25.01.2013 Views

effect of leaching from filters on laboratory analyses - Environmental ...

effect of leaching from filters on laboratory analyses - Environmental ...

effect of leaching from filters on laboratory analyses - Environmental ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EFFECT OF LEACHING FROM FILTERS ON LABORATORY ANALYSES OF<br />

COLLECTIVE ORGANIC CONSTITUENTS<br />

ABSTRACT<br />

Eakalak Khan,* Sindhuja Subramania-Pillai**<br />

*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering<br />

North Dakota State University<br />

Fargo, North Dakota 58105<br />

**North Dakota State Water Commissi<strong>on</strong>, Bismarck, North Dakota<br />

Membrane and glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> are widely used in <strong>laboratory</strong> water and wastewater <strong>analyses</strong>.<br />

During sample filtrati<strong>on</strong>, some <str<strong>on</strong>g>filters</str<strong>on</strong>g> release organic compounds, which may interfere with<br />

organic <strong>analyses</strong>. This research investigated the interferences due to organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> in the<br />

determinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved organic carb<strong>on</strong>, biodegradable dissolved organic carb<strong>on</strong>, soluble<br />

biochemical oxygen demand, and soluble chemical oxygen demand and the appropriate cleaning<br />

method for the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. Nineteen <str<strong>on</strong>g>filters</str<strong>on</strong>g> studied included 16 membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> and 3 glass fiber<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g>. A wide variati<strong>on</strong> was observed <strong>on</strong> the amount and characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g><br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. Some <str<strong>on</strong>g>filters</str<strong>on</strong>g> showed no organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> while some others had very high<br />

organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g>. Soaking the <str<strong>on</strong>g>filters</str<strong>on</strong>g> in dei<strong>on</strong>ized distilled water (DDW) resulted in more<br />

leachable organics <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> compared with filtering DDW through them. Certain <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

should be avoided for use in the above <strong>analyses</strong> and soaking in DDW is a more suitable cleaning<br />

method than discarding initial filtrati<strong>on</strong> volumes for most <str<strong>on</strong>g>filters</str<strong>on</strong>g>.<br />

KEYWORDS<br />

Leaching, organics, <str<strong>on</strong>g>filters</str<strong>on</strong>g>, interference, <strong>laboratory</strong> <strong>analyses</strong>.<br />

INTRODUCTION<br />

WEFTEC®.06<br />

Filtrati<strong>on</strong> is used to process water samples in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> science and engineering fields<br />

(Horowitz et al., 1996). In the field <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality, it is mainly employed to distinguish<br />

between suspended and dissolved c<strong>on</strong>stituents (Otsuki and Fuwa, 1977; Daniels<strong>on</strong>, 1982; Aiken<br />

and Leenheer, 1993; Burgess et al., 1996). Filtrati<strong>on</strong> is carried out mainly using either membrane<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g> or glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g>. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> used should neither introduce any artifacts to the analysis<br />

nor affect the analytical procedure. Some problems associated the use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g> are as follows:<br />

<str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> and ultraviolet (UV) absorbing comp<strong>on</strong>ents, absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved<br />

and colloidal matter, and clogging <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane surface because <str<strong>on</strong>g>of</str<strong>on</strong>g> the build up <str<strong>on</strong>g>of</str<strong>on</strong>g> the particulate<br />

matter (Karanfil et al., 2003).<br />

The operati<strong>on</strong>al definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved c<strong>on</strong>stituents in water is the porti<strong>on</strong> that passes through a<br />

0.45 μm pore size filter (APHA et al., 1998; U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, 1999). Only<br />

membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> are available with a uniform absolute pore size (Retenti<strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 100%<br />

for rated pore size) <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.45 μm. The smallest nominal pore size (Retenti<strong>on</strong> efficiency 60 to 98%<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

