4.42). Between 4,100 <strong>and</strong> 3,500 years, <strong>the</strong> progradation rate for<br />

<strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridge plain was 4.3±3.0 m/yr. This time period was one <strong>of</strong> sea level<br />

fall. Sea level fell from an elevation <strong>of</strong> 1.0 m to –0.5 m. The progradation rate between 3,500 <strong>and</strong><br />

2,500 years was 0.7±0.3 m/yr. During this time interval, sea level was rising. Sea level rose<br />

from an elevation <strong>of</strong> –0.5 m to 0.5 m. Sea level fell at 2,500 years <strong>and</strong> <strong>the</strong> progradation rate<br />

increased to 2.6±0 m/yr. Between 2,500 <strong>and</strong> 1,200 years, sea level was variable, with both a rise<br />

(from 0.5 to 1.4 m) <strong>and</strong> a fall (1.4 to –0.3 m) <strong>and</strong> a short period <strong>of</strong> sea level stability. At this<br />

time, <strong>the</strong> isl<strong>and</strong>’s progradation rate was 1.0±0.2 m/yr. Sea level was falling between 800 <strong>and</strong><br />

400 years <strong>and</strong> <strong>the</strong> progradation rate increased to 2.0±0.5 m/yr. At this time sea level fell from an<br />

elevation <strong>of</strong> 0 to –0.2 m). From 400 years to <strong>the</strong> present, sea level has remained relatively stable<br />

<strong>and</strong> <strong>the</strong> progradation rate <strong>of</strong> <strong>the</strong> isl<strong>and</strong> has average approximately 1.9±0.5 m/yr. Based on Figure<br />

4.42 <strong>and</strong> Table 4.8, <strong>the</strong>se results appear to confirm that when sea level is stable or falling,<br />

progradation rates are high. This trend could be related to <strong>the</strong> change in <strong>the</strong> nearshore<br />

accommodation space available for sediment accumulation that is related to sea level change.<br />

This could also be a result <strong>of</strong> an increase in sediment supply. When sea level falls, wave base is<br />

lowered <strong>and</strong> it is possible to erode more s<strong>and</strong> from fur<strong>the</strong>r <strong>of</strong>fshore. Alternatively, when sea<br />

level is rising, progradation are low. These lower rates could be related to an increase <strong>of</strong> energy<br />

122


on <strong>the</strong> beach face as sea level rises. This increased energy could result in <strong>the</strong> erosion <strong>of</strong> ridges<br />

instead <strong>of</strong> deposition. The topographic survey shown in Figure 4.24 suggests that a large ridge<br />

was eroded between 1977 <strong>and</strong> 2006. This ridge was surveyed during <strong>the</strong> Stapor <strong>and</strong> Tanner<br />

(1977) survey but is not present today. Despite <strong>the</strong> increase in storm frequency that may be seen<br />

in <strong>the</strong> St. Vincent Isl<strong>and</strong> data (<strong>the</strong> removal <strong>of</strong> <strong>the</strong> ridge from set K <strong>and</strong> <strong>the</strong> increase in energy<br />

seen in <strong>the</strong> granulometric results), <strong>the</strong> isl<strong>and</strong> has not been overwashed or destroyed during any<br />

historical high magnitude storm. This is because <strong>the</strong> isl<strong>and</strong> is unique in terms <strong>of</strong> its size <strong>and</strong> its<br />

elevation. It is also stabilized by mature vegetation.<br />

Rates <strong>of</strong> beach ridge formation were estimated based on <strong>the</strong> dated sites <strong>and</strong> an estimated<br />

count <strong>of</strong> <strong>the</strong> number <strong>of</strong> ridges between each dated site. Color aerial photographs, LIDAR<br />

imagery <strong>and</strong> high-resolution SAR images were used to count <strong>the</strong> beach ridges. It was difficult to<br />

recognize many <strong>of</strong> <strong>the</strong> ridges, since <strong>the</strong>y are low-lying. Many <strong>of</strong> <strong>the</strong> ridges are discontinuous or<br />

merged toge<strong>the</strong>r, which also makes identification difficult. For this reason, <strong>the</strong> intervening<br />

swales were counted instead <strong>of</strong> ridges. The swales were counted because <strong>the</strong> dark vegetation<br />

showed up clearly on <strong>the</strong> images. In any case, <strong>the</strong> counts should be taken as a best estimate only.<br />

The time interval represented by <strong>the</strong> spacing between <strong>the</strong> St. Vincent Isl<strong>and</strong> ridges varies from 0<br />

to 57 years, with an average <strong>of</strong> 35 years (Table 4.8). This is similar to <strong>the</strong> estimate <strong>of</strong> 40 to 60<br />

years per ridge made by Tanner (1991). There is no simple explanation for <strong>the</strong> periodicity <strong>of</strong> <strong>the</strong><br />

ridges. The mechanism for forming swales is not clearly understood. The processes responsible<br />

for terminating <strong>the</strong> building <strong>of</strong> one ridge <strong>and</strong> initiating <strong>the</strong> building <strong>of</strong> a new one are possibly<br />

related to storm frequency or changes in wave regime (Tanner, 1988).<br />

The OSL ages obtained in this study have been superimposed on a Gulf <strong>of</strong> Mexico sea<br />

level curve in Figure 4.42, with <strong>the</strong> data tabulated in Table 4.8. The oldest ridge dated in this<br />

study was at site SVI 015, which provided an OSL age <strong>of</strong> 4,100 +/- 300 years. At that time sea<br />

level was higher than present <strong>and</strong> following a falling trend. Sea level fell below present level<br />

<strong>and</strong> continued to fall until approximately 3,800 years. At this point it rose slightly <strong>and</strong> remained<br />

stable for approximately 250 years. At approximately 3,500 years sea level began to fall again.<br />

At this time, <strong>the</strong> ridges in <strong>the</strong> vicinity <strong>of</strong> site SVI 002 formed. Sea level <strong>the</strong>n started to rise until<br />

it reached its present level at approximately 2,800 years. It rose above present level <strong>and</strong> <strong>the</strong><br />

ridges at site SVI 003 <strong>and</strong> SVI 004 formed. Sea level rose until 1,800 years ago, at which point<br />

it began to fall. It reached its present level at 1,150 years ago <strong>and</strong> <strong>the</strong>n fell slightly below present<br />

123


sea level. It was at this point that <strong>the</strong> ridges near site SVI 023 were formed. Sea level <strong>the</strong>n<br />

remained fairly stable with several small-scale fluctuations about its present level. The ridges in<br />

<strong>the</strong> vicinity <strong>of</strong> site SVI 025 were formed when sea level was at its present level (800 +/- 100<br />

years). The young ridges in <strong>the</strong> vicinity <strong>of</strong> site SVI 024 formed when sea level was slightly<br />

lower than present (400 +/- 0 years). Since <strong>the</strong>n sea level has fluctuated about present levels.<br />

Based on <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> St. Vincent Isl<strong>and</strong> beach ridges, it appears that beach ridges<br />

<strong>and</strong> barrier str<strong>and</strong>plains, grow more rapidly when sea level is falling or stable. This trend was<br />

also observed by Bristow <strong>and</strong> Pucillo (2006) on <strong>the</strong> Guichen Bay str<strong>and</strong>plain complex in<br />

sou<strong>the</strong>ast South Australia. The inverse relationship between sea level rise <strong>and</strong> str<strong>and</strong>plain<br />

progradation rate may be related to <strong>the</strong> changes in accommodation space associated with changes<br />

in sea level. When sea level rises, water depth increases <strong>and</strong> accommodation space – <strong>the</strong> space<br />

that is available for sediment accumulation (Boggs, 2001) – also increases. Sediment will <strong>the</strong>n<br />

accumulate <strong>of</strong>fshore <strong>and</strong> is not available to <strong>the</strong> barrier isl<strong>and</strong>. Rising sea level may also be<br />

associated with erosion <strong>of</strong> <strong>the</strong> ridges. When sea level is falling, accommodation space decreases<br />

<strong>and</strong> sediment becomes available to be added to <strong>the</strong> barrier isl<strong>and</strong>. A falling sea level can also be<br />

associated with increased erosion <strong>of</strong> <strong>the</strong> <strong>of</strong>fshore shelf as a result <strong>of</strong> lowered wave base. This<br />

can increase <strong>the</strong> amount <strong>of</strong> sediment supplied to <strong>the</strong> beach ridge plain. Thus, <strong>the</strong> barrier isl<strong>and</strong><br />

grows <strong>and</strong> progrades.<br />

Based on <strong>the</strong> estimates <strong>of</strong> paleosealevel from <strong>the</strong> beach ridges (Table 4.9), with<br />

additional data it may be possible to estimate sea level positions from beach ridges. The<br />

assumption that paleosealevel position is represented by <strong>the</strong> elevation <strong>of</strong> <strong>the</strong> midway point<br />

between <strong>the</strong> ridge crest <strong>and</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> shoreface may hold true.<br />

124


CHAPTER 6<br />

CONCLUSIONS<br />

This investigation has resulted in a better underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> late Quaternary history <strong>of</strong><br />

<strong>the</strong> nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico, its response to sea-level change <strong>and</strong> <strong>the</strong> impact <strong>of</strong> small-scale<br />

changes in sea level on coastal <strong>evolution</strong>. This investigation sought to test <strong>the</strong> six hypo<strong>the</strong>ses<br />

outlined in chapter 1. Each hypo<strong>the</strong>sis was confirmed over <strong>the</strong> course <strong>of</strong> this study <strong>and</strong> is briefly<br />

summarized below.<br />

The first hypo<strong>the</strong>sis was that <strong>the</strong> direct luminescence dating <strong>of</strong> quartz s<strong>and</strong> grains in<br />

beach ridges can provide a reliable history <strong>of</strong> barrier beach ridge plain <strong>evolution</strong>. This has been<br />

confirmed by <strong>the</strong> OSL depositional ages obtained during this investigation, which range from<br />

zero to approximately 4,100 years. The ridge with <strong>the</strong> oldest age is <strong>the</strong> nor<strong>the</strong>rnmost site <strong>and</strong> <strong>the</strong><br />

ridge with <strong>the</strong> youngest age is <strong>the</strong> sou<strong>the</strong>rnmost site, as was expected.<br />

The second hypo<strong>the</strong>sis tested during this investigation was that beach ridge progradation<br />

rates <strong>and</strong> beach ridge heights are influenced primarily by <strong>the</strong> rate <strong>and</strong> direction <strong>of</strong> sea level<br />

change. The initial source <strong>of</strong> <strong>the</strong> sediment making up <strong>the</strong> St. Vincent Isl<strong>and</strong> str<strong>and</strong>plain was <strong>the</strong><br />

nearby Apalachicola River. The ridges that comprise <strong>the</strong> isl<strong>and</strong>’s str<strong>and</strong>plain were formed from<br />

this sediment at rates that varied over <strong>the</strong> course <strong>of</strong> <strong>the</strong> isl<strong>and</strong>’s 4,000+year history <strong>and</strong> appear to<br />

be correlated with <strong>the</strong> direction <strong>of</strong> sea-level change. At times when sea level was falling or<br />

stable, <strong>the</strong> isl<strong>and</strong>’s progradation rates were high. When sea level was rising, progradation rates<br />

were low. This could be related to changes in accommodation space <strong>and</strong> sediment supply<br />

associated with a fall in sea level or related to increased erosion as a result <strong>of</strong> sea level rise. This<br />

investigation has confirmed <strong>the</strong> close relationship between barrier <strong>evolution</strong> <strong>and</strong> small-scale<br />

changes in <strong>the</strong> rate <strong>and</strong> direction <strong>of</strong> sea-level change.<br />

The third hypo<strong>the</strong>sis was that abrupt changes in sea level can have a significant effect on<br />

<strong>the</strong> development <strong>of</strong> coastal l<strong>and</strong>forms over a geologically brief span <strong>of</strong> time. The fact that<br />

progradation rates changed over what can be considered a geologically short time span, suggests<br />

that even brief <strong>and</strong> relatively small (+/- 1 meter) changes in sea level can have a significant effect<br />

on <strong>the</strong> development <strong>of</strong> coastal l<strong>and</strong>forms over a geologically brief span <strong>of</strong> time.<br />

125


The fourth hypo<strong>the</strong>sis was that sea-level history in <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico<br />

reflects global eustatic history. The sea level curve produced by Siddall et al. (2003) <strong>and</strong> <strong>the</strong><br />

Gulf <strong>of</strong> Mexico sea level history <strong>of</strong> Balsillie <strong>and</strong> Donoghue (2004) are very similar with some<br />

minor deviations. This suggests that sea level history in <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico is a<br />

good mirror <strong>of</strong> global sea level, <strong>and</strong> that barrier <strong>evolution</strong> in <strong>the</strong> nor<strong>the</strong>astern Gulf <strong>of</strong> Mexico is<br />

typical <strong>of</strong> barriers in general.<br />

The fifth hypo<strong>the</strong>sis was that beach ridges may hold evidence <strong>of</strong> sea-level highst<strong>and</strong>s<br />

during <strong>the</strong> mid- to late Holocene. Of <strong>the</strong> eight beach ridges dated on <strong>the</strong> isl<strong>and</strong>, this investigation<br />

has shown that <strong>the</strong> majority formed during sea level highst<strong>and</strong>s. These eight ridges represent a<br />

small fraction <strong>of</strong> <strong>the</strong> 100+ beach ridges covering <strong>the</strong> surface <strong>of</strong> St. Vincent Isl<strong>and</strong>. Of <strong>the</strong> ridges<br />

dated, those that formed during sea level highst<strong>and</strong>s could lend support to <strong>the</strong> hypo<strong>the</strong>sis that<br />

beach ridges may hold evidence <strong>of</strong> sea level high st<strong>and</strong>s during <strong>the</strong> mid to late Holocene.<br />

However, this hypo<strong>the</strong>sis requires fur<strong>the</strong>r investigation.<br />

The sixth hypo<strong>the</strong>sis was that beach ridges are built by swash processes, as opposed to<br />

storms or aeolian processes. Ground-penetrating radar (GPR) is a non-invasive technique that<br />

has proven to be a useful tool in <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> internal structure <strong>of</strong> barrier isl<strong>and</strong><br />

str<strong>and</strong>plains. It can provide a high-resolution image <strong>of</strong> <strong>the</strong> internal character <strong>of</strong> beach ridges <strong>and</strong><br />

when used in conjunction with dating techniques can be applied to <strong>the</strong> study <strong>of</strong> <strong>the</strong> <strong>evolution</strong> <strong>of</strong><br />

coastal geomorphic features. Based on <strong>the</strong> GPR studies <strong>of</strong> <strong>the</strong> internal structure <strong>of</strong> <strong>the</strong> beach<br />

ridges on St. Vincent Isl<strong>and</strong>, whose subsurface expression consists <strong>of</strong> a series <strong>of</strong> seaward-dipping<br />

cross-bedded units, <strong>the</strong> majority <strong>of</strong> ridges on <strong>the</strong> isl<strong>and</strong> were built by swash processes, as<br />

opposed to storm events. The granulometric data from this investigation also indicates that <strong>the</strong><br />

bulk <strong>of</strong> <strong>the</strong> beach ridge sediments are not aeolian. These findings support <strong>the</strong> hypo<strong>the</strong>sis that<br />

beach ridges are built primarily by swash processes ra<strong>the</strong>r than storms.<br />

Based on <strong>the</strong> granulometric data collected over <strong>the</strong> course <strong>of</strong> this investigation, some<br />

additional conclusions, related to <strong>the</strong> depositional origin <strong>of</strong> <strong>the</strong> sediment making up <strong>the</strong> St.<br />

Vincent Isl<strong>and</strong> beach ridge plain, can be made. The granulometric analyses indicate that <strong>the</strong><br />

source <strong>of</strong> <strong>the</strong> s<strong>and</strong> that has formed <strong>the</strong> beach ridges <strong>of</strong> St. Vincent Isl<strong>and</strong> has changed little over<br />

<strong>the</strong> long history <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. The original source <strong>of</strong> <strong>the</strong> s<strong>and</strong> is riverine <strong>and</strong> its most likely<br />

source is <strong>the</strong> nearby Apalachicola River mouth. The granulometric analyses <strong>of</strong> <strong>the</strong> ridges also<br />

provide several lines <strong>of</strong> evidence that energy levels were lower when str<strong>and</strong>plain development<br />

126


was initiated <strong>and</strong> have increased to present day levels. This increase in energy can potentially be<br />

tied to rising sea level.<br />

This study is one <strong>of</strong> <strong>the</strong> first <strong>of</strong> its kind to be conducted in <strong>the</strong> United States. It is also<br />

one <strong>of</strong> <strong>the</strong> first studies <strong>of</strong> barrier isl<strong>and</strong> <strong>evolution</strong> conducted along <strong>the</strong> Panh<strong>and</strong>le coast <strong>of</strong><br />

Florida.<br />

Future work should involve <strong>the</strong> compilation <strong>of</strong> a more robust data set. Additional grain<br />

size samples should be collected to provide a more robust set <strong>of</strong> granulometric data. Future work<br />

should also include a more detailed dating program. Ideally, several OSL dates should be<br />

obtained from within each beach ridge set. This would refine <strong>the</strong> progradation rate calculations<br />

made in this investigation <strong>and</strong> provide a higher resolution record <strong>of</strong> <strong>the</strong> progradation history <strong>and</strong><br />

<strong>evolution</strong> <strong>of</strong> St. Vincent Isl<strong>and</strong>. A full LIDAR survey would also provide <strong>the</strong> information<br />

required to accurately estimate <strong>the</strong> number <strong>of</strong> beach ridges within each beach ridge set. The<br />

estimates could <strong>the</strong>n be used to provide a more accurate estimate <strong>of</strong> beach ridge formation rates.<br />

Additional work should also include <strong>the</strong> collection <strong>of</strong> GPR data that covers a larger portion <strong>of</strong> <strong>the</strong><br />

isl<strong>and</strong>. This data could <strong>the</strong>n be used to fur<strong>the</strong>r refine <strong>the</strong> current estimates <strong>of</strong> <strong>the</strong> position <strong>of</strong> <strong>the</strong><br />

pre-barrier Pleistocene contact. Additional work using low frequency GPR is also<br />

recommended. The greater penetration provided by <strong>the</strong> lower frequency units will provide a<br />

better underst<strong>and</strong>ing <strong>of</strong> subsurface stratigraphy <strong>of</strong> <strong>the</strong> isl<strong>and</strong>. This underst<strong>and</strong>ing could be<br />

fur<strong>the</strong>r refined by <strong>the</strong> collection <strong>of</strong> borehole data from locations across <strong>the</strong> isl<strong>and</strong>.<br />

127


APPENDIX A<br />

INDIVIDUAL SIEVE ANALYSIS RESULTS<br />

128


Sample I.D.: 7 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 49.6390 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 49.639 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0400 0.0806 0.0806<br />

0.75 0.625 0.1480 0.2982 0.3787<br />

1.00 0.875 0.3150 0.6346 1.0133<br />

1.25 1.125 0.6900 1.3900 2.4034<br />

1.50 1.375 1.8290 3.6846 6.0880<br />

1.75 1.625 4.0980 8.2556 14.3436<br />

2.00 1.875 6.6100 13.3161 27.6597<br />

2.25 2.125 12.5580 25.2987 52.9584<br />

2.50 2.375 11.2590 22.6818 75.6401<br />

2.75 2.625 7.6330 15.3770 91.0171<br />

3.00 2.875 3.7030 7.4599 98.4770<br />

3.25 3.125 0.3880 0.7816 99.2586<br />

3.50 3.375 0.0660 0.1330 99.3916<br />

3.75 3.625 0.0340 0.0685 99.4601<br />

4.00 3.875 0.0260 0.0524 99.5125<br />

4.25 4.125 0.2420 0.4875 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.1. Granplot analysis <strong>of</strong> sample 7<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

129<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2058 φ 0.2168 mm 0.2279 mm<br />

0.4555 phi-units MV 0.0780 mm<br />

-0.1042 NU MV 1.7244 NU<br />

4.6490 NU MV 8.6310 NU<br />

2.300 NU MV 0.07 NU<br />

48.689 NU MV 0.10 NU<br />

2.0958 φ 0.2339 mm 0.2343 mm<br />

MV MV 0.3421 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

Figure A.2. Method <strong>of</strong> SELF determination applied to sample 7<br />

130<br />

i<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer


Sample I.D.: 49 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 50.0340 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 50.034 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0360 0.0720 0.0720<br />

1.00 0.875 0.0820 0.1639 0.2358<br />

1.25 1.125 0.3260 0.6516 0.8874<br />

1.50 1.375 1.6310 3.2598 4.1472<br />

1.75 1.625 5.7210 11.4342 15.5814<br />

2.00 1.875 10.2440 20.4741 36.0555<br />

2.25 2.125 16.3820 32.7417 68.7972<br />

2.50 2.375 9.9360 19.8585 88.6557<br />

2.75 2.625 4.1620 8.3183 96.9741<br />

3.00 2.875 1.1080 2.2145 99.1886<br />

3.25 3.125 0.1300 0.2598 99.4484<br />

3.50 3.375 0.0680 0.1359 99.5843<br />

3.75 3.625 0.0470 0.0939 99.6782<br />

4.00 3.875 0.0350 0.0700 99.7482<br />

4.25 4.125 0.1260 0.2518 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.3. Granplot analysis <strong>of</strong> sample 49<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1024 φ 0.2329 mm 0.2403 mm<br />

0.3706 phi-units MV 0.0616 mm<br />

0.4194 NU MV 0.9518 NU<br />

5.6464 NU MV 5.7425 NU<br />

14.187 NU MV 0.02 NU<br />

96.869 NU MV 0.03 NU<br />

1.9815 φ 0.2532 mm 0.2542 mm<br />

MV MV 0.2565 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

131


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

132<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.4. Method <strong>of</strong> SELF determination applied to sample 49


Sample I.D.: 1 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 34.791 grams<br />

Sieve Sieve Weight Freq Cumulative Statistical Results<br />

Size<br />

(phi)<br />

0.50<br />

Midpoint Weight<br />

(phi) (grams) %<br />

0.375 0.0000 0.0000<br />

Weight<br />

%<br />

0.0000<br />

Measure<br />

Mean:<br />

Original Data<br />

in φ Units<br />

2.1858 φ<br />

Transformed<br />

Data<br />

0.2198 mm<br />

Original Data<br />

in Millimeters<br />

0.2373 mm<br />

0.75 0.625 0.3800 1.0922 1.0922 St<strong>and</strong>ard Deviation: 0.6022 phi-units MV 0.0935 mm<br />

1.00 0.875 0.3210 0.9227 2.0149 Skewness: 0.9259 NU MV 1.3323 NU<br />

1.25 1.125 0.6520 1.8740 3.8889 Kurtosis: 5.6283 NU MV 6.9871 NU<br />

1.50 1.375 1.3020 3.7423 7.6313 5th Moment Measure: 11.512 NU MV 0.06 NU<br />

1.75 1.625 3.8020 10.9281 18.5594 6th Moment Measure: 48.930 NU MV 0.08 NU<br />

2.00 1.875 5.6450 16.2255 34.7849 Median: 2.0229 φ 0.2461 mm 0.2470 mm<br />

2.25 2.125 8.9480 25.7193 60.5042 Relative Dispersion: MV MV 0.3941 NU<br />

2.50 2.375 6.4410 18.5134 79.0176 Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

2.75 2.625 3.8120 10.9569 89.9744<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

3.00 2.875 1.6100 4.6276 94.6021<br />

Transformed data are calculated using mm = 2<br />

3.25 3.125 0.2530 0.7272 95.3293<br />

3.50<br />

3.75<br />

3.375<br />

3.625<br />

0.1310 0.3765<br />

0.1310 0.3765<br />

95.7058<br />

96.0823<br />

4.00 3.875 0.1370 0.3938 96.4761<br />

4.25 4.125 1.2260 3.5239 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00<br />

5.00<br />

4.625<br />

4.625<br />

0.0000 100.0000<br />

0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00<br />

5.00<br />

4.625<br />

4.625<br />

0.0000 100.0000<br />

0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00<br />

5.00<br />

4.625<br />

4.625<br />

0.0000 100.0000<br />

0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

- φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Figure A.5. Granplot analysis <strong>of</strong> sample 1<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

133


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

134<br />

i<br />

i<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.6. Method <strong>of</strong> SELF determination applied to sample 1


Sample I.D.: 011206-06 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 1/12/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 99.6979 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 98.990 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0278 0.0281 0.0281<br />

0.75 0.625 0.0371 0.0375 0.0656<br />

1.00 0.875 0.1150 0.1162 0.1817<br />

1.25 1.125 0.4666 0.4714 0.6531<br />

1.50 1.375 1.5721 1.5881 2.2412<br />

1.75 1.625 6.2496 6.3133 8.5546<br />

2.00 1.875 11.2831 11.3982 19.9528<br />

2.25 2.125 19.2103 19.4062 39.3590<br />

2.50 2.375 35.9498 36.3165 75.6755<br />

2.75 2.625 18.6068 18.7966 94.4721<br />

3.00 2.875 4.8893 4.9392 99.4113<br />

3.25 3.125 0.4446 0.4491 99.8604<br />

3.50 3.375 0.0784 0.0792 99.9396<br />

3.75 3.625 0.0286 0.0289 99.9685<br />

4.00 3.875 0.0078 0.0079 99.9764<br />

5.00 4.5 0.0234 0.0236 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Figure A.7. Granplot analysis <strong>of</strong> sample 011206-06<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2742 φ 0.2067 mm 0.2133 mm<br />

0.3528 phi-units MV 0.0575 mm<br />

-0.5522 NU MV 1.7280 NU<br />

4.1597 NU MV 9.3031 NU<br />

-4.027 NU MV 0.04 NU<br />

47.915 NU MV 0.08 NU<br />

2.1983 φ 0.2179 mm 0.2186 mm<br />

Relative Dispersion: MV MV 0.2697 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

135


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral Waves<br />

Littoral Waves<br />

1.0 2.0 3.0<br />

Figure A.8. Method <strong>of</strong> SELF determination applied to sample 011206-06<br />

136<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer


Sample I.D.: 28 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 46.7460 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 46.746 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0500 0.1070 0.1070<br />

0.75 0.625 0.1990 0.4257 0.5327<br />

1.00 0.875 0.3060 0.6546 1.1873<br />

1.25 1.125 0.4430 0.9477 2.1349<br />

1.50 1.375 0.4970 1.0632 3.1981<br />

1.75 1.625 1.4220 3.0420 6.2401<br />

2.00 1.875 3.6460 7.7996 14.0397<br />

2.25 2.125 9.8210 21.0093 35.0490<br />

2.50 2.375 11.8710 25.3947 60.4437<br />

2.75 2.625 10.4650 22.3869 82.8306<br />

3.00 2.875 6.6600 14.2472 97.0778<br />

3.25 3.125 1.0060 2.1521 99.2299<br />

3.50 3.375 0.1700 0.3637 99.5935<br />

3.75 3.625 0.0320 0.0685 99.6620<br />

4.00 3.875 0.0030 0.0064 99.6684<br />

4.25 4.125 0.1550 0.3316 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.9. Granplot analysis <strong>of</strong> sample 28<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

137<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3725 φ 0.1931 mm 0.2026 mm<br />

0.4335 phi-units MV 0.0731 mm<br />

-0.6741 NU MV 2.7738 NU<br />

5.5548 NU MV 15.7004 NU<br />

-8.701 NU MV 0.13 NU<br />

65.421 NU MV 0.22 NU<br />

2.2722 φ 0.207 mm 0.2078 mm<br />

MV MV 0.3606 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Eolian Segment<br />

138<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

Figure A.10. Method <strong>of</strong> SELF determination applied to sample 28<br />

i<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer


Sample I.D.: 46 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 48.9840 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 48.984 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0480 0.0980 0.0980<br />

1.00 0.875 0.0720 0.1470 0.2450<br />

1.25 1.125 0.1370 0.2797 0.5247<br />

1.50 1.375 0.6430 1.3127 1.8373<br />

1.75 1.625 3.3000 6.7369 8.5742<br />

2.00 1.875 6.6560 13.5881 22.1623<br />

2.25 2.125 12.9000 26.3351 48.4975<br />

2.50 2.375 11.5310 23.5403 72.0378<br />

2.75 2.625 8.0500 16.4339 88.4717<br />

3.00 2.875 4.8380 9.8767 98.3484<br />

3.25 3.125 0.6540 1.3351 99.6836<br />

3.50 3.375 0.0780 0.1592 99.8428<br />

3.75 3.625 0.0180 0.0367 99.8796<br />

4.00 3.875 0.0110 0.0225 99.9020<br />

4.25 4.125 0.0480 0.0980 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.11. Granplot analysis <strong>of</strong> sample 46<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

139<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2747 φ 0.2067 mm 0.2143 mm<br />

0.3916 phi-units MV 0.0605 mm<br />

-0.0555 NU MV 1.2177 NU<br />

3.5078 NU MV 7.0653 NU<br />

-0.013 NU MV 0.03 NU<br />

30.562 NU MV 0.04 NU<br />

2.1410 φ 0.2267 mm 0.2269 mm<br />

MV MV 0.2821 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

Figure A.12. Method <strong>of</strong> SELF determination applied to sample 46<br />

140<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer


Sample I.D.: 38 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 40.2370 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 40.237 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.1980 0.4921 0.4921<br />

1.00 0.875 0.4040 1.0041 1.4961<br />

1.25 1.125 0.7650 1.9012 3.3974<br />

1.50 1.375 1.6590 4.1231 7.5204<br />

1.75 1.625 4.7540 11.8150 19.3354<br />

2.00 1.875 7.6090 18.9105 38.2459<br />

2.25 2.125 10.1380 25.1957 63.4416<br />

2.50 2.375 8.0090 19.9046 83.3462<br />

2.75 2.625 4.0840 10.1499 93.4960<br />

3.00 2.875 1.9080 4.7419 98.2379<br />

3.25 3.125 0.2810 0.6984 98.9363<br />

3.50 3.375 0.0720 0.1789 99.1152<br />

3.75 3.625 0.0300 0.0746 99.1898<br />

4.00 3.875 0.0290 0.0721 99.2619<br />

4.25 4.125 0.2970 0.7381 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.13. Granplot analysis <strong>of</strong> sample 38<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

141<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1112 φ 0.2315 mm 0.2437 mm<br />

0.4726 phi-units MV 0.0822 mm<br />

0.2950 NU MV 1.3966 NU<br />

5.2034 NU MV 6.7797 NU<br />

8.588 NU MV 0.05 NU<br />

61.076 NU MV 0.06 NU<br />

1.9916 φ 0.2515 mm 0.2524 mm<br />

MV MV 0.3375 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

0.0<br />

1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.14. Method <strong>of</strong> SELF determination applied to sample 38<br />

142<br />

i<br />

Settling Tail


Sample I.D.: 42 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 52.0970 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 52.097 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0330 0.0633 0.0633<br />

0.75 0.625 0.2270 0.4357 0.4991<br />

1.00 0.875 0.4610 0.8849 1.3840<br />

1.25 1.125 1.0700 2.0539 3.4378<br />

1.50 1.375 2.9530 5.6683 9.1061<br />

1.75 1.625 6.7050 12.8702 21.9763<br />

2.00 1.875 9.9240 19.0491 41.0254<br />

2.25 2.125 15.4720 29.6984 70.7238<br />

2.50 2.375 9.5740 18.3773 89.1011<br />

2.75 2.625 4.0790 7.8296 96.9307<br />

3.00 2.875 1.2530 2.4051 99.3359<br />

3.25 3.125 0.1780 0.3417 99.6775<br />

3.50 3.375 0.0680 0.1305 99.8081<br />

3.75 3.625 0.0210 0.0403 99.8484<br />

4.00 3.875 0.0100 0.0192 99.8676<br />

4.25 4.125 0.0690 0.1324 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.15. Granplot analysis <strong>of</strong> sample 42<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

143<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.0430 φ 0.2427 mm 0.2532 mm<br />

0.4190 phi-units MV 0.0793 mm<br />

-0.1975 NU MV 1.5620 NU<br />

4.3023 NU MV 7.4804 NU<br />

0.857 NU MV 0.05 NU<br />

44.284 NU MV 0.07 NU<br />

1.9505 φ 0.2587 mm 0.2595 mm<br />

MV MV 0.3133 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Eolian Segment<br />

Fluvial Segment<br />

0.0<br />

1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.16. Method <strong>of</strong> SELF determination applied to sample 42<br />

144<br />

Settling Tail<br />

i


Sample I.D.: 40 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 67.2250 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 67.225 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0330 0.0491 0.0491<br />

1.00 0.875 0.1480 0.2202 0.2692<br />

1.25 1.125 0.5480 0.8152 1.0844<br />

1.50 1.375 2.2730 3.3812 4.4656<br />

1.75 1.625 6.7020 9.9695 14.4351<br />

2.00 1.875 11.7330 17.4533 31.8884<br />

2.25 2.125 19.6780 29.2718 61.1603<br />

2.50 2.375 14.0500 20.9000 82.0602<br />

2.75 2.625 7.0690 10.5154 92.5757<br />

3.00 2.875 3.6310 5.4013 97.9769<br />

3.25 3.125 0.5460 0.8122 98.7891<br />

3.50 3.375 0.1470 0.2187 99.0078<br />

3.75 3.625 0.0660 0.0982 99.1060<br />

4.00 3.875 0.0650 0.0967 99.2027<br />

4.25 4.125 0.5360 0.7973 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.17. Granplot analysis <strong>of</strong> sample 40<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

145<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1698 φ 0.2222 mm 0.2317 mm<br />

0.4320 phi-units MV 0.0670 mm<br />

0.6986 NU MV 0.8385 NU<br />

5.8567 NU MV 5.1544 NU<br />

15.737 NU MV 0.02 NU<br />

83.963 NU MV 0.02 NU<br />

2.0297 φ 0.2449 mm 0.2458 mm<br />

MV MV 0.2893 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

Figure A.18. Method <strong>of</strong> SELF determination applied to sample 40<br />

146<br />

i<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer


Sample I.D.: 011006-09 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 80.9770 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 80.125 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0027 0.0034 0.0034<br />

0.75 0.625 0.0314 0.0392 0.0426<br />

1.00 0.875 0.1975 0.2465 0.2891<br />

1.25 1.125 0.5029 0.6276 0.9167<br />

1.50 1.375 1.2271 1.5315 2.4482<br />

1.75 1.625 4.7174 5.8876 8.3358<br />

2.00 1.875 9.5307 11.8949 20.2306<br />

2.25 2.125 15.1742 18.9383 39.1689<br />

2.50 2.375 28.2517 35.2598 74.4287<br />

2.75 2.625 14.5091 18.1082 92.5369<br />

3.00 2.875 5.1920 6.4799 99.0168<br />

3.25 3.125 0.7026 0.8769 99.8937<br />

3.50 3.375 0.0624 0.0779 99.9715<br />

3.75 3.625 0.0168 0.0210 99.9925<br />

4.00 3.875 0.0031 0.0039 99.9964<br />

5.00 4.5 0.0029 0.0036 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.19. Granplot analysis <strong>of</strong> sample 011006-009<br />

147<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2818 φ 0.2056 mm 0.2126 mm<br />

0.3654 phi-units MV 0.0594 mm<br />

-0.5602 NU MV 1.6647 NU<br />

3.8016 NU MV 8.0736 NU<br />

-5.667 NU MV 0.03 NU<br />

30.414 NU MV 0.04 NU<br />

2.2018 φ 0.2174 mm 0.2180 mm<br />

MV MV 0.2795 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Coarser<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Eolian Segment<br />

Littoral Segment<br />

Littoral Segment<br />

148<br />

Central Segment<br />

1.0 2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.20. Method <strong>of</strong> SELF determination applied to sample 011006-09<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 011006-10 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest 01/25/2006 End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core:<br />

Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 96.4610 grams<br />

Sample Wet Sieved?<br />

no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass:<br />

grams sieved 01/25/2006<br />

Wet Sieved Fines Mass:<br />

grams<br />

Wet Sieved Silt Mass:<br />

grams<br />

Wet Sieved Clay Mass:<br />

grams<br />

Final Total Sample Mass: 96.598 grams<br />

Sieve Sieve Weight Freq<br />

Size Midpoint Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0137 0.0142 0.0142<br />

0.50 0.375 0.1391 0.1440 0.1582<br />

0.75 0.625 0.8300 0.8592 1.0174<br />

1.00 0.875 2.1413 2.2167 3.2341<br />

1.25 1.125 3.4926 3.6156 6.8497<br />

1.50 1.375 7.3689 7.6284 14.4781<br />

1.75 1.625 13.3031 13.7716 28.2498<br />

2.00 1.875 15.4777 16.0228 44.2726<br />

2.25 2.125 17.9282 18.5596 62.8321<br />

2.50 2.375 22.2676 23.0518 85.8840<br />

2.75 2.625 9.7451 10.0883 95.9723<br />

3.00 2.875 3.2167 3.3300 99.3023<br />

3.25 3.125 0.5357 0.5546 99.8568<br />

3.50 3.375 0.0945 0.0978 99.9547<br />

3.75 3.625 0.0189 0.0196 99.9742<br />

4.00 3.875 0.0060 0.0062 99.9804<br />

5.00 4.5 0.0189 0.0196 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Cumulative Statistical Results<br />

Weight Original Data Transformed Original Data<br />

Measure<br />

Figure A.21. Granplot analysis <strong>of</strong> sample 011006-10<br />

in φ Units Data in Millimeters<br />

Mean: 2.0200 φ 0.2466 mm 0.2619 mm<br />

St<strong>and</strong>ard Deviation: 0.4910 phi-units MV 0.0985 mm<br />

Skewness: -0.4400 NU MV 1.4887 NU<br />

Kurtosis: 3.1088 NU MV 5.9982 NU<br />

5th Moment Measure: -2.844 NU MV 0.06 NU<br />

6th Moment Measure: 18.671 NU MV 0.08 NU<br />

Median: 1.9521 φ 0.2584 mm 0.2592 mm<br />

Relative Dispersion: MV MV 0.3763 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

149


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral - Waves<br />

Central Segment<br />

Eolian Segment<br />

1.0 2.0<br />

150<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.22. Method <strong>of</strong> SELF determination applied to sample 011006-10


Sample I.D.: 24 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 71.3740 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 71.374 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0250 0.0350 0.0350<br />

1.00 0.875 0.1530 0.2144 0.2494<br />

1.25 1.125 0.5760 0.8070 1.0564<br />

1.50 1.375 2.1420 3.0011 4.0575<br />

1.75 1.625 5.4080 7.5770 11.6345<br />

2.00 1.875 9.2470 12.9557 24.5902<br />

2.25 2.125 19.0500 26.6904 51.2806<br />

2.50 2.375 17.3050 24.2455 75.5261<br />

2.75 2.625 11.0160 15.4342 90.9603<br />

3.00 2.875 5.8070 8.1360 99.0963<br />

3.25 3.125 0.6070 0.8504 99.9468<br />

3.50 3.375 0.0210 0.0294 99.9762<br />

3.75 3.625 0.0030 0.0042 99.9804<br />

4.00 3.875 0.0050 0.0070 99.9874<br />

4.25 4.125 0.0090 0.0126 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.23. Granplot analysis <strong>of</strong> sample 24<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

151<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2291 φ 0.2133 mm 0.2216 mm<br />

0.3960 phi-units MV 0.0648 mm<br />

-0.3099 NU MV 1.2566 NU<br />

3.1358 NU MV 5.6931 NU<br />

-2.798 NU MV 0.02 NU<br />

18.031 NU MV 0.03 NU<br />

2.1130 φ 0.2312 mm 0.2313 mm<br />

MV MV 0.2926 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

152<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

i<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.24. Method <strong>of</strong> SELF determination applied to sample 24


Sample I.D.: 34 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 57.0740 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 57.074 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0620 0.1086 0.1086<br />

1.00 0.875 0.1910 0.3347 0.4433<br />

1.25 1.125 0.6250 1.0951 1.5384<br />

1.50 1.375 2.4510 4.2944 5.8328<br />

1.75 1.625 6.7450 11.8180 17.6508<br />

2.00 1.875 10.6320 18.6284 36.2792<br />

2.25 2.125 18.6400 32.6594 68.9386<br />

2.50 2.375 11.1890 19.6044 88.5429<br />

2.75 2.625 4.1500 7.2713 95.8142<br />

3.00 2.875 1.1820 2.0710 97.8852<br />

3.25 3.125 0.1020 0.1787 98.0639<br />

3.50 3.375 0.0530 0.0929 98.1568<br />

3.75 3.625 0.0440 0.0771 98.2339<br />

4.00 3.875 0.0610 0.1069 98.3408<br />

4.25 4.125 0.9470 1.6592 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.25. Granplot analysis <strong>of</strong> sample 34<br />

Statistical Results<br />

Measure<br />

Original Data<br />

in φ Units<br />

Transformed<br />

Data<br />

Original Data<br />

in Millimeters<br />

Mean: 2.1104 φ 0.2316 mm 0.2419 mm<br />

St<strong>and</strong>ard Deviation: 0.4517 phi-units MV 0.0695 mm<br />

Skewness: 1.2963 NU MV 0.8233 NU<br />

Kurtosis: 8.5148 NU MV 5.8513 NU<br />

5th Moment Measure: 29.665 NU MV 0.02 NU<br />

6th Moment Measure: 144.298 NU MV 0.03 NU<br />

Median: 1.9800 φ 0.2535 mm 0.2544 mm<br />

Relative Dispersion: MV MV 0.2875 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

153


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

154<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.26. Method <strong>of</strong> SELF determination applied to sample 34


Sample I.D.: 32 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 46.5220 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 46.522 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0380 0.0817 0.0817<br />

1.00 0.875 0.0640 0.1376 0.2193<br />

1.25 1.125 0.1880 0.4041 0.6234<br />

1.50 1.375 0.9850 2.1173 2.7406<br />

1.75 1.625 3.3690 7.2417 9.9824<br />

2.00 1.875 7.1810 15.4357 25.4181<br />

2.25 2.125 15.0350 32.3180 57.7361<br />

2.50 2.375 11.8140 25.3944 83.1306<br />

2.75 2.625 5.8210 12.5124 95.6429<br />

3.00 2.875 1.8230 3.9186 99.5615<br />

3.25 3.125 0.1250 0.2687 99.8302<br />

3.50 3.375 0.0280 0.0602 99.8904<br />

3.75 3.625 0.0150 0.0322 99.9226<br />

4.00 3.875 0.0100 0.0215 99.9441<br />

4.25 4.125 0.0260 0.0559 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.27. Granplot analysis <strong>of</strong> sample 32<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

155<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1882 φ 0.2194 mm 0.2260 mm<br />

0.3504 phi-units MV 0.0577 mm<br />

-0.1472 NU MV 1.3187 NU<br />

4.0672 NU MV 7.3324 NU<br />

0.184 NU MV 0.03 NU<br />

43.716 NU MV 0.04 NU<br />

2.0652 φ 0.239 mm 0.2396 mm<br />

MV MV 0.2554 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

156<br />

Settling Tail<br />

i<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.28. Method <strong>of</strong> SELF determination applied to sample 32


Sample I.D.: 011206-03 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 96.0668 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 96.242 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0019 0.0020 0.0020<br />

0.50 0.375 0.0016 0.0017 0.0036<br />

0.75 0.625 0.0016 0.0017 0.0053<br />

1.00 0.875 0.0052 0.0054 0.0107<br />

1.25 1.125 0.0390 0.0405 0.0512<br />

1.50 1.375 0.2268 0.2357 0.2869<br />

1.75 1.625 2.4134 2.5076 2.7945<br />

2.00 1.875 8.1088 8.4254 11.2199<br />

2.25 2.125 19.4687 20.2288 31.4487<br />

2.50 2.375 41.6142 43.2390 74.6877<br />

2.75 2.625 17.5435 18.2285 92.9162<br />

3.00 2.875 5.8142 6.0412 98.9574<br />

3.25 3.125 0.6851 0.7118 99.6693<br />

3.50 3.375 0.2378 0.2471 99.9164<br />

3.75 3.625 0.0596 0.0619 99.9783<br />

4.00 3.875 0.0119 0.0124 99.9906<br />

5.00 4.5 0.0090 0.0094 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.29. Granplot analysis <strong>of</strong> sample 011206-03<br />

157<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3452 φ 0.1968 mm 0.2009 mm<br />

0.2929 phi-units MV 0.0421 mm<br />

-0.0817 NU MV 1.1103 NU<br />

4.2704 NU MV 7.5038 NU<br />

1.432 NU MV 0.02 NU<br />

50.726 NU MV 0.05 NU<br />

2.2323 φ 0.2128 mm 0.2136 mm<br />

MV MV 0.2098 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial Segment<br />

0.03 Littoral Segment<br />

0.01<br />

158<br />

Central Segment<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.30. Method <strong>of</strong> SELF determination applied to sample 011206-03


Sample I.D.: 011206-04 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/12/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 100.4200 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 100.401 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0056 0.0056 0.0056<br />