901


WEFTEC®.06<br />

for rated pore size) <str<strong>on</strong>g>of</str<strong>on</strong>g> glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> is larger than 0.45 μm. As a result, they are not<br />

appropriate for use in dissolved c<strong>on</strong>stituent measurements. However, membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> their organic compositi<strong>on</strong> suffer <str<strong>on</strong>g>from</str<strong>on</strong>g> organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g>. In order to avoid the possible organic<br />

c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>from</str<strong>on</strong>g> membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g>, some researchers (Dubruiel et al., 1997; Khan et al., 1998)<br />

used glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> for dissolved organic carb<strong>on</strong> determinati<strong>on</strong> while some other researchers<br />

used the membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> after dec<strong>on</strong>taminating them. Rinsing the <str<strong>on</strong>g>filters</str<strong>on</strong>g> with dilute nitric acid,<br />

dilute hydrochloric acid followed by distilled water, or dei<strong>on</strong>ized distilled water (DDW) have<br />

been reported as the dec<strong>on</strong>taminati<strong>on</strong> methods (Buffle et al., 1992; Baeyens et al., 1998; Karanfil<br />

et al., 2003).<br />

Hwang et al. (1979) examined the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> total organic carb<strong>on</strong> (TOC), chemical<br />

oxygen demand (COD) and nitrate in the filtrates <str<strong>on</strong>g>of</str<strong>on</strong>g> a Millipore mixed cellulose acetate and<br />

cellulose nitrate membrane filter. Moderate to significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC, COD, and nitrate<br />

were released <str<strong>on</strong>g>from</str<strong>on</strong>g> the filter. Norrman (1993) used pre-packed and membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> for<br />

dissolved organic carb<strong>on</strong> (DOC) determinati<strong>on</strong>. The filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> the membrane <str<strong>on</strong>g>filters</str<strong>on</strong>g> showed<br />

severe c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DOC. Kaplan et al. (1993) reported that polyvinylidene difluoride and<br />

mixed cellulose ester <str<strong>on</strong>g>filters</str<strong>on</strong>g> used for sterilizing incubati<strong>on</strong> water leached significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DOC and assimilable organic carb<strong>on</strong> (AOC) and that polysulf<strong>on</strong>e and nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> released DOC<br />

even after copious washing with dei<strong>on</strong>ized water. Their study also indicated that AOC<br />

c<strong>on</strong>centrati<strong>on</strong>s were significantly higher with membrane filtrati<strong>on</strong> than with glass fiber filtrati<strong>on</strong>.<br />

Shaw et al. (2000) found that as much as 2 mg/L <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable dissolved organic carb<strong>on</strong><br />

(BDOC) is released <str<strong>on</strong>g>from</str<strong>on</strong>g> a 0.22 μm pore size cellulose acetate membrane filter. Details<br />

regarding the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sample filtered were not provided by the authors. Khan et al. (1998)<br />

studied the organics released <str<strong>on</strong>g>from</str<strong>on</strong>g> the same type <str<strong>on</strong>g>of</str<strong>on</strong>g> filter. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> released about 0.40 to 0.50<br />

mg <str<strong>on</strong>g>of</str<strong>on</strong>g> TOC. The organics leached <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> were about 50% to 85% biodegradable. The<br />

biodegradability <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> other types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g> has not been reported.<br />

Karanfil et al. (2003) tested seventeen different <str<strong>on</strong>g>filters</str<strong>on</strong>g> for their interferences in DOC and<br />

ultraviolet absorbance at 254 nm (UV254) measurements. For all seventeen <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested, UV254<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the first 100 mL extract was less than 0.0045 cm -1 . For UV scans between 200 and 800 nm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 100 mL filtrate, there were no light absorbing impurities detected. Hydrophilic<br />

polyethersulf<strong>on</strong>e <str<strong>on</strong>g>filters</str<strong>on</strong>g> followed by hydrophilic polypropylene <str<strong>on</strong>g>filters</str<strong>on</strong>g> exhibited the least organic<br />

<str<strong>on</strong>g>leaching</str<strong>on</strong>g> and thus interference with DOC analysis. To minimize the interferences, the <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

should be rinsed with a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 mL distilled and dei<strong>on</strong>ized water per cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> filter surface<br />

area or at least 500 mL <strong>on</strong> a 47-mm diameter filter to make the filtrate free <str<strong>on</strong>g>of</str<strong>on</strong>g> DOC and UV<br />

absorbing comp<strong>on</strong>ents.<br />

Filtrati<strong>on</strong> through a filter is an essential step for determining DOC, soluble COD (SCOD),<br />

soluble biochemical oxygen demand (SBOD) and BDOC <str<strong>on</strong>g>of</str<strong>on</strong>g> a water sample. The interference<br />

due to filter <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <strong>on</strong> DOC measurement was thoroughly investigated (Karanfil et al., 2003)<br />

while its <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> SCOD and BDOC measurements were studied <strong>on</strong>ly for <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> filter<br />