0.50 0.375 0.0038 0.0038 0.0094<br />

0.75 0.625 0.0069 0.0069 0.0162<br />

1.00 0.875 0.0290 0.0289 0.0451<br />

1.25 1.125 0.1468 0.1462 0.1913<br />

1.50 1.375 0.6099 0.6075 0.7988<br />

1.75 1.625 3.6604 3.6458 4.4446<br />

2.00 1.875 9.8128 9.7736 14.2182<br />

2.25 2.125 17.8236 17.7524 31.9707<br />

2.50 2.375 38.0845 37.9325 69.9031<br />

2.75 2.625 19.7189 19.6402 89.5433<br />

3.00 2.875 8.4942 8.4603 98.0036<br />

3.25 3.125 1.6479 1.6413 99.6449<br />

3.50 3.375 0.2899 0.2887 99.9337<br />

3.75 3.625 0.0464 0.0462 99.9799<br />

4.00 3.875 0.0110 0.0110 99.9908<br />

5.00 4.5 0.0092 0.0092 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.31. Granplot analysis <strong>of</strong> sample 011206-04<br />

159<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3533 φ 0.1957 mm 0.2012 mm<br />

0.3366 phi-units MV 0.0496 mm<br />

-0.2294 NU MV 1.3743 NU<br />

3.8368 NU MV 8.9297 NU<br />

-2.103 NU MV 0.04 NU<br />

35.958 NU MV 0.09 NU<br />

2.2438 φ 0.2111 mm 0.2119 mm<br />

MV MV 0.2463 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Fluvial<br />

Central Segment<br />

Littoral - Waves<br />

Littoral - Waves<br />

1.0 2.0<br />

160<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.32. Method <strong>of</strong> SELF determination applied to sample 011206-04


Sample I.D.: 050505-01A Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 69.4724 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 69.433 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0080 0.0115 0.0115<br />

0.50 0.375 0.0060 0.0086 0.0202<br />

0.75 0.625 0.0110 0.0158 0.0360<br />

1.00 0.875 0.0580 0.0835 0.1195<br />

1.25 1.125 0.2490 0.3586 0.4782<br />

1.50 1.375 1.0640 1.5324 2.0106<br />

1.75 1.625 4.8440 6.9765 8.9871<br />

2.00 1.875 9.5190 13.7096 22.6967<br />

2.25 2.125 14.0390 20.2195 42.9162<br />

2.50 2.375 22.8450 32.9022 75.8184<br />

2.75 2.625 11.4590 16.5037 92.3221<br />

3.00 2.875 4.4820 6.4551 98.7772<br />

3.25 3.125 0.7260 1.0456 99.8229<br />

3.50 3.375 0.0840 0.1210 99.9438<br />

3.75 3.625 0.0220 0.0317 99.9755<br />

4.00 3.875 0.0060 0.0086 99.9842<br />

5.00 4.5 0.0110 0.0158 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.33. Granplot analysis <strong>of</strong> sample 050505-01A<br />

161<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2653 φ 0.2080 mm 0.2150 mm<br />

0.3677 phi-units MV 0.0583 mm<br />

-0.2822 NU MV 1.3809 NU<br />

3.5151 NU MV 8.2795 NU<br />

-1.976 NU MV 0.04 NU<br />

32.140 NU MV 0.10 NU<br />

2.1788 φ 0.2209 mm 0.2214 mm<br />

MV MV 0.2712 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial Segment<br />

Central Segment<br />

162<br />

Littoral Segment<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.34. Method <strong>of</strong> SELF determination applied to sample 050505-01A


Sample I.D.: 050505-01B Sampled by: Beth Forrest Start Sieve Size (phi): -0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 90.8472 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 90.894 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

-0.50 -0.625 0.0310 0.0341 0.0341<br />

-0.25 -0.375 0.0110 0.0121 0.0462<br />

0.00 -0.125 0.0500 0.0550 0.1012<br />

0.25 0.125 0.0160 0.0176 0.1188<br />

0.50 0.375 0.0460 0.0506 0.1694<br />

0.75 0.625 0.1820 0.2002 0.3697<br />

1.00 0.875 0.0780 0.0858 0.4555<br />

1.25 1.125 0.2360 0.2596 0.7151<br />

1.50 1.375 1.1110 1.2223 1.9374<br />

1.75 1.625 4.7640 5.2413 7.1787<br />

2.00 1.875 10.3930 11.4342 18.6129<br />

2.25 2.125 16.7660 18.4457 37.0586<br />

2.50 2.375 31.3830 34.5270 71.5856<br />

2.75 2.625 16.3550 17.9935 89.5791<br />

3.00 2.875 7.4380 8.1832 97.7622<br />

3.25 3.125 1.6530 1.8186 99.5808<br />

3.50 3.375 0.2930 0.3224 99.9032<br />

3.75 3.625 0.0590 0.0649 99.9681<br />

4.00 3.875 0.0090 0.0099 99.9780<br />

5.00 4.5 0.0200 0.0220 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Figure A.35. Granplot analysis <strong>of</strong> sample 050505-01B<br />

Statistical Results<br />

Measure<br />

Original Data<br />

in φ Units<br />

Transformed<br />

Data<br />

Original Data<br />

in Millimeters<br />

Mean: 2.3122 φ 0.2014 mm 0.2093 mm<br />

St<strong>and</strong>ard Deviation: 0.3865 phi-units MV 0.0699 mm<br />

Skewness: -0.7156 NU MV 5.4466 NU<br />

Kurtosis: 6.4527 NU MV 76.2667 NU<br />

5th Moment Measure: -22.102 NU MV 1.58 NU<br />

6th Moment Measure: 164.779 NU MV 7.19 NU<br />

Median: 2.2187 φ 0.2148 mm 0.2156 mm<br />

Relative Dispersion: MV MV 0.3337 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)<br />

163


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

Coarser<br />

Fluvial Segment<br />

Fluvial Segment<br />

Eolian Segment<br />

1.0 2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.36. Method <strong>of</strong> SELF determination applied to sample 050505-01B<br />

164<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-01C Sampled by: Beth Forrest Start Sieve Size (phi): -0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 98.2856 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 97.843 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

-0.25 -0.375 0.0120 0.0123 0.0123<br />

0.00 -0.125 0.0000 0.0000 0.0123<br />

0.25 0.125 0.0000 0.0000 0.0123<br />

0.50 0.375 0.0030 0.0031 0.0153<br />

0.75 0.625 0.0030 0.0031 0.0184<br />

1.00 0.875 0.0220 0.0225 0.0409<br />

1.25 1.125 0.1280 0.1308 0.1717<br />

1.50 1.375 0.5140 0.5253 0.6970<br />

1.75 1.625 3.8740 3.9594 4.6564<br />

2.00 1.875 10.9770 11.2190 15.8754<br />

2.25 2.125 20.0880 20.5309 36.4063<br />

2.50 2.375 34.9220 35.6919 72.0982<br />

2.75 2.625 16.9660 17.3400 89.4382<br />

3.00 2.875 8.1430 8.3225 97.7607<br />

3.25 3.125 1.9090 1.9511 99.7118<br />

3.50 3.375 0.2360 0.2412 99.9530<br />

3.75 3.625 0.0350 0.0358 99.9888<br />

4.00 3.875 0.0070 0.0072 99.9959<br />

5.00 4.5 0.0040 0.0041 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.37. Granplot analysis <strong>of</strong> sample 050505-01C<br />

165<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3329 φ 0.1985 mm 0.2042 mm<br />

0.3427 phi-units MV 0.0513 mm<br />

-0.1406 NU MV 2.1015 NU<br />

3.8129 NU MV 30.4757 NU<br />

-4.370 NU MV 0.34 NU<br />

52.460 NU MV 1.58 NU<br />

2.2202 φ 0.2146 mm 0.2154 mm<br />

MV MV 0.2510 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

0.0 1.0<br />

Coarser<br />

Central Segment<br />

Littoral - Waves<br />

Fluvial Segment<br />

2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.38. Method <strong>of</strong> SELF determination applied to sample 050505-01C<br />

166<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-01D Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 96.3469 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 96.065 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0050 0.0052 0.0052<br />

0.50 0.375 0.0070 0.0073 0.0125<br />

0.75 0.625 0.0110 0.0115 0.0239<br />

1.00 0.875 0.0750 0.0781 0.1020<br />

1.25 1.125 0.4090 0.4258 0.5278<br />

1.50 1.375 1.5050 1.5666 2.0944<br />

1.75 1.625 6.9410 7.2253 9.3197<br />

2.00 1.875 15.5880 16.2265 25.5462<br />

2.25 2.125 24.0710 25.0570 50.6032<br />

2.50 2.375 31.9210 33.2285 83.8318<br />

2.75 2.625 11.1220 11.5776 95.4094<br />

3.00 2.875 3.6240 3.7724 99.1818<br />

3.25 3.125 0.6530 0.6797 99.8616<br />

3.50 3.375 0.1060 0.1103 99.9719<br />

3.75 3.625 0.0170 0.0177 99.9896<br />

4.00 3.875 0.0030 0.0031 99.9927<br />

5.00 4.5 0.0030 0.0031 99.9958<br />

5.00 4.5 0.0040 0.0042 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.39. Granplot analysis <strong>of</strong> sample 050505-01D<br />

167<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2088 φ 0.2163 mm 0.2226 mm<br />

0.3431 phi-units MV 0.0557 mm<br />

-0.2195 NU MV 1.2531 NU<br />

3.6313 NU MV 7.2684 NU<br />

-1.496 NU MV 0.03 NU<br />

32.089 NU MV 0.06 NU<br />

2.1190 φ 0.2302 mm 0.2303 mm<br />

MV MV 0.2502 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

168<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.40. Method <strong>of</strong> SELF determination applied to sample 050505-01D


Sample I.D.: 050505-01E Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 73.1979 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 73.282 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0040 0.0055 0.0055<br />

0.75 0.625 0.0120 0.0164 0.0218<br />

1.00 0.875 0.0600 0.0819 0.1037<br />

1.25 1.125 0.2790 0.3807 0.4844<br />

1.50 1.375 0.9990 1.3632 1.8477<br />

1.75 1.625 4.5250 6.1748 8.0224<br />

2.00 1.875 9.6020 13.1028 21.1252<br />

2.25 2.125 15.6390 21.3408 42.4661<br />

2.50 2.375 25.7510 35.1396 77.6057<br />

2.75 2.625 11.0080 15.0214 92.6271<br />

3.00 2.875 4.4230 6.0356 98.6627<br />

3.25 3.125 0.7820 1.0671 99.7298<br />

3.50 3.375 0.1600 0.2183 99.9481<br />

3.75 3.625 0.0290 0.0396 99.9877<br />

4.00 3.875 0.0060 0.0082 99.9959<br />

5.00 4.5 0.0030 0.0041 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.41. Granplot analysis <strong>of</strong> sample 050505-01E<br />

169<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2684 φ 0.2076 mm 0.2141 mm<br />

0.3564 phi-units MV 0.0560 mm<br />

-0.2606 NU MV 1.2632 NU<br />

3.5549 NU MV 6.4084 NU<br />

-2.032 NU MV 0.02 NU<br />

25.993 NU MV 0.03 NU<br />

2.1786 φ 0.2209 mm 0.2214 mm<br />

MV MV 0.2614 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral - Waves<br />

Littoral Segment<br />

1.0 2.0 3.0<br />

170<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.42. Method <strong>of</strong> SELF determination applied to sample 050505-01E


Sample I.D.: 050505-01F Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 75.5318 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 75.517 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0030 0.0040 0.0040<br />

0.75 0.625 0.0040 0.0053 0.0093<br />

1.00 0.875 0.0320 0.0424 0.0516<br />

1.25 1.125 0.1250 0.1655 0.2172<br />

1.50 1.375 0.5190 0.6873 0.9044<br />

1.75 1.625 3.3310 4.4109 5.3154<br />

2.00 1.875 8.7900 11.6398 16.9551<br />

2.25 2.125 15.9240 21.0866 38.0418<br />

2.50 2.375 28.5820 37.8484 75.8902<br />

2.75 2.625 12.7670 16.9061 92.7963<br />

3.00 2.875 4.2960 5.6888 98.4851<br />

3.25 3.125 0.8710 1.1534 99.6385<br />

3.50 3.375 0.2190 0.2900 99.9285<br />

3.75 3.625 0.0390 0.0516 99.9801<br />

4.00 3.875 0.0100 0.0132 99.9934<br />

5.00 4.5 0.0050 0.0066 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.43. Granplot analysis <strong>of</strong> sample 050505-01F<br />

171<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3045 φ 0.2024 mm 0.2079 mm<br />

0.3315 phi-units MV 0.0499 mm<br />

-0.1585 NU MV 1.1627 NU<br />

3.8125 NU MV 6.3645 NU<br />

-0.477 NU MV 0.02 NU<br />

32.834 NU MV 0.02 NU<br />

2.2040 φ 0.217 mm 0.2177 mm<br />

MV MV 0.2399 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Central Segment<br />

Littoral - Waves<br />

1.0 2.0 3.0<br />

172<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.44. Method <strong>of</strong> SELF determination applied to sample 050505-01F


Sample I.D.: 050505-01G Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 77.5084 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 77.220 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0060 0.0078 0.0078<br />

0.75 0.625 0.0260 0.0337 0.0414<br />

1.00 0.875 0.0980 0.1269 0.1684<br />

1.25 1.125 0.3100 0.4015 0.5698<br />

1.50 1.375 1.0050 1.3015 1.8713<br />

1.75 1.625 5.3940 6.9852 8.8565<br />

2.00 1.875 12.8570 16.6498 25.5063<br />

2.25 2.125 19.2270 24.8990 50.4053<br />

2.50 2.375 24.8660 32.2015 82.6068<br />

2.75 2.625 9.3440 12.1005 94.7073<br />

3.00 2.875 3.0990 4.0132 98.7205<br />

3.25 3.125 0.7250 0.9389 99.6594<br />

3.50 3.375 0.2020 0.2616 99.9210<br />

3.75 3.625 0.0460 0.0596 99.9806<br />

4.00 3.875 0.0100 0.0130 99.9935<br />

5.00 4.5 0.0050 0.0065 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.45. Granplot analysis <strong>of</strong> sample 050505-01G<br />

173<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2175 φ 0.2150 mm 0.2215 mm<br />

0.3518 phi-units MV 0.0563 mm<br />

-0.1023 NU MV 1.2159 NU<br />

3.8065 NU MV 6.9837 NU<br />

-0.344 NU MV 0.02 NU<br />

33.425 NU MV 0.04 NU<br />

2.1209 φ 0.2299 mm 0.2300 mm<br />

MV MV 0.2542 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral - Waves<br />

1.0 2.0 3.0<br />

174<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.46. Method <strong>of</strong> SELF determination applied to sample 050505-01G


Sample I.D.: 050505-01H Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 60.9861 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 104.036 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0060 0.0058 0.0058<br />

0.75 0.625 0.0100 0.0096 0.0154<br />

1.00 0.875 0.0400 0.0384 0.0538<br />

1.25 1.125 0.1670 0.1605 0.2143<br />

1.50 1.375 0.6640 0.6382 0.8526<br />

1.75 1.625 4.7290 4.5455 5.3981<br />

2.00 1.875 13.5110 12.9869 18.3850<br />

2.25 2.125 26.3590 25.3364 43.7214<br />

2.50 2.375 38.3390 36.8517 80.5731<br />

2.75 2.625 13.4740 12.9513 93.5244<br />

3.00 2.875 5.1920 4.9906 98.5149<br />

3.25 3.125 1.1730 1.1275 99.6424<br />

3.50 3.375 0.3000 0.2884 99.9308<br />

3.75 3.625 0.0540 0.0519 99.9827<br />

4.00 3.875 0.0110 0.0106 99.9933<br />

5.00 4.5 0.0070 0.0067 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.47. Granplot analysis <strong>of</strong> sample 050505-01H<br />

175<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2730 φ 0.2069 mm 0.2122 mm<br />

0.3254 phi-units MV 0.0492 mm<br />

-0.0025 NU MV 1.0662 NU<br />

3.9712 NU MV 6.6779 NU<br />

0.958 NU MV 0.02 NU<br />

37.103 NU MV 0.03 NU<br />

2.1676 φ 0.2226 mm 0.2230 mm<br />

MV MV 0.2318 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Coarser<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral - Waves<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.48. Method <strong>of</strong> SELF determination applied to sample 050505-01H<br />

176<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-01I Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 60.9861 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 61.006 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0020 0.0033 0.0033<br />

0.75 0.625 0.0090 0.0148 0.0180<br />

1.00 0.875 0.0540 0.0885 0.1065<br />

1.25 1.125 0.2840 0.4655 0.5721<br />

1.50 1.375 1.1250 1.8441 2.4162<br />

1.75 1.625 5.6040 9.1860 11.6021<br />

2.00 1.875 10.7870 17.6819 29.2840<br />

2.25 2.125 14.8340 24.3156 53.5996<br />

2.50 2.375 18.6700 30.6035 84.2032<br />

2.75 2.625 6.9380 11.3727 95.5758<br />

3.00 2.875 2.2190 3.6373 99.2132<br />

3.25 3.125 0.3800 0.6229 99.8361<br />

3.50 3.375 0.0740 0.1213 99.9574<br />

3.75 3.625 0.0150 0.0246 99.9820<br />

4.00 3.875 0.0030 0.0049 99.9869<br />

5.00 4.5 0.0080 0.0131 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.49. Granplot analysis <strong>of</strong> sample 050505-01I<br />

177<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1842 φ 0.2200 mm 0.2268 mm<br />

0.3564 phi-units MV 0.0581 mm<br />

-0.1274 NU MV 1.0108 NU<br />

3.3849 NU MV 5.1019 NU<br />

0.462 NU MV 0.01 NU<br />

29.063 NU MV 0.02 NU<br />

2.0880 φ 0.2352 mm 0.2357 mm<br />

MV MV 0.2562 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

0.0 1.0<br />

Coarser<br />

Central Segment<br />

Littoral - Waves<br />

Fluvial Segment<br />

2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.50. Method <strong>of</strong> SELF determination applied to sample 050505-01I<br />

178<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 011006-13 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 88.2700 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 88.030 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0054 0.0061 0.0061<br />

0.50 0.375 0.0022 0.0025 0.0086<br />

0.75 0.625 0.0139 0.0158 0.0244<br />

1.00 0.875 0.1189 0.1351 0.1595<br />

1.25 1.125 0.5071 0.5761 0.7355<br />

1.50 1.375 1.8365 2.0862 2.8218<br />

1.75 1.625 7.2646 8.2525 11.0742<br />

2.00 1.875 13.7890 15.6641 26.7383<br />

2.25 2.125 19.5250 22.1801 48.9184<br />

2.50 2.375 28.3469 32.2016 81.1200<br />

2.75 2.625 12.1965 13.8550 94.9750<br />

3.00 2.875 3.8724 4.3990 99.3740<br />

3.25 3.125 0.4240 0.4817 99.8556<br />

3.50 3.375 0.0613 0.0696 99.9253<br />

3.75 3.625 0.0253 0.0287 99.9540<br />

4.00 3.875 0.0080 0.0091 99.9631<br />

5.00 4.5 0.0325 0.0369 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.51. Granplot analysis <strong>of</strong> sample 011006-13<br />

179<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2110 φ 0.2160 mm 0.2231 mm<br />

0.3650 phi-units MV 0.0599 mm<br />

-0.2549 NU MV 1.2772 NU<br />

3.7698 NU MV 6.6220 NU<br />

0.635 NU MV 0.03 NU<br />

43.911 NU MV 0.05 NU<br />

2.1334 φ 0.2279 mm 0.2280 mm<br />

MV MV 0.2683 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


161 170<br />

99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial Segment 1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Littoral Segment<br />

180<br />

Central Segment<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.52. Method <strong>of</strong> SELF determination applied to sample 011006-13


Sample I.D.: 011006-14 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 1/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 89.2997 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 89.311 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0017 0.0019 0.0019<br />

0.75 0.625 0.0088 0.0099 0.0118<br />

1.00 0.875 0.0375 0.0420 0.0537<br />

1.25 1.125 0.0911 0.1020 0.1557<br />

1.50 1.375 0.4664 0.5222 0.6780<br />

1.75 1.625 2.6579 2.9760 3.6540<br />

2.00 1.875 6.9662 7.8000 11.4540<br />

2.25 2.125 14.2631 15.9702 27.4242<br />

2.50 2.375 33.2911 37.2756 64.6998<br />

2.75 2.625 20.9884 23.5005 88.2003<br />

3.00 2.875 8.9447 10.0153 98.2156<br />

3.25 3.125 1.3676 1.5313 99.7468<br />

3.50 3.375 0.1523 0.1705 99.9174<br />

3.75 3.625 0.0304 0.0340 99.9514<br />

4.00 3.875 0.0098 0.0110 99.9624<br />

5.00 4.5 0.0336 0.0376 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.53. Granplot analysis <strong>of</strong> sample 011006-14<br />

181<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3898 φ 0.1908 mm 0.1959 mm<br />

0.3284 phi-units MV 0.0474 mm<br />

-0.2814 NU MV 1.3906 NU<br />

4.2771 NU MV 7.5498 NU<br />

-0.043 NU MV 0.02 NU<br />

54.462 NU MV 0.03 NU<br />

2.2764 φ 0.2064 mm 0.2072 mm<br />

MV MV 0.2421 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral - Waves<br />

182<br />

Littoral - Waves<br />

Fluvial Segment<br />

Settling Tail<br />

Central Segment<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.54. Method <strong>of</strong> SELF determination applied to sample 011006-14


Sample I.D.: 20 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 41.6110 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 41.611 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0040 0.0096 0.0096<br />

1.00 0.875 0.0230 0.0553 0.0649<br />

1.25 1.125 0.1090 0.2619 0.3268<br />

1.50 1.375 0.6620 1.5909 1.9178<br />

1.75 1.625 2.5260 6.0705 7.9883<br />

2.00 1.875 5.7540 13.8281 21.8163<br />

2.25 2.125 12.3960 29.7902 51.6065<br />

2.50 2.375 10.3860 24.9597 76.5663<br />

2.75 2.625 5.9800 14.3712 90.9375<br />

3.00 2.875 3.2630 7.8417 98.7792<br />

3.25 3.125 0.4400 1.0574 99.8366<br />

3.50 3.375 0.0350 0.0841 99.9207<br />

3.75 3.625 0.0080 0.0192 99.9399<br />

4.00 3.875 0.0080 0.0192 99.9591<br />

4.25 4.125 0.0170 0.0409 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.55. Granplot analysis <strong>of</strong> sample 20<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

183<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2508 φ 0.2101 mm 0.2168 mm<br />

0.3661 phi-units MV 0.0562 mm<br />

0.0053 NU MV 0.9060 NU<br />

3.2923 NU MV 4.8686 NU<br />

0.675 NU MV 0.01 NU<br />

23.850 NU MV 0.01 NU<br />

2.1115 φ 0.2314 mm 0.2316 mm<br />

MV MV 0.2593 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

184<br />

i<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.56. Method <strong>of</strong> SELF determination applied to sample 20


Sample I.D.: 011006-05 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 101.1398 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 100.703 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0162 0.0161 0.0161<br />

0.50 0.375 0.0282 0.0280 0.0441<br />

0.75 0.625 0.2790 0.2771 0.3211<br />

1.00 0.875 1.6429 1.6314 1.9526<br />

1.25 1.125 5.5903 5.5513 7.5039<br />

1.50 1.375 14.3520 14.2518 21.7557<br />

1.75 1.625 29.4256 29.2202 50.9759<br />

2.00 1.875 24.8958 24.7220 75.6979<br />

2.25 2.125 14.7582 14.6552 90.3531<br />

2.50 2.375 8.2026 8.1453 98.4985<br />

2.75 2.625 1.2897 1.2807 99.7792<br />

3.00 2.875 0.1636 0.1625 99.9416<br />

3.25 3.125 0.0263 0.0261 99.9677<br />

3.50 3.375 0.0112 0.0111 99.9788<br />

3.75 3.625 0.0062 0.0062 99.9850<br />

4.00 3.875 0.0011 0.0011 99.9861<br />

5.00 4.5 0.0140 0.0139 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.57. Granplot analysis <strong>of</strong> sample 011006-05<br />

185<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

1.7582 φ 0.2956 mm 0.3052 mm<br />

0.3671 phi-units MV 0.0791 mm<br />

0.0480 NU MV 0.8949 NU<br />

3.5309 NU MV 4.9380 NU<br />

2.902 NU MV 0.03 NU<br />

42.263 NU MV 0.04 NU<br />

1.6167 φ 0.3261 mm 0.3263 mm<br />

MV MV 0.2591 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral Segment<br />

Central Segment<br />

186<br />

Settling Tail<br />

1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.58. Method <strong>of</strong> SELF determination applied to sample 011006-05


Sample I.D.: 011006-06 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 71.4041 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 71.007 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0102 0.0144 0.0144<br />

0.75 0.625 0.1354 0.1907 0.2051<br />

1.00 0.875 0.4904 0.6906 0.8957<br />

1.25 1.125 1.3261 1.8676 2.7633<br />

1.50 1.375 4.8454 6.8239 9.5871<br />

1.75 1.625 16.0507 22.6045 32.1916<br />

2.00 1.875 19.9325 28.0713 60.2629<br />

2.25 2.125 16.3502 23.0263 83.2892<br />

2.50 2.375 10.1409 14.2816 97.5708<br />

2.75 2.625 1.4990 2.1111 99.6819<br />

3.00 2.875 0.1698 0.2391 99.9210<br />

3.25 3.125 0.0356 0.0501 99.9711<br />

3.50 3.375 0.0137 0.0193 99.9904<br />

3.75 3.625 0.0052 0.0073 99.9977<br />

4.00 3.875 0.0016 0.0023 100.0000<br />

5.00 4.5 0.0000 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.59. Granplot analysis <strong>of</strong> sample 011006-06<br />

187<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

1.9091 φ 0.2663 mm 0.2740 mm<br />

0.3439 phi-units MV 0.0683 mm<br />

-0.2017 NU MV 1.1453 NU<br />

3.3181 NU MV 6.0208 NU<br />

-2.394 NU MV 0.03 NU<br />

23.213 NU MV 0.04 NU<br />

1.7836 φ 0.2905 mm 0.2915 mm<br />

MV MV 0.2494 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Eolian Segment<br />

1.0 2.0<br />

188<br />

Settling Tail<br />

Littoral Segment<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.60. Method <strong>of</strong> SELF determination applied to sample 011006-06


Sample I.D.: 011006-04 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 91.4777 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 91.182 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0057 0.0063 0.0063<br />

0.75 0.625 0.0778 0.0853 0.0916<br />

1.00 0.875 0.6790 0.7447 0.8362<br />

1.25 1.125 1.5915 1.7454 2.5816<br />

1.50 1.375 6.2507 6.8552 9.4368<br />

1.75 1.625 18.1563 19.9122 29.3490<br />

2.00 1.875 23.6373 25.9232 55.2722<br />

2.25 2.125 20.6792 22.6790 77.9512<br />

2.50 2.375 15.3357 16.8188 94.7700<br />

2.75 2.625 3.7324 4.0934 98.8634<br />

3.00 2.875 0.7759 0.8509 99.7143<br />

3.25 3.125 0.1852 0.2031 99.9174<br />

3.50 3.375 0.0551 0.0604 99.9778<br />

3.75 3.625 0.0105 0.0115 99.9894<br />

4.00 3.875 0.0032 0.0035 99.9929<br />

5.00 4.5 0.0065 0.0071 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.61. Granplot analysis <strong>of</strong> sample 011006-04<br />

189<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

1.9532 φ 0.2583 mm 0.2668 mm<br />

0.3701 phi-units MV 0.0704 mm<br />

-0.0413 NU MV 0.9659 NU<br />

3.3393 NU MV 4.9890 NU<br />

0.675 NU MV 0.02 NU<br />

27.419 NU MV 0.02 NU<br />

1.8242 φ 0.2824 mm 0.2831 mm<br />

MV MV 0.2638 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

190<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.62. Method <strong>of</strong> SELF determination applied to sample 011006-04


Sample I.D.: 16 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 50.7990 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 50.799 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0210 0.0413 0.0413<br />

0.75 0.625 0.1460 0.2874 0.3287<br />

1.00 0.875 0.3480 0.6851 1.0138<br />

1.25 1.125 1.0030 1.9744 2.9882<br />

1.50 1.375 3.5430 6.9745 9.9628<br />

1.75 1.625 8.4870 16.7070 26.6698<br />

2.00 1.875 10.8210 21.3016 47.9714<br />

2.25 2.125 13.8190 27.2033 75.1747<br />

2.50 2.375 7.2080 14.1893 89.3640<br />

2.75 2.625 3.3830 6.6596 96.0235<br />

3.00 2.875 1.5790 3.1083 99.1319<br />

3.25 3.125 0.3110 0.6122 99.7441<br />

3.50 3.375 0.0660 0.1299 99.8740<br />

3.75 3.625 0.0170 0.0335 99.9075<br />

4.00 3.875 0.0130 0.0256 99.9331<br />

4.25 4.125 0.0340 0.0669 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.63. Granplot analysis <strong>of</strong> sample 16<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

191<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.0047 φ 0.2492 mm 0.2598 mm<br />

0.4206 phi-units MV 0.0777 mm<br />

0.0798 NU MV 1.1249 NU<br />

3.7312 NU MV 5.9330 NU<br />

2.143 NU MV 0.04 NU<br />

31.714 NU MV 0.05 NU<br />

1.8936 φ 0.2691 mm 0.2694 mm<br />

MV MV 0.2992 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

7<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

192<br />

i<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.64. Method <strong>of</strong> SELF determination applied to sample 16


Sample I.D.: 14 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 47.7020 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 47.702 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0310 0.0650 0.0650<br />

1.00 0.875 0.0510 0.1069 0.1719<br />

1.25 1.125 0.1410 0.2956 0.4675<br />

1.50 1.375 0.6900 1.4465 1.9140<br />

1.75 1.625 2.6740 5.6056 7.5196<br />

2.00 1.875 9.9030 20.7601 28.2797<br />

2.25 2.125 13.2750 27.8290 56.1088<br />

2.50 2.375 11.1960 23.4707 79.5795<br />

2.75 2.625 6.3200 13.2489 92.8284<br />

3.00 2.875 2.9030 6.0857 98.9141<br />

3.25 3.125 0.4040 0.8469 99.7610<br />

3.50 3.375 0.0820 0.1719 99.9329<br />

3.75 3.625 0.0170 0.0356 99.9686<br />

4.00 3.875 0.0080 0.0168 99.9853<br />

4.25 4.125 0.0070 0.0147 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.65. Granplot analysis <strong>of</strong> sample 14<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

193<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2113 φ 0.2159 mm 0.2227 mm<br />

0.3628 phi-units MV 0.0570 mm<br />

0.0733 NU MV 0.9963 NU<br />

3.3964 NU MV 6.4794 NU<br />

0.034 NU MV 0.02 NU<br />

25.762 NU MV 0.03 NU<br />

2.0701 φ 0.2381 mm 0.2388 mm<br />

Relative Dispersion: MV MV 0.2558 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

7<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

194<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.66. Method <strong>of</strong> SELF determination applied to sample 14


Sample I.D.: 011006-17 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 87.9270 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 87.832 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0029 0.0033 0.0033<br />

0.75 0.625 0.0128 0.0146 0.0179<br />

1.00 0.875 0.1658 0.1888 0.2066<br />

1.25 1.125 0.8432 0.9600 1.1667<br />

1.50 1.375 2.7679 3.1514 4.3180<br />

1.75 1.625 10.5713 12.0358 16.3539<br />

2.00 1.875 19.1081 21.7553 38.1092<br />

2.25 2.125 22.7085 25.8545 63.9637<br />

2.50 2.375 23.1466 26.3533 90.3171<br />

2.75 2.625 6.3863 7.2711 97.5881<br />

3.00 2.875 1.3649 1.5540 99.1421<br />

3.25 3.125 0.1802 0.2052 99.3473<br />

3.50 3.375 0.5549 0.6318 99.9791<br />

3.75 3.625 0.0113 0.0129 99.9919<br />

4.00 3.875 0.0016 0.0018 99.9937<br />

5.00 4.5 0.0055 0.0063 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.67. Granplot analysis <strong>of</strong> sample 011006-17<br />

195<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.0988 φ 0.2335 mm 0.2409 mm<br />

0.3622 phi-units MV 0.0621 mm<br />

0.0011 NU MV 0.9781 NU<br />

3.7515 NU MV 5.0108 NU<br />

2.188 NU MV 0.01 NU<br />

32.134 NU MV 0.02 NU<br />

1.9900 φ 0.2517 mm 0.2527 mm<br />

MV MV 0.2579 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial<br />

Segment<br />

1.0 2.0<br />

196<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.68. Method <strong>of</strong> SELF determination applied to sample 011006-17


Sample I.D.: 011006-18 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 89.6819 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 89.342 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0081 0.0091 0.0091<br />

0.50 0.375 0.0022 0.0025 0.0115<br />

0.75 0.625 0.0355 0.0397 0.0513<br />

1.00 0.875 0.4369 0.4890 0.5403<br />

1.25 1.125 1.5257 1.7077 2.2480<br />

1.50 1.375 4.0436 4.5260 6.7740<br />

1.75 1.625 11.8320 13.2435 20.0175<br />

2.00 1.875 19.5406 21.8717 41.8892<br />

2.25 2.125 22.2929 24.9523 66.8415<br />

2.50 2.375 20.7624 23.2393 90.0808<br />

2.75 2.625 6.0290 6.7482 96.8290<br />

3.00 2.875 1.8403 2.0598 98.8889<br />

3.25 3.125 0.7016 0.7853 99.6742<br />

3.50 3.375 0.2411 0.2699 99.9440<br />

3.75 3.625 0.0375 0.0420 99.9860<br />

4.00 3.875 0.0063 0.0071 99.9931<br />

5.00 4.5 0.0062 0.0069 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.69. Granplot analysis <strong>of</strong> sample 011006-18<br />

197<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.0656 φ 0.2389 mm 0.2478 mm<br />

0.3912 phi-units MV 0.0699 mm<br />

-0.0692 NU MV 1.1351 NU<br />

3.5844 NU MV 5.7888 NU<br />

0.510 NU MV 0.03 NU<br />

27.163 NU MV 0.05 NU<br />

1.9563 φ 0.2577 mm 0.2585 mm<br />

MV MV 0.2820 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Fluvial<br />

Central Segment<br />

Littoral - Waves<br />

198<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.70. Method <strong>of</strong> SELF determination applied to sample 011006-18


Sample I.D.: 050505-02A Sampled by: Beth Forrest Start Sieve Size (phi): -0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 82.6792 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 82.296 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

-0.25 -0.375 0.0100 0.0122 0.0122<br />

0.00 -0.125 0.0070 0.0085 0.0207<br />

0.25 0.125 0.0140 0.0170 0.0377<br />

0.50 0.375 0.0110 0.0134 0.0510<br />

0.75 0.625 0.0310 0.0377 0.0887<br />

1.00 0.875 0.2470 0.3001 0.3888<br />

1.25 1.125 1.1060 1.3439 1.7328<br />

1.50 1.375 3.1980 3.8860 5.6187<br />

1.75 1.625 8.9470 10.8717 16.4905<br />

2.00 1.875 11.1720 13.5754 30.0659<br />

2.25 2.125 13.4300 16.3191 46.3850<br />

2.50 2.375 21.8300 26.5262 72.9112<br />

2.75 2.625 13.7290 16.6825 89.5937<br />

3.00 2.875 6.8550 8.3297 97.9233<br />

3.25 3.125 1.4820 1.8008 99.7242<br />

3.50 3.375 0.1810 0.2199 99.9441<br />

3.75 3.625 0.0290 0.0352 99.9793<br />

4.00 3.875 0.0070 0.0085 99.9878<br />

5.00 4.5 0.0100 0.0122 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Figure A.71. Granplot analysis <strong>of</strong> sample 050505-02A<br />

199<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2227 φ 0.2142 mm 0.2251 mm<br />

0.4472 phi-units MV 0.0758 mm<br />

-0.3477 NU MV 1.6796 NU<br />

3.0736 NU MV 11.9989 NU<br />

-3.261 NU MV 0.18 NU<br />

23.045 NU MV 0.58 NU<br />

2.1591 φ 0.2239 mm 0.2243 mm<br />

Relative Dispersion: MV MV 0.3368 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

0.0 1.0<br />

Coarser<br />

Central Segment<br />

Littoral Segment<br />

Eolian Segment<br />

2.0 3.0<br />

Grain Size (Phi)<br />

200<br />

Littoral Segment<br />

Figure A.72. Method <strong>of</strong> SELF determination applied to sample 050505-02A<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-02B Sampled by: Beth Forrest Start Sieve Size (phi): 0<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 65.9714 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 65.708 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0050 0.0076 0.0076<br />

0.25 0.125 0.0180 0.0274 0.0350<br />

0.50 0.375 0.0100 0.0152 0.0502<br />

0.75 0.625 0.0350 0.0533 0.1035<br />

1.00 0.875 0.1320 0.2009 0.3044<br />

1.25 1.125 0.4450 0.6772 0.9816<br />

1.50 1.375 1.2890 1.9617 2.9433<br />

1.75 1.625 5.1240 7.7981 10.7415<br />

2.00 1.875 9.3080 14.1657 24.9072<br />

2.25 2.125 12.8990 19.6308 44.5380<br />

2.50 2.375 20.6310 31.3980 75.9360<br />

2.75 2.625 10.4400 15.8885 91.8244<br />

3.00 2.875 4.2290 6.4361 98.2605<br />

3.25 3.125 0.8750 1.3316 99.5921<br />

3.50 3.375 0.2120 0.3226 99.9148<br />

3.75 3.625 0.0450 0.0685 99.9833<br />

4.00 3.875 0.0080 0.0122 99.9954<br />

5.00 4.5 0.0030 0.0046 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.73. Granplot analysis <strong>of</strong> sample 050505-02B<br />

201<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2497 φ 0.2103 mm 0.2184 mm<br />

0.3941 phi-units MV 0.0649 mm<br />

-0.3428 NU MV 1.8157 NU<br />

3.7180 NU MV 12.5905 NU<br />

-4.308 NU MV 0.11 NU<br />

34.136 NU MV 0.29 NU<br />

2.1685 φ 0.2224 mm 0.2229 mm<br />

MV MV 0.2974 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

0.0 1.0<br />

Coarser<br />

Central Segment<br />

Littoral Segment<br />

Littoral Segment<br />

Eolian Segment<br />

2.0 3.0<br />

Grain Size (Phi)<br />

202<br />

Settling Tail<br />

Littoral Segment<br />

Figure A.74. Method <strong>of</strong> SELF determination applied to sample 050505-02B<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-02C Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 87.3202 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 58.583 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0060 0.0102 0.0102<br />

0.75 0.625 0.0400 0.0683 0.0785<br />

1.00 0.875 0.2200 0.3755 0.4541<br />

1.25 1.125 0.7290 1.2444 1.6984<br />

1.50 1.375 1.8430 3.1460 4.8444<br />

1.75 1.625 6.4820 11.0646 15.9091<br />

2.00 1.875 10.0870 17.2183 33.1274<br />

2.25 2.125 11.9490 20.3967 53.5241<br />

2.50 2.375 15.3010 26.1185 79.6426<br />

2.75 2.625 8.1180 13.8573 93.4998<br />

3.00 2.875 3.1340 5.3497 98.8495<br />

3.25 3.125 0.5900 1.0071 99.8566<br />

3.50 3.375 0.0650 0.1110 99.9676<br />

3.75 3.625 0.0130 0.0222 99.9898<br />

4.00 3.875 0.0030 0.0051 99.9949<br />

5.00 4.5 0.0030 0.0051 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Figure A.75. Granplot analysis <strong>of</strong> sample 050505-02C<br />

203<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1714 φ 0.2220 mm 0.2314 mm<br />

0.4133 phi-units MV 0.0703 mm<br />

-0.2591 NU MV 1.2190 NU<br />

3.0446 NU MV 5.6622 NU<br />

-2.089 NU MV 0.03 NU<br />

17.993 NU MV 0.04 NU<br />

2.0818 φ 0.2362 mm 0.2367 mm<br />

Relative Dispersion: MV MV 0.3039 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral Segment<br />

1.0 2.0 3.0<br />

204<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.76. Method <strong>of</strong> SELF determination applied to sample 050505-02C


Sample I.D.: 050505-04A Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 87.3202 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 87.072 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0070 0.0080 0.0080<br />

0.50 0.375 0.0000 0.0000 0.0080<br />

0.75 0.625 0.0050 0.0057 0.0138<br />

1.00 0.875 0.0730 0.0838 0.0976<br />

1.25 1.125 0.5650 0.6489 0.7465<br />

1.50 1.375 2.2720 2.6093 3.3558<br />

1.75 1.625 10.8340 12.4426 15.7984<br />

2.00 1.875 18.9270 21.7372 37.5356<br />

2.25 2.125 22.0800 25.3583 62.8939<br />

2.50 2.375 22.8850 26.2828 89.1768<br />

2.75 2.625 7.3960 8.4941 97.6709<br />

3.00 2.875 1.7770 2.0408 99.7117<br />

3.25 3.125 0.2130 0.2446 99.9564<br />

3.50 3.375 0.0300 0.0345 99.9908<br />

3.75 3.625 0.0050 0.0057 99.9966<br />

4.00 3.875 0.0010 0.0011 99.9977<br />

5.00 4.5 0.0020 0.0023 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Figure A.77. Granplot analysis <strong>of</strong> sample 050505-04A<br />

205<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1076 φ 0.2320 mm 0.2389 mm<br />

0.3480 phi-units MV 0.0595 mm<br />

-0.1357 NU MV 0.9481 NU<br />

3.0057 NU MV 5.4333 NU<br />

-0.975 NU MV 0.02 NU<br />

20.097 NU MV 0.05 NU<br />

1.9979 φ 0.2504 mm 0.2513 mm<br />

Relative Dispersion: MV MV 0.2490 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Coarser<br />

Central Segment<br />

1.0<br />

Littoral Segment<br />

2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.78. Method <strong>of</strong> SELF determination applied to sample 050505-04A<br />

206<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: 050505-04B Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 98.4221 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 87.866 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0070 0.0080 0.0080<br />

0.50 0.375 0.0000 0.0000 0.0080<br />

0.75 0.625 0.0020 0.0023 0.0102<br />

1.00 0.875 0.0710 0.0808 0.0910<br />

1.25 1.125 1.5620 1.7777 1.8688<br />

1.50 1.375 11.1000 12.6329 14.5016<br />

1.75 1.625 24.3400 27.7013 42.2029<br />

2.00 1.875 18.9530 21.5703 63.7732<br />

2.25 2.125 14.3570 16.3397 80.1129<br />

2.50 2.375 12.6700 14.4197 94.5326<br />

2.75 2.625 3.8710 4.4056 98.9382<br />

3.00 2.875 0.8250 0.9389 99.8771<br />

3.25 3.125 0.0940 0.1070 99.9841<br />

3.50 3.375 0.0090 0.0102 99.9943<br />

3.75 3.625 0.0020 0.0023 99.9966<br />

4.00 3.875 0.0000 0.0000 99.9966<br />

5.00 4.5 0.0030 0.0034 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.79. Granplot analysis <strong>of</strong> sample 050505-04B<br />

207<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

1.8853 φ 0.2707 mm 0.2798 mm<br />

0.3797 phi-units MV 0.0710 mm<br />

0.3407 NU MV 0.2544 NU<br />

2.5948 NU MV 3.0067 NU<br />

2.538 NU MV 0.01 NU<br />

14.748 NU MV 0.02 NU<br />

1.7154 φ 0.3045 mm 0.3056 mm<br />

MV MV 0.2536 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Central Segment<br />

Littoral Segment<br />

Eolian Segment<br />

208<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.80. Method <strong>of</strong> SELF determination applied to sample 050505-04B


Sample I.D.: 050505-05A Sampled by: Beth Forrest Start Sieve Size (phi): 1.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 98.4221 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 78.323 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

1.25 1.125 0.1207 0.1541 0.1541<br />

1.50 1.375 0.9384 1.1981 1.3522<br />

1.75 1.625 5.8627 7.4853 8.8375<br />

2.00 1.875 11.0188 14.0685 22.9060<br />

2.25 2.125 16.5430 21.1216 44.0276<br />

2.50 2.375 26.3282 33.6150 77.6426<br />

2.75 2.625 11.5257 14.7157 92.3583<br />

3.00 2.875 4.1531 5.3025 97.6608<br />

3.25 3.125 1.3263 1.6934 99.3542<br />

3.50 3.375 0.4413 0.5634 99.9176<br />

3.75 3.625 0.0479 0.0612 99.9788<br />

4.00 3.875 0.0066 0.0084 99.9872<br />

5.00 4.5 0.0100 0.0128 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.81. Granplot analysis <strong>of</strong> sample 050505-05A<br />

209<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2646 φ 0.2081 mm 0.2148 mm<br />

0.3657 phi-units MV 0.0553 mm<br />

0.0419 NU MV 0.7702 NU<br />

3.3728 NU MV 3.7259 NU<br />

2.301 NU MV 0.01 NU<br />

24.022 NU MV 0.00 NU<br />

2.1694 φ 0.2223 mm 0.2228 mm<br />

MV MV 0.2573 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

Eolian Segment<br />

210<br />

3.0<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.82. Method <strong>of</strong> SELF determination applied to sample 050505-05A