(Hwang et al., 1979; Khan et al., 1998; Shaw et al., 2000). The interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> <strong>on</strong><br />

SBOD measurement has not been studied.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

902


This paper presents a detailed investigati<strong>on</strong> <strong>on</strong> the interferences c<strong>on</strong>tributed by filter <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <strong>on</strong><br />

DOC, SCOD, SBOD, and BDOC measurements for comm<strong>on</strong>ly used <str<strong>on</strong>g>filters</str<strong>on</strong>g>. The interference <strong>on</strong><br />

DOC measurement was investigated to c<strong>on</strong>firm the results <str<strong>on</strong>g>from</str<strong>on</strong>g> a previous study (Karanfil et al.,<br />

2003) and to select the <str<strong>on</strong>g>filters</str<strong>on</strong>g>, that have substantial organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g>, for SBOD and BDOC tests.<br />

The variati<strong>on</strong>s in organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> generated by different filter manufactures and pore sizes were<br />

examined. In additi<strong>on</strong>, the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> filter soaking in DDW <strong>on</strong> the leachable organics was studied<br />

and compared with a comm<strong>on</strong> filter cleaning practice by discarding initial volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrate<br />

to determine an appropriate method for minimizing the interference caused by organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g>.<br />

METHODOLOGY<br />

Filters<br />

Nineteen different <str<strong>on</strong>g>filters</str<strong>on</strong>g> made <str<strong>on</strong>g>of</str<strong>on</strong>g> 11 different materials were studied (Table 1). The selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

filter materials was based <strong>on</strong> a survey by Karanfil et al. (2002), which was c<strong>on</strong>ducted am<strong>on</strong>g<br />

drinking water practiti<strong>on</strong>ers and researchers to determine current practices for measuring DOC<br />

and UV absorbance in water samples. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested in this study covered all filter materials<br />

reported in Karanfil et al. (2002) except for glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> with binders. Glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

with binders were not studied as Standard Methods (APHA et al., 1998) explicitly recommends<br />

using glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> without binders for UV absorbance measurements. This study included<br />

hydrophilic nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.45 µm pore size manufactured by four different manufacturers in<br />

order to determine the differences in the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the same pore size<br />

and filter material but produced by different manufacturers. Filters made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same material,<br />

manufactured by the same manufacturer but <str<strong>on</strong>g>of</str<strong>on</strong>g> different pore sizes were included to determine<br />

the differences in organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> caused by pore size. They were hydrophilic polyethersulf<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pore sizes 0.20 µm, 0.45 µm and 0.80 µm, cellulose acetate filter <str<strong>on</strong>g>of</str<strong>on</strong>g> pore sizes 0.20 µm and<br />

0.45 µm and glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore sizes 0.70 µm and 1.5 µm.<br />

Water Samples<br />

Laboratory grade DDW was used as water samples. It was prepared using electrically heated<br />

stills (Barnstead/Thermolyne, Model A1013–B, Dubuque, Iowa) and the E-pure<br />

(Barnstead/Thermolyne, Model D4631, Dubuque, Iowa) water purificati<strong>on</strong> system, which<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> the following three cartridges in sequence: macropure, ultrapure, and organic free.<br />

Only DDW, that had higher than 17 MΩ resistivity, was collected and stored for use in high<br />

density polyethylene carboys (Nalgene Co., Rochester, New York). The DDW was always<br />

checked for its organic carb<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> before using it and always had less than 0.1 mg<br />

TOC/L.<br />

Experimental Setup and Procedure<br />

WEFTEC®.06<br />

The experimental setup and procedure was divided in to two parts: filtrati<strong>on</strong> test and soak test.<br />

Two different types <str<strong>on</strong>g>of</str<strong>on</strong>g> tests were c<strong>on</strong>ducted <strong>on</strong> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> in order to determine the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>filters</str<strong>on</strong>g> with respect to <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organics, when subjected to different test c<strong>on</strong>diti<strong>on</strong>s.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