Sample I.D.: 050505-05B Sampled by: Beth Forrest Start Sieve Size (phi): 1<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 98.4221 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 97.966 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

1.00 0.875 0.1090 0.1113 0.1113<br />

1.25 1.125 0.3590 0.3665 0.4777<br />

1.50 1.375 1.5060 1.5373 2.0150<br />

1.75 1.625 7.5550 7.7119 9.7268<br />

2.00 1.875 16.9980 17.3509 27.0778<br />

2.25 2.125 23.6080 24.0982 51.1759<br />

2.50 2.375 31.0470 31.6916 82.8675<br />

2.75 2.625 11.3600 11.5959 94.4634<br />

3.00 2.875 3.9560 4.0381 98.5015<br />

3.25 3.125 1.0890 1.1116 99.6131<br />

3.50 3.375 0.3160 0.3226 99.9357<br />

3.75 3.625 0.0420 0.0429 99.9786<br />

4.00 3.875 0.0050 0.0051 99.9837<br />

5.00 4.5 0.0160 0.0163 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.83. Granplot analysis <strong>of</strong> sample 050505-05B<br />

211<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2102 φ 0.2161 mm 0.2228 mm<br />

0.3577 phi-units MV 0.0566 mm<br />

0.0030 NU MV 0.9470 NU<br />

3.6563 NU MV 4.9348 NU<br />

1.999 NU MV 0.01 NU<br />

32.610 NU MV 0.01 NU<br />

2.1128 φ 0.2312 mm 0.2314 mm<br />

MV MV 0.2541 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

Littoral - Waves<br />

212<br />

3.0<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.84. Method <strong>of</strong> SELF determination applied to sample 050505-05B


Sample I.D.: 011106-06 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 1/11/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 96.2938 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 95.746 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0046 0.0048 0.0048<br />

0.75 0.625 0.0164 0.0171 0.0219<br />

1.00 0.875 0.0825 0.0862 0.1081<br />

1.25 1.125 0.3418 0.3570 0.4651<br />

1.50 1.375 1.7191 1.7955 2.2606<br />

1.75 1.625 8.3675 8.7392 10.9998<br />

2.00 1.875 16.7274 17.4705 28.4703<br />

2.25 2.125 22.6300 23.6354 52.1057<br />

2.50 2.375 27.1119 28.3164 80.4221<br />

2.75 2.625 12.6678 13.2306 93.6527<br />

3.00 2.875 5.1082 5.3351 98.9878<br />

3.25 3.125 0.8980 0.9379 99.9257<br />

3.50 3.375 0.0578 0.0604 99.9861<br />

3.75 3.625 0.0095 0.0099 99.9960<br />

4.00 3.875 0.0036 0.0038 99.9998<br />

5.00 4.5 0.0002 0.0002 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.85. Granplot analysis <strong>of</strong> sample 011106-06<br />

213<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2065 φ 0.2167 mm 0.2238 mm<br />

0.3668 phi-units MV 0.0587 mm<br />

-0.1190 NU MV 0.9558 NU<br />

2.9809 NU MV 5.0045 NU<br />

-1.175 NU MV 0.02 NU<br />

16.235 NU MV 0.02 NU<br />

2.1027 φ 0.2328 mm 0.2331 mm<br />

MV MV 0.2625 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


195 204<br />

99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral - Waves<br />

Fluvial Segment<br />

214<br />

Settling Tail<br />

Central Segment<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.86. Method <strong>of</strong> SELF determination applied to sample 011106-06


Sample I.D.: 011106-03 Sampled by: Beth Forrest Start Sieve Size (phi): 0<br />

Sample Date: 01/11/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 96.7606 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 96.326 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0125 0.0130 0.0130<br />

0.25 0.125 0.0119 0.0124 0.0253<br />

0.50 0.375 0.0207 0.0215 0.0468<br />

0.75 0.625 0.0685 0.0711 0.1179<br />

1.00 0.875 0.1903 0.1976 0.3155<br />

1.25 1.125 0.7352 0.7632 1.0787<br />

1.50 1.375 2.3960 2.4874 3.5661<br />

1.75 1.625 9.4616 9.8225 13.3886<br />

2.00 1.875 15.7269 16.3268 29.7154<br />

2.25 2.125 21.0608 21.8641 51.5795<br />

2.50 2.375 28.0542 29.1243 80.7037<br />

2.75 2.625 13.1382 13.6393 94.3431<br />

3.00 2.875 4.6999 4.8792 99.2222<br />

3.25 3.125 0.6362 0.6605 99.8827<br />

3.50 3.375 0.0829 0.0861 99.9688<br />

3.75 3.625 0.0172 0.0179 99.9866<br />

4.00 3.875 0.0045 0.0047 99.9913<br />

5.00 4.5 0.0084 0.0087 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.87. Granplot analysis <strong>of</strong> sample 011106-03<br />

215<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1902 φ 0.2191 mm 0.2273 mm<br />

0.3859 phi-units MV 0.0657 mm<br />

-0.3417 NU MV 1.6872 NU<br />

3.5196 NU MV 11.7067 NU<br />

-3.996 NU MV 0.11 NU<br />

33.161 NU MV 0.29 NU<br />

2.1069 φ 0.2321 mm 0.2324 mm<br />

MV MV 0.2891 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation. Settling Tail<br />

Littoral Segment<br />

Fluvial Segment<br />

Littoral Segment<br />

216<br />

Central Segment<br />

1.0 2.0 3.0<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.88. Method <strong>of</strong> SELF determination applied to sample 011106-03


Sample I.D.: 011106-04 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 1/11/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 91.2133 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 90.999 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0017 0.0019 0.0019<br />

0.50 0.375 0.0026 0.0029 0.0047<br />

0.75 0.625 0.0129 0.0142 0.0189<br />

1.00 0.875 0.0453 0.0498 0.0687<br />

1.25 1.125 0.2992 0.3288 0.3975<br />

1.50 1.375 1.4245 1.5654 1.9629<br />

1.75 1.625 6.5485 7.1963 9.1592<br />

2.00 1.875 12.5952 13.8411 23.0002<br />

2.25 2.125 19.6534 21.5975 44.5977<br />

2.50 2.375 29.9791 32.9446 77.5423<br />

2.75 2.625 14.3691 15.7905 93.3328<br />

3.00 2.875 5.3614 5.8917 99.2245<br />

3.25 3.125 0.6043 0.6641 99.8886<br />

3.50 3.375 0.0723 0.0795 99.9680<br />

3.75 3.625 0.0156 0.0171 99.9852<br />

4.00 3.875 0.0051 0.0056 99.9908<br />

5.00 4.5 0.0084 0.0092 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.89. Granplot analysis <strong>of</strong> sample 011106-04<br />

217<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2522 φ 0.2099 mm 0.2165 mm<br />

0.3569 phi-units MV 0.0566 mm<br />

-0.2864 NU MV 1.1606 NU<br />

3.2744 NU MV 5.7362 NU<br />

-1.660 NU MV 0.02 NU<br />

24.521 NU MV 0.03 NU<br />

2.1660 φ 0.2228 mm 0.2233 mm<br />

MV MV 0.2612 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Fluvial<br />

Central Segment<br />

218<br />

Littoral - Waves<br />

Littoral - Waves<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.90. Method <strong>of</strong> SELF determination applied to sample 011106-04


Sample I.D.: H Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 46.492 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0000 0.0000 0.0000<br />

0.50 0.375 0.0130 0.0280 0.0280<br />

0.75 0.625 0.0330 0.0710 0.0989<br />

1.00 0.875 0.1210 0.2603 0.3592<br />

1.25 1.125 0.4590 0.9873 1.3465<br />

1.50 1.375 1.9340 4.1599 5.5063<br />

1.75 1.625 4.6610 10.0254 15.5317<br />

2.00 1.875 9.0200 19.4012 34.9329<br />

2.25 2.125 15.6710 33.7069 68.6398<br />

2.50 2.375 8.7580 18.8376 87.4774<br />

2.75 2.625 4.8520 10.4362 97.9136<br />

3.00 2.875 0.8240 1.7723 99.6860<br />

3.25 3.125 0.0530 0.1140 99.8000<br />

3.50 3.375 0.0810 0.1742 99.9742<br />

3.75 3.625 0.0020 0.0043 99.9785<br />

4.00 3.875 0.0000 0.0000 99.9785<br />

4.25 4.125 0.0100 0.0215 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.91. Granplot analysis <strong>of</strong> sample H<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set J<br />

Measure<br />

219<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.0969 φ 0.2338 mm<br />

St<strong>and</strong>ard Deviation: 0.3629 phi-units MV<br />

Skewness: -0.2394 NU MV<br />

Kurtosis: 3.6943 NU MV<br />

5th Moment Measure: -1.744 NU MV<br />

6th Moment Measure: 30.997 NU MV<br />

Median: 1.9868 φ 0.2523 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2413 mm<br />

0.0644 mm<br />

1.3348 NU<br />

6.9874 NU<br />

0.03 NU<br />

0.05 NU<br />

0.2532 mm<br />

0.2667 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


201<br />

99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

220<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.92. Method <strong>of</strong> SELF determination applied to sample H


Sample I.D.: I Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 44.428 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0030 0.0068 0.0068<br />

0.50 0.375 0.0080 0.0180 0.0248<br />

0.75 0.625 0.0440 0.0990 0.1238<br />

1.00 0.875 0.1380 0.3106 0.4344<br />

1.25 1.125 0.4520 1.0174 1.4518<br />

1.50 1.375 1.6720 3.7634 5.2152<br />

1.75 1.625 3.6790 8.2808 13.4960<br />

2.00 1.875 6.6540 14.9770 28.4730<br />

2.25 2.125 11.0020 24.7637 53.2367<br />

2.50 2.375 9.2520 20.8247 74.0614<br />

2.75 2.625 7.8970 17.7748 91.8362<br />

3.00 2.875 2.8700 6.4599 98.2961<br />

3.25 3.125 0.6040 1.3595 99.6556<br />

3.50 3.375 0.0620 0.1396 99.7952<br />

3.75 3.625 0.0170 0.0383 99.8334<br />

4.00 3.875 0.0050 0.0113 99.8447<br />

4.25 4.125 0.0690 0.1553 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.93. Granplot analysis <strong>of</strong> sample I<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set J<br />

Measure<br />

221<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2105 φ 0.2161 mm<br />

St<strong>and</strong>ard Deviation: 0.4279 phi-units MV<br />

Skewness: -0.1677 NU MV<br />

Kurtosis: 3.5673 NU MV<br />

5th Moment Measure: -0.053 NU MV<br />

6th Moment Measure: 29.771 NU MV<br />

Median: 2.0923 φ 0.2345 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2257 mm<br />

0.0711 mm<br />

1.3507 NU<br />

6.7991 NU<br />

0.04 NU<br />

0.07 NU<br />

0.2349 mm<br />

0.3148 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0<br />

222<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.94. Method <strong>of</strong> SELF determination applied to sample I


Sample I.D.: 011006-21 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 65.6400 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 65.469 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0067 0.0102 0.0102<br />

0.75 0.625 0.0070 0.0107 0.0209<br />

1.00 0.875 0.0354 0.0541 0.0750<br />

1.25 1.125 0.1979 0.3023 0.3773<br />

1.50 1.375 1.0588 1.6173 1.9945<br />

1.75 1.625 5.2128 7.9623 9.9568<br />

2.00 1.875 10.0107 15.2908 25.2476<br />

2.25 2.125 14.8784 22.7259 47.9735<br />

2.50 2.375 22.0760 33.7199 81.6934<br />

2.75 2.625 9.4780 14.4771 96.1705<br />

3.00 2.875 2.3243 3.5502 99.7208<br />

3.25 3.125 0.1417 0.2164 99.9372<br />

3.50 3.375 0.0235 0.0359 99.9731<br />

3.75 3.625 0.0082 0.0125 99.9856<br />

4.00 3.875 0.0031 0.0047 99.9904<br />

5.00 4.5 0.0063 0.0096 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.95. Granplot analysis <strong>of</strong> sample 011006-21<br />

223<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2172 φ 0.2151 mm 0.2213 mm<br />

0.3423 phi-units MV 0.0556 mm<br />

-0.3466 NU MV 1.1759 NU<br />

3.2828 NU MV 5.7846 NU<br />

-1.798 NU MV 0.02 NU<br />

28.189 NU MV 0.03 NU<br />

2.1400 φ 0.2269 mm 0.2271 mm<br />

MV MV 0.2515 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral Segment<br />

Littoral Segment<br />

Littoral Segment<br />

224<br />

Central Segment<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.96. Method <strong>of</strong> SELF determination applied to sample 011006-21


Sample I.D.: 011006-22 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 1/10/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 103.8503 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams sieved 01/25/2006<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 103.544 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0034 0.0033 0.0033<br />

0.50 0.375 0.0134 0.0129 0.0162<br />

0.75 0.625 0.1114 0.1076 0.1238<br />

1.00 0.875 0.4134 0.3993 0.5231<br />

1.25 1.125 1.3897 1.3421 1.8652<br />

1.50 1.375 4.1483 4.0063 5.8715<br />

1.75 1.625 13.5828 13.1180 18.9895<br />

2.00 1.875 20.3888 19.6910 38.6805<br />

2.25 2.125 23.1198 22.3286 61.0091<br />

2.50 2.375 26.6754 25.7625 86.7716<br />

2.75 2.625 10.6911 10.3252 97.0968<br />

3.00 2.875 2.7268 2.6335 99.7303<br />

3.25 3.125 0.2389 0.2307 99.9610<br />

3.50 3.375 0.0261 0.0252 99.9862<br />

3.75 3.625 0.0068 0.0066 99.9928<br />

4.00 3.875 0.0020 0.0019 99.9947<br />

5.00 4.5 0.0055 0.0053 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.97. Granplot analysis <strong>of</strong> sample 011006-22<br />

225<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.0985 φ 0.2335 mm 0.2423 mm<br />

0.3885 phi-units MV 0.0695 mm<br />

-0.3167 NU MV 1.2654 NU<br />

3.1175 NU MV 6.1528 NU<br />

-2.696 NU MV 0.03 NU<br />

21.117 NU MV 0.05 NU<br />

2.0017 φ 0.2497 mm 0.2506 mm<br />

MV MV 0.2868 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral - Waves<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

226<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.98. Method <strong>of</strong> SELF determination applied to sample 011006-22


Sample I.D.: J Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 34.046 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0000 0.0000 0.0000<br />

0.50 0.375 0.0060 0.0176 0.0176<br />

0.75 0.625 0.0230 0.0676 0.0852<br />

1.00 0.875 0.0730 0.2144 0.2996<br />

1.25 1.125 0.3010 0.8841 1.1837<br />

1.50 1.375 1.0010 2.9401 4.1238<br />

1.75 1.625 2.4340 7.1492 11.2730<br />

2.00 1.875 4.9470 14.5303 25.8033<br />

2.25 2.125 8.2710 24.2936 50.0969<br />

2.50 2.375 7.6860 22.5753 72.6723<br />

2.75 2.625 6.3340 18.6042 91.2765<br />

3.00 2.875 2.1750 6.3884 97.6649<br />

3.25 3.125 0.4540 1.3335 98.9984<br />

3.50 3.375 0.0300 0.0881 99.0865<br />

3.75 3.625 0.0070 0.0206 99.1071<br />

4.00 3.875 0.0000 0.0000 99.1071<br />

4.25 4.125 0.3040 0.8929 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.99. Granplot analysis <strong>of</strong> sample J<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set J<br />

Measure<br />

227<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2480 φ 0.2105 mm<br />

St<strong>and</strong>ard Deviation: 0.4425 phi-units MV<br />

Skewness: 0.3455 NU MV<br />

Kurtosis: 5.2082 NU MV<br />

5th Moment Measure: 9.994 NU MV<br />

6th Moment Measure: 65.019 NU MV<br />

Median: 2.1240 φ 0.2294 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2201 mm<br />

0.0685 mm<br />

1.2048 NU<br />

6.3947 NU<br />

0.03 NU<br />

0.05 NU<br />

0.2294 mm<br />

0.3111 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

228<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.100. Method <strong>of</strong> SELF determination applied to sample J


Sample I.D.: K Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 45.275 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0020 0.0044 0.0044<br />

0.50 0.375 0.0200 0.0442 0.0486<br />

0.75 0.625 0.0490 0.1082 0.1568<br />

1.00 0.875 0.1670 0.3689 0.5257<br />

1.25 1.125 0.4900 1.0823 1.6080<br />

1.50 1.375 1.7570 3.8807 5.4887<br />

1.75 1.625 4.1190 9.0977 14.5864<br />

2.00 1.875 7.7260 17.0646 31.6510<br />

2.25 2.125 12.1880 26.9199 58.5710<br />

2.50 2.375 9.4010 20.7642 79.3352<br />

2.75 2.625 6.8930 15.2247 94.5599<br />

3.00 2.875 1.9870 4.3887 98.9486<br />

3.25 3.125 0.3700 0.8172 99.7659<br />

3.50 3.375 0.0390 0.0861 99.8520<br />

3.75 3.625 0.0060 0.0133 99.8653<br />

4.00 3.875 0.0000 0.0000 99.8653<br />

4.25 4.125 0.0610 0.1347 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set J<br />

Measure<br />

Figure A.101. Granplot analysis <strong>of</strong> sample K<br />

229<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.1629 φ 0.2233 mm<br />

St<strong>and</strong>ard Deviation: 0.4111 phi-units MV<br />

Skewness: -0.1736 NU MV<br />

Kurtosis: 3.7896 NU MV<br />

5th Moment Measure: -0.076 NU MV<br />

6th Moment Measure: 35.680 NU MV<br />

Median: 2.0454 φ 0.2423 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2326 mm<br />

0.0705 mm<br />

1.4286 NU<br />

7.5278 NU<br />

0.05 NU<br />

0.08 NU<br />

0.2431 mm<br />

0.3033 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

230<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.102. Method <strong>of</strong> SELF determination applied to sample K


Sample I.D.: L Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 42.620 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0040 0.0094 0.0094<br />

0.50 0.375 0.0190 0.0446 0.0540<br />

0.75 0.625 0.1280 0.3003 0.3543<br />

1.00 0.875 0.3720 0.8728 1.2271<br />

1.25 1.125 0.9170 2.1516 3.3787<br />

1.50 1.375 2.4070 5.6476 9.0263<br />

1.75 1.625 4.2510 9.9742 19.0005<br />

2.00 1.875 7.0360 16.5087 35.5092<br />

2.25 2.125 10.3960 24.3923 59.9015<br />

2.50 2.375 8.3460 19.5824 79.4838<br />

2.75 2.625 6.2430 14.6481 94.1319<br />

3.00 2.875 2.0000 4.6926 98.8245<br />

3.25 3.125 0.4070 0.9550 99.7794<br />

3.50 3.375 0.0480 0.1126 99.8921<br />

3.75 3.625 0.0100 0.0235 99.9155<br />

4.00 3.875 0.0020 0.0047 99.9202<br />

4.25 4.125 0.0340 0.0798 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.103. Granplot analysis <strong>of</strong> sample L<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set J<br />

Measure<br />

231<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.1240 φ 0.2294 mm<br />

St<strong>and</strong>ard Deviation: 0.4538 phi-units MV<br />

Skewness: -0.3261 NU MV<br />

Kurtosis: 3.3757 NU MV<br />

5th Moment Measure: -2.143 NU MV<br />

6th Moment Measure: 23.316 NU MV<br />

Median: 2.0235 φ 0.246 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2412 mm<br />

0.0825 mm<br />

1.4893 NU<br />

6.7461 NU<br />

0.05 NU<br />

0.08 NU<br />

0.2469 mm<br />

0.3422 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

232<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.104. Method <strong>of</strong> SELF determination applied to sample L


Sample I.D.: 12 Sampled by: W. Wei Start Sieve Size (phi): 0.5<br />

Sample Date: 1/1/1984 Analyzed by: W. Wei End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 47.2390 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 47.239 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0000 0.0000 0.0000<br />

0.75 0.625 0.0830 0.1757 0.1757<br />

1.00 0.875 0.1480 0.3133 0.4890<br />

1.25 1.125 0.3390 0.7176 1.2066<br />

1.50 1.375 0.7970 1.6872 2.8938<br />

1.75 1.625 2.5190 5.3325 8.2263<br />

2.00 1.875 5.3030 11.2259 19.4521<br />

2.25 2.125 12.1770 25.7774 45.2296<br />

2.50 2.375 11.8390 25.0619 70.2915<br />

2.75 2.625 8.3650 17.7078 87.9993<br />

3.00 2.875 4.8230 10.2098 98.2091<br />

3.25 3.125 0.7060 1.4945 99.7036<br />

3.50 3.375 0.0720 0.1524 99.8561<br />

3.75 3.625 0.0220 0.0466 99.9026<br />

4.00 3.875 0.0160 0.0339 99.9365<br />

4.25 4.125 0.0300 0.0635 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.105. Granplot analysis <strong>of</strong> sample 12<br />

233<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2911 φ 0.2043 mm 0.2125 mm<br />

0.4013 phi-units MV 0.0647 mm<br />

-0.3534 NU MV 1.7512 NU<br />

3.9231 NU MV 9.3227 NU<br />

-3.995 NU MV 0.05 NU<br />

34.273 NU MV 0.07 NU<br />

2.1726 φ 0.2218 mm 0.2223 mm<br />

MV MV 0.3045 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

7<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

234<br />

i<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.106. Method <strong>of</strong> SELF determination applied to sample 12


Sample I.D.: 050505-03A Sampled by: Beth Forrest Start Sieve Size (phi): -0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 64.3948 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 64.349 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

-0.25 -0.375 0.0080 0.0124 0.0124<br />

0.00 -0.125 0.0120 0.0186 0.0311<br />

0.25 0.125 0.0230 0.0357 0.0668<br />

0.50 0.375 0.0080 0.0124 0.0793<br />

0.75 0.625 0.0160 0.0249 0.1041<br />

1.00 0.875 0.1160 0.1803 0.2844<br />

1.25 1.125 0.6020 0.9355 1.2199<br />

1.50 1.375 1.6460 2.5579 3.7778<br />

1.75 1.625 5.0090 7.7841 11.5620<br />

2.00 1.875 6.7700 10.5208 22.0827<br />

2.25 2.125 9.9930 15.5294 37.6121<br />

2.50 2.375 20.1180 31.2639 68.8760<br />

2.75 2.625 13.5560 21.0664 89.9423<br />

3.00 2.875 5.4020 8.3948 98.3372<br />

3.25 3.125 0.9560 1.4856 99.8228<br />

3.50 3.375 0.0870 0.1352 99.9580<br />

3.75 3.625 0.0150 0.0233 99.9814<br />

4.00 3.875 0.0040 0.0062 99.9876<br />

5.00 4.5 0.0080 0.0124 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.107. Granplot analysis <strong>of</strong> sample 050505-03A<br />

235<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.2907 φ 0.2044 mm 0.2133 mm<br />

0.4119 phi-units MV 0.0698 mm<br />

-0.6416 NU MV 2.4715 NU<br />

3.9062 NU MV 20.9083 NU<br />

-7.801 NU MV 0.30 NU<br />

45.326 NU MV 1.02 NU<br />

2.2241 φ 0.214 mm 0.2148 mm<br />

MV MV 0.3271 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Fluvial<br />

Segment<br />

Central Segment<br />

Fluvial Segment<br />

0.03 Eolian Segment<br />

0.01<br />

236<br />

Littoral - Waves<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.108. Method <strong>of</strong> SELF determination applied to sample 050505-03A


Sample I.D.: 050505-03B Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 05/05/2005 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 65.3229 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 64.992 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0020 0.0031 0.0031<br />

0.50 0.375 0.0050 0.0077 0.0108<br />

0.75 0.625 0.0070 0.0108 0.0215<br />

1.00 0.875 0.0240 0.0369 0.0585<br />

1.25 1.125 0.1160 0.1785 0.2370<br />

1.50 1.375 0.5140 0.7909 1.0278<br />

1.75 1.625 3.0060 4.6252 5.6530<br />

2.00 1.875 8.0500 12.3861 18.0391<br />

2.25 2.125 13.1950 20.3025 38.3416<br />

2.50 2.375 22.7880 35.0628 73.4044<br />

2.75 2.625 11.9000 18.3099 91.7144<br />

3.00 2.875 4.4500 6.8470 98.5614<br />

3.25 3.125 0.7860 1.2094 99.7707<br />

3.50 3.375 0.1160 0.1785 99.9492<br />

3.75 3.625 0.0250 0.0385 99.9877<br />

4.00 3.875 0.0040 0.0062 99.9938<br />

5.00 4.5 0.0040 0.0062 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.109. Granplot analysis <strong>of</strong> sample 050505-03B<br />

237<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3081 φ 0.2019 mm 0.2077 mm<br />

0.3428 phi-units MV 0.0519 mm<br />

-0.2263 NU MV 1.2542 NU<br />

3.5255 NU MV 7.5602 NU<br />

-1.963 NU MV 0.03 NU<br />

29.470 NU MV 0.06 NU<br />

2.2081 φ 0.2164 mm 0.2171 mm<br />

MV MV 0.2499 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Littoral - Waves<br />

Fluvial<br />

Segment<br />

Fluvial<br />

1.0 2.0 3.0<br />

238<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.110. Method <strong>of</strong> SELF determination applied to sample 050505-03B


Sample I.D.: D Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 81.979 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0510 0.0622 0.0622<br />

0.25 0.125 0.0350 0.0427 0.1049<br />

0.50 0.375 0.0440 0.0537 0.1586<br />

0.75 0.625 0.0800 0.0976 0.2562<br />

1.00 0.875 0.2150 0.2623 0.5184<br />

1.25 1.125 0.6220 0.7587 1.2772<br />

1.50 1.375 2.4350 2.9703 4.2474<br />

1.75 1.625 5.8260 7.1067 11.3541<br />

2.00 1.875 11.7740 14.3622 25.7163<br />

2.25 2.125 21.7930 26.5836 52.3000<br />

2.50 2.375 17.9950 21.9507 74.2507<br />

2.75 2.625 14.3790 17.5399 91.7906<br />

3.00 2.875 4.3960 5.3623 97.1529<br />

3.25 3.125 0.9030 1.1015 98.2544<br />

3.50 3.375 1.1100 1.3540 99.6084<br />

3.75 3.625 0.0460 0.0561 99.6645<br />

4.00 3.875 0.0150 0.0183 99.6828<br />

4.25 4.125 0.2600 0.3172 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.111 Granplot analysis <strong>of</strong> sample D<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

239<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2340 φ 0.2126 mm<br />

St<strong>and</strong>ard Deviation: 0.4344 phi-units MV<br />

Skewness: -0.0197 NU MV<br />

Kurtosis: 5.0218 NU MV<br />

5th Moment Measure: -0.636 NU MV<br />

6th Moment Measure: 63.730 NU MV<br />

Median: 2.1034 φ 0.2327 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2225 mm<br />

0.0731 mm<br />

2.5549 NU<br />

22.2082 NU<br />

0.30 NU<br />

0.88 NU<br />

0.2330 mm<br />

0.3288 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

240<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.112. Method <strong>of</strong> SELF determination applied to sample D


Sample I.D.: C Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 75.549 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0010 0.0013 0.0013<br />

0.50 0.375 0.0210 0.0278 0.0291<br />

0.75 0.625 0.1000 0.1324 0.1615<br />

1.00 0.875 0.3560 0.4712 0.6327<br />

1.25 1.125 1.4130 1.8703 2.5030<br />

1.50 1.375 5.2400 6.9359 9.4389<br />

1.75 1.625 10.2530 13.5713 23.0102<br />

2.00 1.875 16.6740 22.0704 45.0807<br />

2.25 2.125 20.2770 26.8395 71.9202<br />

2.50 2.375 11.5310 15.2629 87.1832<br />

2.75 2.625 7.6010 10.0610 97.2442<br />

3.00 2.875 1.7800 2.3561 99.6003<br />

3.25 3.125 0.2340 0.3097 99.9100<br />

3.50 3.375 0.0200 0.0265 99.9365<br />

3.75 3.625 0.0050 0.0066 99.9431<br />

4.00 3.875 0.0000 0.0000 99.9431<br />

4.25 4.125 0.0430 0.0569 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

Figure A.113. Granplot analysis <strong>of</strong> sample C<br />

241<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.0337 φ 0.2442 mm<br />

St<strong>and</strong>ard Deviation: 0.4055 phi-units MV<br />

Skewness: -0.0781 NU MV<br />

Kurtosis: 3.3175 NU MV<br />

5th Moment Measure: 0.421 NU MV<br />

6th Moment Measure: 25.857 NU MV<br />

Median: 1.9208 φ 0.2641 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2540 mm<br />

0.0741 mm<br />

1.0862 NU<br />

5.4243 NU<br />

0.03 NU<br />

0.04 NU<br />

0.2647 mm<br />

0.2917 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0<br />

242<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.114. Method <strong>of</strong> SELF determination applied to sample C


Sample I.D.: G Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 58.006 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0000 0.0000 0.0000<br />

0.50 0.375 0.0110 0.0190 0.0190<br />

0.75 0.625 0.0490 0.0845 0.1034<br />

1.00 0.875 0.1630 0.2810 0.3844<br />

1.25 1.125 0.6390 1.1016 1.4861<br />

1.50 1.375 2.2350 3.8530 5.3391<br />

1.75 1.625 5.1930 8.9525 14.2916<br />

2.00 1.875 10.2180 17.6154 31.9070<br />

2.25 2.125 15.9640 27.5213 59.4283<br />

2.50 2.375 11.8100 20.3600 79.7883<br />

2.75 2.625 8.2020 14.1399 93.9282<br />

3.00 2.875 2.4810 4.2771 98.2054<br />

3.25 3.125 0.6240 1.0758 99.2811<br />

3.50 3.375 0.1060 0.1827 99.4638<br />

3.75 3.625 0.0780 0.1345 99.5983<br />

4.00 3.875 0.0030 0.0052 99.6035<br />

4.25 4.125 0.2300 0.3965 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

Figure A.115. Granplot analysis <strong>of</strong> sample G<br />

243<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.1679 φ 0.2225 mm<br />

St<strong>and</strong>ard Deviation: 0.4231 phi-units MV<br />

Skewness: 0.2212 NU MV<br />

Kurtosis: 4.6612 NU MV<br />

5th Moment Measure: 7.198 NU MV<br />

6th Moment Measure: 55.808 NU MV<br />

Median: 2.0394 φ 0.2433 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2320 mm<br />

0.0694 mm<br />

1.1568 NU<br />

6.1502 NU<br />

0.03 NU<br />

0.04 NU<br />

0.2441 mm<br />

0.2992 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

244<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.116. Method <strong>of</strong> SELF determination applied to sample G


Sample I.D.: 011106-09 Sampled by: Beth Forrest Start Sieve Size (phi): 0.5<br />

Sample Date: 01/11/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 73.7681 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 73.813 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.50 0.375 0.0159 0.0215 0.0215<br />

0.75 0.625 0.0064 0.0087 0.0302<br />

1.00 0.875 0.0114 0.0154 0.0457<br />

1.25 1.125 0.0378 0.0512 0.0969<br />

1.50 1.375 0.6365 0.8623 0.9592<br />

1.75 1.625 2.6560 3.5983 4.5575<br />

2.00 1.875 6.1547 8.3382 12.8957<br />

2.25 2.125 11.1535 15.1105 28.0061<br />

2.50 2.375 25.5132 34.5646 62.5707<br />

2.75 2.625 17.9318 24.2935 86.8643<br />

3.00 2.875 8.2091 11.1215 97.9857<br />

3.25 3.125 1.3440 1.8208 99.8065<br />

3.50 3.375 0.1131 0.1532 99.9598<br />

3.75 3.625 0.0173 0.0234 99.9832<br />

4.00 3.875 0.0034 0.0046 99.9878<br />

5.00 4.5 0.0090 0.0122 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.117. Granplot analysis <strong>of</strong> sample 011106-09<br />

245<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.3906 φ 0.1907 mm 0.1963 mm<br />

0.3443 phi-units MV 0.0506 mm<br />

-0.4242 NU MV 1.5256 NU<br />

3.7121 NU MV 9.0510 NU<br />

-3.986 NU MV 0.04 NU<br />

34.764 NU MV 0.07 NU<br />

2.2841 φ 0.2053 mm 0.2060 mm<br />

MV MV 0.2575 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral - Waves<br />

Fluvial<br />

Segment<br />

Fluvial<br />

Central Segment<br />

1.0 2.0<br />

246<br />

Eolian Segment<br />

3.0<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.118. Method <strong>of</strong> SELF determination applied to sample 011106-09


Sample I.D.: 011106-10 Sampled by: Beth Forrest Start Sieve Size (phi): 0.25<br />

Sample Date: 01/11/2006 Analyzed by: Beth Forrest End Sieve Size (phi): 4<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: 106.7406 grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams<br />

Dry Sieved Fines Mass: grams<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 106.215 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.25 0.125 0.0049 0.0046 0.0046<br />

0.50 0.375 0.0040 0.0038 0.0084<br />

0.75 0.625 0.0416 0.0392 0.0475<br />

1.00 0.875 0.1546 0.1456 0.1931<br />

1.25 1.125 0.6128 0.5769 0.7700<br />

1.50 1.375 2.4050 2.2643 3.0343<br />

1.75 1.625 10.0632 9.4744 12.5087<br />

2.00 1.875 18.7783 17.6795 30.1881<br />

2.25 2.125 27.3197 25.7211 55.9092<br />

2.50 2.375 32.3728 30.4785 86.3877<br />

2.75 2.625 11.4755 10.8040 97.1917<br />

3.00 2.875 2.7267 2.5671 99.7589<br />

3.25 3.125 0.2005 0.1888 99.9477<br />

3.50 3.375 0.0471 0.0443 99.9920<br />

3.75 3.625 0.0015 0.0014 99.9934<br />

4.00 3.875 0.0032 0.0030 99.9964<br />

5.00 4.5 0.0038 0.0036 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

5.00 4.5 0.0000 100.0000<br />

Measure<br />

Mean:<br />

St<strong>and</strong>ard Deviation:<br />

Skewness:<br />

Kurtosis:<br />

5th Moment Measure:<br />

6th Moment Measure:<br />

Median:<br />

Relative Dispersion:<br />

Figure A.119. Granplot analysis <strong>of</strong> sample 011106-10<br />

247<br />

Statistical Results<br />

Original Data Transformed Original Data<br />

in φ Units Data in Millimeters<br />

2.1602 φ 0.2237 mm 0.2304 mm<br />

0.3464 phi-units MV 0.0589 mm<br />

-0.3573 NU MV 1.2982 NU<br />

3.3575 NU MV 6.8618 NU<br />

-3.192 NU MV 0.03 NU<br />

26.397 NU MV 0.05 NU<br />

2.0676 φ 0.2386 mm 0.2392 mm<br />

MV MV 0.2557 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Littoral Waves<br />

Fluvial<br />

Segment<br />

Fluvial<br />

Central Segment<br />

Littoral - Waves<br />

248<br />

Settling Tail<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.120. Method <strong>of</strong> SELF determination applied to sample 011106-10


Sample I.D.: F Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 53.122 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0000 0.0000 0.0000<br />

0.50 0.375 0.0090 0.0169 0.0169<br />

0.75 0.625 0.0400 0.0753 0.0922<br />

1.00 0.875 0.2610 0.4913 0.5836<br />

1.25 1.125 1.3250 2.4943 3.0778<br />

1.50 1.375 5.1730 9.7380 12.8158<br />

1.75 1.625 7.4850 14.0902 26.9060<br />

2.00 1.875 9.6860 18.2335 45.1395<br />

2.25 2.125 12.0370 22.6592 67.7987<br />

2.50 2.375 8.2460 15.5228 83.3214<br />

2.75 2.625 6.2070 11.6844 95.0058<br />

3.00 2.875 1.9980 3.7612 98.7670<br />

3.25 3.125 0.5520 1.0391 99.8061<br />

3.50 3.375 0.0640 0.1205 99.9266<br />

3.75 3.625 0.0110 0.0207 99.9473<br />

4.00 3.875 0.0010 0.0019 99.9492<br />

4.25 4.125 0.0270 0.0508 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.121. Granplot analysis <strong>of</strong> sample E<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

249<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.0421 φ 0.2428 mm<br />

St<strong>and</strong>ard Deviation: 0.4563 phi-units MV<br />

Skewness: 0.0251 NU MV<br />

Kurtosis: 2.7627 NU MV<br />

5th Moment Measure: 0.954 NU MV<br />

6th Moment Measure: 14.986 NU MV<br />

Median: 1.9286 φ 0.2627 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2550 mm<br />

0.0817 mm<br />

0.7997 NU<br />

3.7423 NU<br />

0.02 NU<br />

0.02 NU<br />

0.2633 mm<br />

0.3205 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

250<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.122. Method <strong>of</strong> SELF determination applied to sample E


Sample I.D.: B Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 91.912 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0130 0.0141 0.0141<br />

0.50 0.375 0.0210 0.0228 0.0370<br />

0.75 0.625 0.0980 0.1066 0.1436<br />

1.00 0.875 0.2890 0.3144 0.4580<br />

1.25 1.125 0.8520 0.9270 1.3850<br />

1.50 1.375 2.9720 3.2335 4.6185<br />

1.75 1.625 6.4440 7.0111 11.6296<br />

2.00 1.875 12.9500 14.0896 25.7192<br />

2.25 2.125 22.0680 24.0099 49.7291<br />

2.50 2.375 18.8280 20.4848 70.2139<br />

2.75 2.625 17.4580 18.9943 89.2082<br />

3.00 2.875 7.4080 8.0599 97.2680<br />

3.25 3.125 2.0870 2.2707 99.5387<br />

3.50 3.375 0.2020 0.2198 99.7585<br />

3.75 3.625 0.0490 0.0533 99.8118<br />

4.00 3.875 0.0160 0.0174 99.8292<br />

4.25 4.125 0.1570 0.1708 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

Figure A.123. Granplot analysis <strong>of</strong> sample B<br />

251<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2516 φ 0.2100 mm<br />

St<strong>and</strong>ard Deviation: 0.4344 phi-units MV<br />

Skewness: -0.1795 NU MV<br />

Kurtosis: 3.6611 NU MV<br />

5th Moment Measure: -0.792 NU MV<br />

6th Moment Measure: 30.505 NU MV<br />

Median: 2.1283 φ 0.2287 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2198 mm<br />

0.0707 mm<br />

1.4980 NU<br />

8.0937 NU<br />

0.06 NU<br />

0.10 NU<br />

0.2288 mm<br />

0.3218 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


233<br />

99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Coarser<br />

Central Segment<br />

Fluvial Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

Grain Size (Phi)<br />

Figure A.124. Method <strong>of</strong> SELF determination applied to sample B<br />

252<br />

Settling Tail<br />

4.0 5.0<br />

Finer


Sample I.D.: A Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 73.333 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0000 0.0000 0.0000<br />

0.25 0.125 0.0310 0.0423 0.0423<br />

0.50 0.375 0.0410 0.0559 0.0982<br />

0.75 0.625 0.0700 0.0955 0.1936<br />

1.00 0.875 0.1360 0.1855 0.3791<br />

1.25 1.125 0.4280 0.5836 0.9627<br />

1.50 1.375 1.9860 2.7082 3.6709<br />

1.75 1.625 5.7860 7.8900 11.5610<br />

2.00 1.875 12.0140 16.3828 27.9438<br />

2.25 2.125 19.9570 27.2142 55.1580<br />

2.50 2.375 15.0490 20.5215 75.6794<br />

2.75 2.625 12.3040 16.7783 92.4577<br />

3.00 2.875 4.3870 5.9823 98.4400<br />

3.25 3.125 0.9890 1.3486 99.7886<br />

3.50 3.375 0.0860 0.1173 99.9059<br />

3.75 3.625 0.0170 0.0232 99.9291<br />

4.00 3.875 0.0050 0.0068 99.9359<br />

4.25 4.125 0.0470 0.0641 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

Figure A.125. Granplot analysis <strong>of</strong> sample A<br />

253<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2096 φ 0.2162 mm<br />

St<strong>and</strong>ard Deviation: 0.4019 phi-units MV<br />

Skewness: -0.1952 NU MV<br />

Kurtosis: 3.7798 NU MV<br />

5th Moment Measure: -3.060 NU MV<br />

6th Moment Measure: 37.395 NU MV<br />

Median: 2.0776 φ 0.2369 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2248 mm<br />

0.0672 mm<br />

1.7798 NU<br />

12.4500 NU<br />

0.10 NU<br />

0.24 NU<br />

0.2375 mm<br />

0.2989 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

1.0 2.0<br />

Fluvial Segment<br />

254<br />

Settling Tail<br />

3.0 4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.126. Method <strong>of</strong> SELF determination applied to sample A


Sample I.D.: E Sampled by: Dave Clark Start Sieve Size (phi): 0<br />

Sample Date: January 24/25, 1985 Analyzed by: Dave Clark End Sieve Size (phi): 4.25<br />

Fraction Processed Total Sample Pan Sieve Size (phi): 5<br />

Longitude: Latitude: Datum: Sieve Interval (phi): 0.25<br />

Surface Elev: Datum: Water Depth: Number <strong>of</strong> Splits: 0<br />

Sample Depth in Core: Compaction Corrected? % Compaction: Grab Sample ?<br />

Original Sample Dried? yes Air Dried no Oven Dried yes Original Dry Sample Mass: grams<br />

Sample Wet Sieved? no Comments:<br />

Mass <strong>of</strong> Sample Remaining: grams Sample collected on January 24th or 25th <strong>of</strong> 1985 by Dave Clark<br />

Dry Sieved Fines Mass: grams Sample collected from a depth <strong>of</strong> 1 ft, parallel to laminae or present depositional plane<br />

Wet Sieved Fines Mass: grams<br />

Wet Sieved Silt Mass: grams<br />

Wet Sieved Clay Mass: grams<br />

Final Total Sample Mass: 66.603 grams<br />

Sieve Sieve Weight Freq Cumulative<br />

Size Midpoint Weight Weight<br />

(phi) (phi) (grams) % %<br />

0.00 -0.125 0.0020 0.0030 0.0030<br />

0.25 0.125 0.0060 0.0090 0.0120<br />

0.50 0.375 0.0060 0.0090 0.0210<br />

0.75 0.625 0.0190 0.0285 0.0495<br />

1.00 0.875 0.0650 0.0976 0.1471<br />

1.25 1.125 0.2620 0.3934 0.5405<br />

1.50 1.375 1.3260 1.9909 2.5314<br />

1.75 1.625 3.9400 5.9156 8.4471<br />

2.00 1.875 8.8640 13.3087 21.7558<br />

2.25 2.125 17.6720 26.5333 48.2891<br />

2.50 2.375 16.0740 24.1340 72.4232<br />

2.75 2.625 12.5250 18.8055 91.2286<br />

3.00 2.875 4.3590 6.5448 97.7734<br />

3.25 3.125 1.2200 1.8317 99.6051<br />

3.50 3.375 0.1570 0.2357 99.8408<br />

3.75 3.625 0.0250 0.0375 99.8784<br />

4.00 3.875 0.0040 0.0060 99.8844<br />

4.25 4.125 0.0770 0.1156 100.0000<br />

5.00 4.625 0.0000 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

5.00 4.625 0.0000 100.0000<br />

Figure A.127. Granplot analysis <strong>of</strong> sample E<br />

from seaward side <strong>of</strong> beach ridges (1/2 distance from top to bottom)<br />

Ridge Set L<br />

Measure<br />

255<br />

Statistical Results<br />

Original Data Transformed<br />

in φ Units Data<br />

Mean: 2.2689 φ 0.2075 mm<br />

St<strong>and</strong>ard Deviation: 0.3864 phi-units MV<br />

Skewness: -0.0712 NU MV<br />

Kurtosis: 3.7990 NU MV<br />

5th Moment Measure: 0.294 NU MV<br />

6th Moment Measure: 36.869 NU MV<br />

Median: 2.1427 φ 0.2265 mm<br />

Relative Dispersion: MV MV<br />

Original Data<br />

in Millimeters<br />

0.2150 mm<br />

0.0602 mm<br />

1.3622 NU<br />

9.0659 NU<br />

0.06 NU<br />

0.15 NU<br />

0.2267 mm<br />

0.2801 NU<br />

Mean, std dev, skewness, kurtosis, 5th & 6th MM calculated using method <strong>of</strong> moments.<br />

MV = meaningless value; NU = no units (i.e. , dimensionless)<br />

Transformed data are calculated using mm = 2 - φ<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Grain Size (Phi)


99.99<br />

99.97<br />

99.9<br />

99.7<br />

99<br />

97.5<br />

95<br />

90<br />

84<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

16<br />

10<br />

5<br />

2.5<br />

1<br />

0.3<br />

0.1<br />

0.03<br />

0.01<br />

0.0<br />

Arithmetic Probability Paper<br />

Dashed straight line is <strong>the</strong> precise<br />

Gaussian fit based on <strong>the</strong> sample mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation.<br />

Central Segment<br />

Fluvial Segment<br />

Fluvial Segment<br />

1.0 2.0 3.0<br />

256<br />

Settling Tail<br />

4.0 5.0<br />

Coarser Grain Size (Phi) Finer<br />

Figure A.128. Method <strong>of</strong> SELF determination applied to sample E


REFERENCES<br />

Aitken, M.J., 1991, Thermoluminescence dating: p.121-140 in Goksu, H.Y. et al (eds), Scientific<br />

Dating Methods: Dordrecht Kluwer Publ.<br />

Aitken, M. J., 1998, An Introduction to Optical Dating: The Dating <strong>of</strong> Quaternary Sediments by<br />

<strong>the</strong> use <strong>of</strong> Photon-Stimulated Luminescence: New York, Oxford University Press.<br />

Alvarez, L.F., 1984, Los Guarixes, Isla del Carmen, Camp., su climatologia, cambios de nivel de<br />

mar y patron de asenta miento: Pr<strong>of</strong>essional <strong>the</strong>sis, School <strong>of</strong> Anthropology, University <strong>of</strong><br />

Veracruz, Jalapa, Veracruz, Mexico, 83 p.<br />

Alvarez, L.F., 1985, El sitio arqueologico Los Guarixes. Los Talleres Tipograficos del Gobierno<br />

Municipal de Ciudad del Carmen, Campeche.<br />

Balsillie, J.H., 1995, William F. Tanner on Environmental Clastic Granulometry. Special<br />

Publication 40: Tallahassee, Florida Geological Survey. 145 p.<br />

Balsillie, J.H., Donoghue, J.F., Butler, K.M., <strong>and</strong> Koch, J.L., 2002, Plotting equation for<br />

Gaussian percentiles <strong>and</strong> a spreadsheet program for generating probability plots: Journal <strong>of</strong><br />

Sedimentary Research, v. 72, p. 929-933.<br />

Balsillie, J.H. <strong>and</strong> Donoghue, J.F., 2004, High resolution sea-level history for <strong>the</strong> Gulf <strong>of</strong> Mexico<br />

since <strong>the</strong> last glacial maximum: Florida Geological Survey Report <strong>of</strong> Investigations #103.<br />

Tallahassee, FL, Florida Geological Survey, 31 p.<br />

Ballarini, M., Wallinga, J., Murray, A.S., Van Heteren, S., Oost, A.P., Bos, A.J.J. <strong>and</strong> van Eijk,<br />

C.W.E., 2003, Optical dating <strong>of</strong> young coastal dunes on a decadal time scale: Quaternary<br />

Science Reviews, v.22 (10-13), p.1011-1017.<br />

Bard, E., Hamelin, B., Fairbanks, R.G. <strong>and</strong> Zindler, A., 1990, Calibration <strong>of</strong> <strong>the</strong> 14C timescale<br />

over <strong>the</strong> past 30,000 years using mass spectrometric U-Th ages from Barbados corals: Nature,<br />

v.345, p.405-410.<br />

Bard, E., 1997, Nuclide production by cosmic rays during <strong>the</strong> last ice age: Science, v.277, p.532-<br />

533.<br />

Bard, E., 1998, Geochemical <strong>and</strong> geophysical implications <strong>of</strong> <strong>the</strong> radiocarbon calibration:<br />

Geochimica et Cosmochimica Acta., v.62 (12), p.2025-2038.<br />

Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborak, N. <strong>and</strong> Labioch, G., 1998, Radiocarbon<br />

calibration by means <strong>of</strong> mass spectrometric 230 Th/ 234 U <strong>and</strong> 14 C ages <strong>of</strong> corals: an updated<br />

database including samples from Barbados, Mururoa <strong>and</strong> Tahiti: Radiocarbon, v.40, p.1085-<br />

1092.<br />

257


Berger, G., 1988, Dating quaternary events by luminescence: Geological Society <strong>of</strong> America<br />

Special Paper, v. 227, p.13-50.<br />

Berger, G., 1995, Progress in luminescence dating methods for quaternary sediments: In N.W.<br />

Ritter <strong>and</strong> N.R. Catto (eds). Dating Methods for Quaternary Deposits. Newfoundl<strong>and</strong>:<br />

Geological Association <strong>of</strong> Canada, p. 81-104.<br />

Best, J.L., Ashworth, P.J., Bristow, C.S. <strong>and</strong> Roden, J., 2003, Three-dimensional sedimentary<br />

architecture <strong>of</strong> a large mid-channel s<strong>and</strong> braid bar, Jamuna River, Bangladesh: Journal <strong>of</strong><br />

Sedimentary Research, v.73, p.516-530.<br />

Bloom, A.L., ed., 1977, Atlas <strong>of</strong> Sea-level curves: final report, International Geological<br />

Correlation Program, Project 61, 92 p.<br />

Blum, M. D., Carter, A. E., Zayac, T., <strong>and</strong> Goble, R. J., 2002, Middle Holocene Sea-Level <strong>and</strong><br />

Evolution <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Mexico Coast (USA): Journal <strong>of</strong> Coastal Research. Special Issue 36, p.<br />

65-80.<br />

Boggs, S., 1995, Principles <strong>of</strong> Sedimentology <strong>and</strong> Stratigraphy, 3 rd edition, New Jersey: Prentice-<br />

Hall Inc. p. 343-356.<br />

Braley, C. O., 1982, Archaeological testing <strong>and</strong> evaluation <strong>of</strong> <strong>the</strong> Paradise Point Site (8Fr71), St.<br />

Vincent National Wildlife Refuge, Franklin County, Florida: Report to Interagency<br />

Archaeological Services Division, National Parks Service.<br />

Bristow, C.S., Chroston, P.N. <strong>and</strong> Bailey, S.D., 2000, The structure <strong>and</strong> development <strong>of</strong><br />

foredunes on a locally prograding coast: insights from ground-penetrating radar surveys,<br />

Norfolk, UK: Sedimentology, v.47, p.923-944.<br />

Bristow, C.S. <strong>and</strong> Pucillo, K., 2006, Quantifying rates <strong>of</strong> coastal progradation from sediment<br />

volume using GPR <strong>and</strong> OSL: <strong>the</strong> Holocene fill <strong>of</strong> Guichen Bay, south-east South Australia:<br />

Sedimentology, v.53, p.769-788.<br />

Campbell, K. M., 1986, St. Vincent Isl<strong>and</strong> (St. Vincent National Wildlife Refuge), Florida: in<br />

Nea<strong>the</strong>ry, T., ed., Geological Society <strong>of</strong> America Centennial Field Guide, Sou<strong>the</strong>astern Section,<br />

DNAG, p. 351-353.<br />

Carter, R.W.G., 1986, The morphodynamics <strong>of</strong> beach ridge formation: Magilligan, Nor<strong>the</strong>rn<br />

Irel<strong>and</strong>. Marine Geology, v.73, p.191-214.<br />

Curray, J.R., 1960, Sediments <strong>and</strong> history <strong>of</strong> <strong>the</strong> Holocene transgression, continental shelf,<br />

Northwest Gulf <strong>of</strong> Mexico: in Sherard, F.P., Phleger, F.B. <strong>and</strong> VanAndel, T.H. eds., Recent<br />

Sediments, Northwest Gulf <strong>of</strong> Mexico: American Association <strong>of</strong> Petroleum Geologists, Tulsa,<br />

p.221-266.<br />

258


Curray, J.R., Emmel, F.J. <strong>and</strong> Crampton, P.J.S., 1969, Holocene history <strong>of</strong> a str<strong>and</strong>plain lagoonal<br />

coast, Nayarit, Mexico: Lagunas costeras, un simposio. Mem. Simp. Intern Lagunas Costeras.<br />

Unam Unesco, p.63-100.<br />

Curray, J.R., 1996, Origin <strong>of</strong> beach ridges: comment on Tanner, W.F., 1995. Origin <strong>of</strong> beach<br />

ridges <strong>and</strong> swales. Mar. Geol., 129: 149-161: Marine Geology, v.136, p.121-125.<br />

Davis, R.A., Fox, H.T., Hayes, M.O. <strong>and</strong> Boothroyd, J.C., 1972, Comparison <strong>of</strong> ridge-<strong>and</strong>-runnel<br />

systems in tidal <strong>and</strong> non-tidal environments: Journal <strong>of</strong> Sedimentary Petrology, v.42, p.401-412.<br />

Davis, J.L. <strong>and</strong> Annan, A.P., 1989, Ground penetrating radar for high resolution mapping <strong>of</strong> soil<br />

<strong>and</strong> rock stratigraphy: Geophysical Prospecting, v.37, p.531-555.<br />

Davis, R.A., 1997, The Evolving Coast. New York: Scientific American Library.<br />

Davis, J. H., <strong>and</strong> Mokray, M. F., 2000, Assessment <strong>of</strong> <strong>the</strong> effect <strong>of</strong> road construction <strong>and</strong> o<strong>the</strong>r<br />

modifications <strong>of</strong> surface-water flow at St. Vincent National Wildlife Refuge, Franklin County<br />

Florida: US Geological Survey Water Resource Investigations Report 00-4007.<br />

deBeaumont, E., 1845, Lecons de geologie pratique: P. Bertr<strong>and</strong>, Paris, p.223-252.<br />

Doeglas, D.J., 1946, Interpretation <strong>of</strong> <strong>the</strong> results <strong>of</strong> mechanical analyses: Journal <strong>of</strong> Sedimentary<br />

Petrology, v.16, p.19-40.<br />

Dominguez, J.M.L., Bittencourt, A.C.S.P. <strong>and</strong> Martin, L., 1992, Controls on Quaternary coastal<br />

<strong>evolution</strong> <strong>of</strong> <strong>the</strong> east-nor<strong>the</strong>astern coast <strong>of</strong> Brazil: roles <strong>of</strong> sea-level history, trade winds <strong>and</strong><br />

climate: In Quaternary Coastal Evolution, Sedimentary Geology, v.80, p.213-232.<br />

Donoghue, J.F. <strong>and</strong> Tanner, W.F., 1992, Quaternary terraces <strong>and</strong> shorelines <strong>of</strong> <strong>the</strong> Panh<strong>and</strong>le<br />

Florida region: In Quaternary Coasts <strong>of</strong> <strong>the</strong> United States: Marine <strong>and</strong> Lacustrine Systems,<br />

SEPM Special Pub. 48, Eds C.H. Fletcher <strong>and</strong> J.F. Wehmiller, p.233-241.<br />

Donoghue, J.F., 1993, Late Wisconsinian <strong>and</strong> Holocene depositional history, nor<strong>the</strong>astern Gulf<br />

<strong>of</strong> Mexico: Marine Geology, v.112, p.185-205.<br />

Donoghue, J.F. <strong>and</strong> Tanner, W.F., 1994, Effects <strong>of</strong> Near-Term Sedimentologic Evolution <strong>of</strong> <strong>the</strong><br />

Lifetime <strong>of</strong> Estuarine Resources. Apalachicola River <strong>and</strong> Bay National Estuarine Research<br />

Preserve: NOAA Technical Memor<strong>and</strong>um, NOS-SRD-27. 57 p.<br />

Donoghue, J. F., <strong>and</strong> White, N. M., 1995, Late Holocene sea-level change <strong>and</strong> delta migration,<br />

Apalachicola River region, northwest Florida, USA: Journal <strong>of</strong> Coastal Research, v. 11, no. 3, p.<br />

651-653.<br />

Dorsey, R.A., 1997, Predicted sea level changes, Florida Gulf Coast over <strong>the</strong> past 21,000 years.<br />

GARI Research Series #9, 31 p.<br />

259


Douglas, B., Kearney, M. <strong>and</strong> Lea<strong>the</strong>rman, S., 2001, Sea level rise: history <strong>and</strong> consequences.<br />

International Geophysics Series, v.75, San Diego: Academic Press.<br />

Duller, G.A.T., 1991, Equivalent dose determination using single aliquots: Nuclear Tracks <strong>and</strong><br />

Radiation Measurements, v.18, p.371-378.<br />

Duller, G.A.T., 1999, Analyst version 2.12. Luminescence Laboratory, University <strong>of</strong> Wales.<br />

Eichenholtz, M.E., Pirkle, E.C. <strong>and</strong> Pirkle, F.L., 1989, Sediment characteristics <strong>of</strong> selected beach<br />

ridges along Florida’s nor<strong>the</strong>astern coast: Sou<strong>the</strong>astern Geology, v.30, p.155-167.<br />

Ekman, M., 1988, The world’s longest continued series <strong>of</strong> sea-level observations: Pure Applied<br />

Geophysics, v.127, p.73-77.<br />

Fairbridge, R.W., 1961, Eustatic changes in sea level: In: Physics <strong>and</strong> Chemistry <strong>of</strong> <strong>the</strong> Earth.<br />

Eds. L.H. Ahrens, Frank Press, Kalervo Rankiama, S.K. Runcorn. v.4, p.99-185.<br />

Fernald, E.A. <strong>and</strong> Purdum, E.D., 1992, Atlas <strong>of</strong> Florida: Gainsville, Florida: University Press <strong>of</strong><br />

Florida. 280 p.<br />

Fisher, J.J., 1968, Barrier isl<strong>and</strong> formation: discussion: Geological Society <strong>of</strong> American Bulletin,<br />

v.79, p.1421-1426.<br />

Fisk, H.N., 1956, Nearshore sediments <strong>of</strong> <strong>the</strong> continental shelf <strong>of</strong>f Louisianna: Eighth Texas<br />

Conference on Soil Mechanics <strong>and</strong> Foundation Engineering, p.1.<br />

Folk, R.L., 1974, Petrology <strong>of</strong> Sedimentary Rocks: Austin, Hemphill Publishing Company,<br />

182 p.<br />

Folz. E. <strong>and</strong> Mercier, N., 1999, A single-aliquot OSL protocol using bracketing regenerative<br />

doses to accurately determine equivalent doses in quartz: Radiation Measurements, v.30, p.477-<br />

485.<br />

Forrest, B., 2003, Application <strong>of</strong> luminescence techniques to coastal studies at <strong>the</strong> St. Joseph<br />

Peninsula, Gulf County, Florida: unpublished MSc. Thesis, McMaster University, Hamilton,<br />

Ontario, 217 p.<br />

Fraser, G.S. <strong>and</strong> Hester, N.C., 1977, Sediments <strong>and</strong> sedimentary structures <strong>of</strong> a beach-ridge<br />

complex, southwestern shore <strong>of</strong> Lake Michigan: Journal <strong>of</strong> Sedimentary Petrology, v.47,<br />

p.1187-1200.<br />

Frazier, D.E., 1974, Depositional episodes: <strong>the</strong>ir relationship to <strong>the</strong> Quaternary stratigraphy in<br />

<strong>the</strong> northwestern portion <strong>of</strong> <strong>the</strong> Gulf basin: Austin, University <strong>of</strong> Texas, Bureau <strong>of</strong> Economic<br />

Geology, Geological Circular 74-1, 28 p.<br />

260


Friedman, G.M., 1962, On sorting, sorting coefficients <strong>and</strong> <strong>the</strong> lognormality <strong>of</strong> <strong>the</strong> grain-size<br />

distribution <strong>of</strong> s<strong>and</strong>stones: Journal <strong>of</strong> Sedimentary Petrology, v.70, p.737-753.<br />

Gibeaut, J.C., White, W.A., Smyth, R.C., Andrews, J.R., Trembley, T.A., Gutierrez, R., Hepner,<br />

T.L. <strong>and</strong> Neuenschw<strong>and</strong>er, A., 2003, Topographic variation <strong>of</strong> barrier isl<strong>and</strong> subenvironments<br />

<strong>and</strong> associated habitats: in Coastal Sediments 2003: Crossing Disciplinary Boundaries:<br />

Proceedings 5 th International Symposium on Coastal Engineering <strong>and</strong> Science <strong>of</strong> Coastal<br />

Sediment Processes, Clearwater Beach, Florida, May 18-23, 10 p. CD-ROM.<br />

Gilbert, G.K., 1885, The topographic feature <strong>of</strong> lake shores: U.S. Geological Survey 5 th Annual<br />

Report, p.69-123.<br />

Godwin, H., Suggate, R.P. <strong>and</strong> Willis, E.H., 1958, Radiocarbon dating <strong>of</strong> <strong>the</strong> eustatic rise in<br />

ocean-level: Nature, v.181, p.1518-1519.<br />

Granlund, E., 1932, De svenska hogmossarnas geologi: Sveriges Geologiska Underskning., eries<br />

C, v. 373, 193 p.<br />

Haan, C.T., 1977, Statistical methods in hydrology: Iowa State University Press, Ames, Iowa,<br />

378 p.<br />

Harari, Z., 1996, Ground-penetrating radar for imaging stratigraphic features <strong>and</strong> groundwater in<br />

s<strong>and</strong> dunes: Journal <strong>of</strong> Applied Geophysics, v.36, p.43-52.<br />

Hodell, D.A., Brenner, M, Curtis, J.H. <strong>and</strong> Guilderson, T., 2001, Solar forcing <strong>of</strong> drought<br />

frequency in <strong>the</strong> Maya lowl<strong>and</strong>s: Science, v.292, p.1367-1370.<br />

Hoyt, J.H., 1967, Barrier isl<strong>and</strong> formation: Geological Society <strong>of</strong> America Bulletin, v.78,<br />

p.1125-1135.<br />

Huntley, D. J., 1985, On <strong>the</strong> zeroing <strong>of</strong> <strong>the</strong> <strong>the</strong>rmoluminescence <strong>of</strong> sediments: Physics <strong>and</strong><br />

Chemistry <strong>of</strong> Minerals, v. 12, p.122-127.<br />

Huntley, D.J, Godfrey-Smith, D.I. <strong>and</strong> Thewalt, M.L.W., 1985, Optical Dating <strong>of</strong> Sediments:<br />

Nature, v.313, p.105-107.<br />

Huntley, D. J., <strong>and</strong> Lian, O. B., 1999, Using optical dating to determine when a sediment was<br />

last exposed to sunlight: Geological Society <strong>of</strong> Canada Bulletin, v. 534, p.211-215.<br />

Hutt, G. I., <strong>and</strong> Raukas, A., 1995, Thermoluminescence dating <strong>of</strong> sediments: in Rutter, N. W.,<br />

<strong>and</strong> Catto, N. R., eds., Dating Methods for Quaternary Deposits: Newfoundl<strong>and</strong>, Geological<br />

Association <strong>of</strong> Canada. p.73-79.<br />

Johnson, D.W., 1919, Shore Processes <strong>and</strong> Shoreline Development: Wiley <strong>and</strong> Sons, New York.<br />

584 p.<br />

261


Jol, H.M., Peterson, C.D., V<strong>and</strong>erburgh, S. <strong>and</strong> Phipps, J., 1998, GPR as a geomorphic tool:<br />

shoreline accretion/erosion along <strong>the</strong> Columbia River littoral cell: Lawrence, Kansas, U.S.A.,<br />

May 27-30, Seventh Annual Conference on Ground-Penetrating Radar, Proceedings, v.1, p.257-<br />

262.<br />

Jungner, H., Korjonen, K., Heikkinen, O. <strong>and</strong> Wiedmann, A.M., 2001, Luminescence <strong>and</strong><br />

radiocarbon dating <strong>of</strong> a dune series at Cape Kiw<strong>and</strong>a, Oregon, USA: Quaternary Science<br />

Reviews, v.20, p.811-814.<br />

Kerr, R.A., 2001, A variable sun <strong>and</strong> <strong>the</strong> Maya collapse. Science, v.292, no.5520, p.1293-1296.<br />

Kidson, C., 1982, Sea level changes in <strong>the</strong> Holocene. Quaternary Science Reviews, v.1, p.121-<br />

151.<br />

Lambeck, K. <strong>and</strong> Chappell, J., 2001, Sea-level change through <strong>the</strong> last glacial cycle: Science,<br />

v.292, p.679-686.<br />

Lambeck, K, Esat, T.M. <strong>and</strong> Potter, E., 2002, Links between climate <strong>and</strong> sea levels for <strong>the</strong> past<br />

three million years: Nature, v.419, p.199-206.<br />

Lamont, M.M., Percival, H.F., Pearlstine, L.G., Colwell, S.V., Kitchens, W.M. <strong>and</strong> Carthy, R.R.,<br />

1997, The Cape San Blas Ecological Study: US Geological Survey/Biological Resources<br />

Division, Florida Cooperative Fish <strong>and</strong> Wildlife Research Unit. Technical Report No. 57. 209 p.<br />

Lea, D.W., Martin, P.A., Pak, D.K., <strong>and</strong> Spero, H.J., 2002, Reconstructing a 350 ky history <strong>of</strong><br />

sea level using planktonic Mg/Ca <strong>and</strong> oxygen isotope records from a Cocos Ridge<br />

core: Quaternary Science Reviews, v. 21, p. 283-293.<br />

Lear, C.H., Rosenthal, Y. <strong>and</strong> Wright, J.D., 2003, The closing <strong>of</strong> a seaway: Ocean water masses<br />

<strong>and</strong> global climate change: Earth <strong>and</strong> Planetary Science Letters, v.210, p.425-436.<br />

Leeder, M.R., 1982, Sedimentology Processes <strong>and</strong> Product: Chapman <strong>and</strong> Hall, London, p.35-<br />

43.<br />

Leigh, D. S., Srivastava, P. <strong>and</strong> Brook, G.A., 2004, Late Pleistocene braided rivers on <strong>the</strong><br />

Sou<strong>the</strong>astern Atlantic Coastal Plain, U.S.A.: Quaternary Science Reviews, v.23, p.65-84.<br />

Leontyev, O.K. <strong>and</strong> Nikiforov, L.G., 1966, An approach to <strong>the</strong> problem <strong>of</strong> <strong>the</strong> origin <strong>of</strong> barrier<br />

bars: Intern. Oceanographic Cong., 2 nd Abs. <strong>of</strong> papers, p.221-222.<br />

Lepper, K., 2003, How does OSL dating work? North Dakota State University, Available online:<br />

[www.ndsu.nodak.edu/ndsu/klepper].<br />

Liden, R., 1938, Den senkvartara str<strong>and</strong>forskjutningens fotlopp och kronologi I Angermanl<strong>and</strong>:<br />

Geologiska Foreningens Forh<strong>and</strong>lingar Stockholm, v. 60, p. 397-404.<br />

262


McFarlan, E. Jr., 1961, Radiocarbon dating <strong>of</strong> late quaternary deposits, south Louisianna:<br />

Geological Society <strong>of</strong> American Bulletin, v.72, p.129-158.<br />

McKeown, H.A., Bart, P.J. <strong>and</strong> Anderson, J.B., 2004, High resolution stratigraphy <strong>of</strong> a s<strong>and</strong>y<br />

ramp-type margin – Apalachicola, Florida: p. 25-41 in Anderson, J. <strong>and</strong> Fillon, R., eds, Late<br />

Quaternary Stratigraphic Evolution <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Gulf <strong>of</strong> Mexico Margin: Spec. Publ. 79,<br />

Society for Sedimentary Geology.<br />

Mejdahl, V. <strong>and</strong> Christiansen, H.H., 1994, Procedures used for luminescence dating <strong>of</strong> sediment:<br />

Quaternary Science Reviews, v.13, p.403-406.<br />

Miller, J.J., Griffin, J.W., Fryman, M.L., <strong>and</strong> Stapor, F.J., 1981, Archaeological <strong>and</strong> historical<br />

survey <strong>of</strong> St. Vincent National Wildlife Refuge, Florida: unpubl. Report by Cultural Resource<br />

Management, Inc. for Interagency Archaeological Services, U.S. Fish <strong>and</strong> Wildlife Service, 219<br />

p.<br />

Missimer, T., 1973, Growth rates <strong>of</strong> beach ridges on Sanibel Isl<strong>and</strong>, Florida: Transactions-Gulf<br />

Coast Association <strong>of</strong> Geological Societies, v.23, p.383-388.<br />

Moore, L.J., Jol, H.M., Krose, S., V<strong>and</strong>erburgh, S. <strong>and</strong> Kaminsky, G.M., 2004, Annual layers<br />

revealed by GPR in <strong>the</strong> subsurface <strong>of</strong> a prograding coastal barrier, southwest Washington, USA:<br />

Journal <strong>of</strong> Sedimentary Research, v.74, p.690-696.<br />

Morton, R. A., Paine, J. G., <strong>and</strong> Blum, M. D., 2000, Responses <strong>of</strong> stable bay margins <strong>and</strong> barrier<br />

isl<strong>and</strong> systems to Holocene sea-level changes, western Gulf <strong>of</strong> Mexico: Journal <strong>of</strong> Sedimentary<br />

Research, v.70, p. 478-490.<br />

Moslow, T.F., 1983, Depositional Models <strong>of</strong> Shelf <strong>and</strong> Shoreline S<strong>and</strong>stones: Continuing<br />

Eduction Course Note Series #27, A continuing education course presented at <strong>the</strong> 1983<br />

American Association <strong>of</strong> Petroleum Geologists Fall Education Conference. 102 p.<br />

Murray, A.S. <strong>and</strong> Roberts, R.G., 1998, Measurement <strong>of</strong> <strong>the</strong> equivalent dose in quartz using a<br />

regenerative-dose single-aliquot protocol: Radiation Measurements, v.29, p.503-515.<br />

Murray, A.S. <strong>and</strong> Wintle, A.G., 2000, Luminescence dating <strong>of</strong> quartz using an improved singlealiquot<br />

regenerative dose protocol: Radiation Measurements, v.32, p.57-73.<br />

Murray, A.S. <strong>and</strong> Olley, J.M., 2002, Precision <strong>and</strong> accuracy in <strong>the</strong> optically stimulated<br />

luminescence dating <strong>of</strong> sedimentary quartz: A status review: Geochronometria, v.21, p.1-16.<br />

Murray-Wallace, C.V., Banerjee, D., Bourman, R.P., Olley, J. <strong>and</strong> Brooke, B.P., 2002, Optically<br />

stimulated luminescence dating <strong>of</strong> Holocene relict foredunes, Guichen Bay, South Australia:<br />

Quaternary Science Reviews, v.21, p.1077-1086.<br />

Neal, A., Pontee, N.I., Pye, K. <strong>and</strong> Richards, J., 2002, Internal structure <strong>of</strong> mixed s<strong>and</strong>-<strong>and</strong>gravel<br />

beach deposits revealed using ground-penetrating radar: Sedimentology, v.49, p.789-804.<br />

263


Northwest Florida Water Management District (NWFWMD), 1996, Apalachicola River <strong>and</strong> Bay<br />

System: Northwest Florida Water Management District. Available online:<br />

[http://www.nwfwmd.<strong>state</strong>.fl.us/rmd/swim/swimdesc.htm#Apalachicola]<br />

Otvos, E.G., 2000, Beach ridges—definitions <strong>and</strong> significance: Geomorphology, v.31, p.83-108.<br />

Pirazzoli, P.A., 1974, Dati storici sul medio mare a Venezia: Att Accad. Sci. Inst. Bologna, v.13,<br />

p.125-148.<br />

Pirazzoli, P.A., 1991, World atlas <strong>of</strong> Holocene sea level changes: Amsterdam, Elsevier, 300 p.<br />

Prescott, J.R. <strong>and</strong> Hutton, J.T., 1994, Cosmic ray contributions to dose rates for luminescence<br />

<strong>and</strong> ESR dating: large depths <strong>and</strong> long-term time variations: Radiation Measurements, v.23,<br />

p.497-500.<br />

Price, W.A., 1963, Origin <strong>of</strong> barrier chain <strong>and</strong> beach ridge, p.219 in The Geological Society <strong>of</strong><br />

America, Abstracts With Programs: Geological Society <strong>of</strong> America Special Paper, v.73, 355 p.<br />

Psuty, N.P., 1966, The geomorphology <strong>of</strong> beach ridges in Tabasco, Mexico. Baton Rouge, LA:<br />

Louisianna State University, Coastal Studies Institute, Technical Report 30, 51 p.<br />

R<strong>and</strong>azzo, A. F., <strong>and</strong> Jones, P. S.(eds), 1997, The Geology <strong>of</strong> Florida: Gainesville, University<br />

Press <strong>of</strong> Florida, 327 p.<br />

Raney, D., Huang, I. And Urgun, H., 1985, A hydrodynamic <strong>and</strong> salinity model for<br />

Apalachicola Bay, Florida: Mississippi-Alabama Sea Grant College Program Report No. 339-<br />

183, 84 p.<br />

Raymo, M.E., Lisiecki, L.E. <strong>and</strong> Nisancioglu, K.H., 2006, Plio-Pleistocene ice volume, Antarctic<br />

climate <strong>and</strong> <strong>the</strong> global δ 18 O record: Science, v.313, p.492-495.<br />

Reineck, H.E. <strong>and</strong> Singh, I.B., 1978, Depositional Sedimentary Environments: Springer Verlag,<br />

New York, 439 p.<br />

Reinson, G.E., 1992, Transgressive barrier isl<strong>and</strong> <strong>and</strong> estuarine systems, p. 179-194 in Walker,<br />

R.G. <strong>and</strong> James, N.P., eds., Facies Models: St. John’s, Newfoundl<strong>and</strong>, Geological Association <strong>of</strong><br />

Canada. p.179-194<br />

Ritter, D.F., 1986, Process Geomorphology. Iowa: W.M.C. Brown Publishing. 579pp.<br />

Rizk, F., 1991, The Late Holocene Development <strong>of</strong> St. Joseph Spit: PhD Dissertation, Florida<br />

State University, Tallahassee, Florida, 379 p.<br />

Rohling, E.J. <strong>and</strong> Palike, H., 2005, Centennial-scale climate cooling with a sudden cold event<br />

around 8,200 years ago: Nature, v.434, p.975-980.<br />

264


Sabins, F.F., 1997, Remote Sensing Principles <strong>and</strong> Interpretation: New York, W.H. Freeman <strong>and</strong><br />

Company, p.184.<br />

Sallenger, A.H., Krabill, W.B., Swift, R.N., Brock, J., List, J., Hansen, M., Holman, R.A.,<br />

Manizade, S., Sontag, J., Meredith, A., Morgan, K., Yunkel, J.K., Frederick, E.B. <strong>and</strong> Stockdon,<br />

H., 2003, Evaluation <strong>of</strong> airborne topographic lidar for quantifying beach changes: Journal <strong>of</strong><br />

Coastal Research, v.19, no.1, p.125-133.<br />

Schnable, J.E., 1966, The <strong>evolution</strong> <strong>and</strong> development <strong>of</strong> part <strong>of</strong> <strong>the</strong> northwest Florida coast;<br />

unpublished PhD dissertation. Florida State University, Tallahassee, FL, 244 p.<br />

Schnable, J. E., <strong>and</strong> Goodell, H. G., 1968, Pleistocene-recent stratigraphy, <strong>evolution</strong> <strong>and</strong><br />

development <strong>of</strong> <strong>the</strong> Apalachicola coast, Florida: Geological Society <strong>of</strong> America Special Paper<br />

No.112: Boulder, Colorado, Geological Society <strong>of</strong> America, p. 1-72.<br />

Scholl, D.W., 1969, Florida submergence curve revised: Its relation to coastal sedimentation<br />

rates: Science, v.163, p.62-564.<br />

Schwartz, M.L., 1971, The multiple causality <strong>of</strong> barrier isl<strong>and</strong>s: Journal <strong>of</strong> Geology, v.79, p.91-<br />

94.<br />

Shepard, F.P., 1950, Beach cycles in sou<strong>the</strong>rn California: Technical memo. 20, Beach Erosion<br />

Board, U.S. Army Corps <strong>of</strong> Engineers.<br />

Shepard, F.P., 1963, Thirty-five thous<strong>and</strong> years <strong>of</strong> sea level: In: Essays in Marine Geology in<br />

Honor <strong>of</strong> K.O. Emery. University <strong>of</strong> Sou<strong>the</strong>rn California Press, Los Angeles, p.1-10.<br />

Shepard, F.P., 1964, Sea level changes in <strong>the</strong> past 6000 years, possible archaeological<br />

significance: Science, v.143, p.574-576.<br />

Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmetzer, I. <strong>and</strong><br />

Smeed, D.A., 2003, Sea-level fluctuations during <strong>the</strong> last glacial cycle: Nature, v.423, p.853-858.<br />

Smith, B.W., Aitken, M.J., Rhodes, E.J., Robinson, P.D. <strong>and</strong> Geldard, D.M., 1986, Optical<br />

dating: methodological aspects: Radiation Protection Dosimetry, v.17, p.229-233.<br />

Socci, A. <strong>and</strong> Tanner, W.F., 1980, Little known but important papers on grain-size analysis:<br />

Sedimentology, v.27, p.231-232.<br />

Stapor, F., 1973, Coastal s<strong>and</strong> budgets <strong>and</strong> Holocene beach ridge development, northwest<br />

Florida: unpubl. Ph.D. dissertation. Florida State University, Tallahassee, FL, 221 p.<br />

Stapor, F., 1975, Holocene beach ridge plain development, northwest Florida: Zeitschrift fur<br />

Geomorphologie, v. Supp. Bd. 22, p.116-144.<br />

265


Stapor, F.W. <strong>and</strong> Tanner, W.F., 1977, Late Holocene mean sea level data from St. Vincent Isl<strong>and</strong><br />

<strong>and</strong> <strong>the</strong> shape <strong>of</strong> <strong>the</strong> late Holocene mean sea level curve, in Proceedings, Coastal Sedimentology<br />

Symposium, Florida State University, Department <strong>of</strong> Geology, p. 35-68.<br />

Stapor, F.W., Ma<strong>the</strong>ws, T.D. <strong>and</strong> Lindfors-Kearns, F.E., 1991, Barrier isl<strong>and</strong> progradation <strong>and</strong><br />

Holocene sea level history in southwest Florida: Journal <strong>of</strong> Coastal Research, v.7, no.3, p.815-<br />

838.<br />

Stewart, R.A. <strong>and</strong> Gorsline, D.S., 1962, Recent sedimentary history <strong>of</strong> St. Joseph Bay, Florida:<br />

Sedimentology, v.1, p.256-286.<br />

Stuiver, M., Braziunas, T.F., Becker, B. <strong>and</strong> Kromer, B., 1991, Climatic, solar, oceanic <strong>and</strong><br />

geomagnetic influences on late-glacial <strong>and</strong> Holocene atmospheric 14 C / 12 C change: Quaternary<br />

Research, v.35, p.1-24.<br />

Tanner, W.F., 1964, Nearly ideal drift system along <strong>the</strong> Florida Panh<strong>and</strong>le coast: Zeitscrift fur<br />

Geomorphologie Neue Folge, v.8, p.334-342.<br />

Tanner, W.F., 1986, Inherited <strong>and</strong> mixed traits in <strong>the</strong> grain size distribution: in W.F. Tanner<br />

(ed), Modern Coastal Sediments <strong>and</strong> Processes, Proceedings <strong>of</strong> <strong>the</strong> 9 th Symposium on Coastal<br />

Sedimentology, Tallahassee, FL: Department <strong>of</strong> Geology, Florida State University, p.41-50.<br />

Tanner, W.F., 1987, The Beach: Where is <strong>the</strong> river <strong>of</strong> s<strong>and</strong>?: Journal <strong>of</strong> Coastal Research, v.3,<br />

p.377-386.<br />

Tanner, W.F., 1988, Beach ridge data <strong>and</strong> sea level history from <strong>the</strong> Americas: Journal <strong>of</strong><br />

Coastal Research, v. 4, no. 1, p.81-91.<br />

Tanner, W. F., Demirpolat, S., Stapor, F., <strong>and</strong> Alvarez, L., 1989, The "Gulf <strong>of</strong> Mexico" late<br />

Holocene sea level curve: Transactions- Gulf Coast Association <strong>of</strong> Geological Societies, v. 39, p.<br />

553-562.<br />

Tanner, W.F., 1990, The relationship between kurtosis <strong>and</strong> wave energy, in Proceedings <strong>of</strong> <strong>the</strong><br />

Ninth Symposium on Coastal Sedimentology Modern Coastal Sediments <strong>and</strong> Processes, Ed.<br />

W.F. Tanner, p.41-49.<br />

Tanner, W.F., 1991, Suite Statistics: The hydrodynamic <strong>evolution</strong> <strong>of</strong> <strong>the</strong> sediment pool: in J.P.M.<br />

Syvitski (ed), Principals <strong>and</strong> Application <strong>of</strong> Particle Size Analysis, Cambridge: Cambridge<br />

University Press, p.225-236.<br />

Tanner, W.F., 1992, Late Holocene sea level changes from grain-size data: Evidence from <strong>the</strong><br />

Gulf <strong>of</strong> Mexico: Holocene, v.2, p.249-254.<br />

Tanner, W.F., 1993, An 8,000-year record <strong>of</strong> sea-level change from grain-size parameters: data<br />

from beach ridges in Denmark: The Holocene, v.3, p.220-231.<br />

266


Tanner, W.F., 1994, Holocene stability <strong>of</strong> <strong>the</strong> Gulf <strong>of</strong> Mexico coast from beach ridges:<br />

Transactions <strong>of</strong> <strong>the</strong> Gulf Coast Association <strong>of</strong> Geological Societies, v.154, 721-726.<br />

Tanner, W.F., 1995, Origin <strong>of</strong> beach ridges <strong>and</strong> swales: Marine Geology, v.129, p.149-161.<br />

Taylor, M. <strong>and</strong> Stone, G.W., 1996, Beach-ridges: a review: Journal <strong>of</strong> Coastal Research, v.12,<br />

p.612-621.<br />

United States Army Corps <strong>of</strong> Engineers (USACE), 2002, Chapter 11-Airborne LIDAR<br />

topographic surveying: U.S. Army Corps <strong>of</strong> Engineers Internet Publishing Group, pp.12. online:<br />

[http://www.usace.army.mil/usace-docs/eng-manuals/em1110-1-1000/c-11.pdf]<br />

USGS, 2001, A summary <strong>of</strong> <strong>the</strong> findings <strong>of</strong> <strong>the</strong> west central Florida coastal studies project:<br />

United States Geological Survey Open File Report 01-303.<br />

Van Dam, R.L. <strong>and</strong> Schlager, W., 2000, Identifying causes <strong>of</strong> ground-penetrating radar<br />

reflections using time domain reflectometry <strong>and</strong> sedimentologic analyses: Sedimentology, v.47,<br />

p.435-449.<br />

Van Heteren, S., Huntley, D.J., Van de Plassche, O. <strong>and</strong> Lubberts, R.K., 2000, Optical dating <strong>of</strong><br />

dune s<strong>and</strong> for <strong>the</strong> study <strong>of</strong> sea-level change: Geology, v.28, p.411-414.<br />

Van Veen, J., 1954, Tide gauges, subsidence gauges <strong>and</strong> flood-stones in <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s: Geol.<br />

Mijnb., v.16, p. 214-219.<br />

Walker, K., Stapor, F. <strong>and</strong> Marquardt, W., 1995, Archaeological evidence for a 1750-1450 BP<br />

higher-than-present sea level along Florida’s Gulf Coast: Journal <strong>of</strong> Coastal Research Special<br />

Issue No. 17, p. 205-218.<br />

Wintle, A.G., 1997, Luminescence dating: laboratory procedures <strong>and</strong> protocols: Radiation<br />

Measurements, v.27, p.769-817.<br />

Wintle, A.G., Clarke, M.L., Musso, F.M., Orford, J.D. <strong>and</strong> Devoy, R.J.N., 1998, Luminescence<br />

dating <strong>of</strong> recent dunes on Inch Spit, Dingle Bay, Southwest Irel<strong>and</strong>: The Holocene, v.8, no.3,<br />

p.331-339.<br />

Zendrini, A., 1802, Sull alzamento del levelio del mare: Giornde dell Italiana Letteratura<br />

(Padova), v.2, p.3-37.<br />

Zenkovitch, V.P., 1962, Some new expoloration results about s<strong>and</strong> shores development during<br />

<strong>the</strong> sea transgression: DeIngenier, no.17, Bouw. En Waterbouwkunde, v.9, p.133-121.<br />

Zenkovitch, V.P., 1967, Processes <strong>of</strong> Coastal Development: Oliver <strong>and</strong> Boyd. Edinburgh <strong>and</strong><br />

London. Ed. J.A. Steers, 738 p.<br />

267


BIOGRAPHICAL SKETCH<br />

Beth Margaret Forrest was born in Hamilton, Ontario, Canada in 1978. She received her<br />

Bachelor <strong>of</strong> Science in Geology in 2001 from McMaster University, in Hamilton, Ontario. She<br />

received her Masters <strong>of</strong> Science in 2003 from McMaster University, in Hamilton, Ontario. Her<br />

Bachelor’s research focused on <strong>the</strong> UV/VIS absorbance <strong>and</strong> transmittance <strong>of</strong> littoral zone<br />

sediment. The focus <strong>of</strong> her Masters research was <strong>the</strong> application <strong>of</strong> luminescence techniques to<br />

coastal studies at <strong>the</strong> St. Joseph Peninsula, Gulf County, Florida.<br />

Her current list <strong>of</strong> publications includes:<br />

Forrest, B., Rink, W.J., Bicho, N. <strong>and</strong> Ferring R. 2003. OSL Ages <strong>and</strong> Possible<br />

Bioturbation Signals at <strong>the</strong> Upper Paleolithic Site <strong>of</strong> Lagoa do Bordoal, Algarve,<br />

Portugal. Quaternary Science Reviews. v22: 1279-1285.<br />

Forrest, B., Donoghue, J.F., Stapor, F.W., Brook, G.A. <strong>and</strong> Brook, F.Z., 2005, Late<br />

Quaternary <strong>evolution</strong> <strong>of</strong> <strong>the</strong> Apalachicola, Florida, barrier isl<strong>and</strong> rim <strong>and</strong> its<br />

relationship to sea-level change. Geological Society <strong>of</strong> America Abstracts with<br />

Programs, v 37 (3): 15.<br />

Forrest, B. <strong>and</strong> Rink, W.J. Optical Luminescence Dating <strong>of</strong> a Late-Holocene Barrier<br />

Isl<strong>and</strong> S<strong>and</strong> Ridge Sequence, St. Joseph Peninsula, Florida Journal <strong>of</strong> Coastal<br />

Research (submitted).<br />

Keizars, K., Rink, W.J. <strong>and</strong> Forrest, B. TL studies <strong>of</strong> littoral zone s<strong>and</strong>s from <strong>the</strong> St.<br />

Joseph Peninsula, Gulf County, Florida, Journal <strong>of</strong> Coastal Research (submitted<br />

2004).<br />

Koch, J.K., Forrest, B.M. <strong>and</strong> Brantly, R.M. S<strong>and</strong> Search <strong>and</strong> Fill Material QA/QC<br />

plans for Beach Nourishment Projects in Florida. (in press)<br />

Rink, W.J. <strong>and</strong> Forrest, B. 2005. Dating Evidence for <strong>the</strong> Accretion History <strong>of</strong> Beach<br />

Ridges on Cape Canaveral <strong>and</strong> Merritt Isl<strong>and</strong>, Florida, USA. Journal <strong>of</strong> Coastal<br />

Research.v21: 1000-1008.<br />

Her list <strong>of</strong> conference presentations includes:<br />

Rink, W.J. <strong>and</strong> Forrest, B. OSL ages <strong>of</strong> a str<strong>and</strong>ed beach ridge sequence on Cape<br />

Canaveral, Florida, USA. Presented by W.J. Rink. 10 th International Conference on<br />

Luminescence <strong>and</strong> Electron Spin Resonance Dating. June 27. 2002. University <strong>of</strong><br />

Nevada. Reno, Nevada.<br />

268


Forrest, B., Rink, W.J., Bicho, N. <strong>and</strong> Ferring R. OSL Ages <strong>and</strong> Possible<br />

Bioturbation Signals at <strong>the</strong> Upper Paleolithic Site <strong>of</strong> Lagoa do Bordoal, Algarve,<br />

Portugal. Presented by B. Forrest. 10 th International Conference on Luminescence<br />

<strong>and</strong> Electron Spin Resonance Dating. June 28. 2002. University <strong>of</strong> Nevada. Reno,<br />

Nevada.<br />

Forrest, B., Donoghue, J.F., Stapor, F.W., Brook, G.A. <strong>and</strong> Brook, F.Z. Late<br />

Quaternary Evolution <strong>of</strong> <strong>the</strong> Apalachicola, Florida, Barrier Isl<strong>and</strong> Rim <strong>and</strong> its<br />

Relationship to Sea-Level Change. Presented by B. Forrest. GSA Sou<strong>the</strong>ast section<br />

meeting. March 17, 2005. Biloxi, Mississippi.<br />

Koch, J.K., Forrest, B.M. <strong>and</strong> Brantly, R.M. S<strong>and</strong> Search <strong>and</strong> Fill Material QA/QC<br />

plans for Beach Nourishment Projects in Florida. Presented by J. Koch. 19 th Annual<br />

National Conference on Beach Preservation Technology. February 1-3, 2006.<br />

Sarasota, Florida.<br />

Beth has accepted a position as a coastal geologist with a private consulting company<br />

(Coastal Planning <strong>and</strong> Engineering Inc.) in Boca Raton, Florida.<br />

269

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!