903


904<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

Table 1 - Filters Used in the Study<br />

Filter Type Filter Material<br />

Gelman<br />

Versapor<br />

Gelman GN-6<br />

Gelman FP-<br />

Vericel<br />

Gelman HT-<br />

Tuffryn<br />

Gelman<br />

Nylaflo<br />

Millipore<br />

Nyl<strong>on</strong><br />

Osm<strong>on</strong>ic<br />

Magna Nyl<strong>on</strong><br />

Whatman<br />

Nyl<strong>on</strong><br />

Gelman Supor<br />

200<br />

Gelman Supor<br />

450<br />

Gelman Supor<br />

800<br />

Whatman<br />

(WCN)<br />

Hydrophilic acrylic<br />

polymer<br />

Hydrophilic mixed<br />

cellulose ester<br />

Hydrophilic<br />

polyvinylidene<br />

fluoride<br />

Hydrophilic<br />

polysulf<strong>on</strong>e<br />

Pore Size<br />

(µm)<br />

0.45<br />

0.45<br />

0.45<br />

0.45<br />

Applicati<strong>on</strong> Manufacturer Informati<strong>on</strong><br />

Prefiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> difficult to filter soluti<strong>on</strong>s and<br />

serum<br />

Microbiological analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> potable, waste, process<br />

and natural waters<br />

HPLC sample preparati<strong>on</strong>, mobile phase<br />

filtrati<strong>on</strong>/degassing and solvent filtrati<strong>on</strong><br />

Sterlizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> culture media and other aqueous<br />

soluti<strong>on</strong>s<br />

Hydrophilic nyl<strong>on</strong> 0.45 Aqueous and solvent based applicati<strong>on</strong>s<br />

Hydrophilic nyl<strong>on</strong> 0.45<br />

Hydrophilic nyl<strong>on</strong> 0.45<br />

Used in clarifying aqueous or organic soluti<strong>on</strong>s<br />

prior to HPLC analysis<br />

Aqueous filtrati<strong>on</strong> without wetting and organic<br />

solvent filtrati<strong>on</strong>s such as HPLC, for<br />

microbiological work<br />

Hydrophilic nyl<strong>on</strong> 0.45 Biotechnology and chromatography applicati<strong>on</strong>s<br />

Hydrophilic<br />

polyethersulf<strong>on</strong>e<br />

Hydrophilic<br />

polyethersulf<strong>on</strong>e<br />

Hydrophilic<br />

polyethersulf<strong>on</strong>e<br />

0.20<br />

0.45<br />

0.80<br />

Cellulose nitrate 0.45<br />

Biological, pharmaceutical and sterlizing filtrati<strong>on</strong><br />

requirements<br />

Biological, pharmaceutical and sterlizing filtrati<strong>on</strong><br />

requirements<br />

Biological, pharmaceutical and sterlizing filtrati<strong>on</strong><br />

requirements<br />

Routine applicati<strong>on</strong>s involving particles and cells<br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> 0.1 to 5.0mm<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Millipore corporati<strong>on</strong>,<br />

Bedford, MA, USA.<br />

Osm<strong>on</strong>ics Inc.,<br />

Minnet<strong>on</strong>ka, MN, USA.<br />

Whatman Internati<strong>on</strong>al<br />

Ltd., Maidst<strong>on</strong>e, UK.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Whatman Internati<strong>on</strong>al<br />

Ltd., Maidst<strong>on</strong>e, UK.<br />

WEFTEC®.06


905<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

Table 1 - Filters Used in the Study (C<strong>on</strong>tinued)<br />

Filter Type Filter Material<br />

Whatman<br />

Nucleopore<br />

Gelman GH<br />

Polypro<br />

Polycarb<strong>on</strong>ate 0.40<br />

Hydrophilic<br />

propylene<br />

Pore Size<br />

(µm)<br />

0.45<br />

Advantec Cellulose acetate 0.45<br />

Advantec Cellulose acetate 0.20<br />

Whatman<br />

GF/F<br />

Applicati<strong>on</strong> Manufacturer Informati<strong>on</strong><br />

Medical, industrial filtrati<strong>on</strong>, fluid analysis, water<br />

testing, chemical assay, solvent filtrati<strong>on</strong> and<br />

bacteria m<strong>on</strong>itoring<br />

Filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous soluti<strong>on</strong>s and aggressive<br />

solvents<br />

Tissue culture media, protein, enzyme, biological<br />

media sterilizati<strong>on</strong>,<br />

Tissue culture media, protein, enzyme, biological<br />

media sterilizati<strong>on</strong>,<br />

Glass fiber 0.70 Filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dilute aqueous soluti<strong>on</strong>s<br />

Gelman A/E Glass fiber 1.00<br />

Whatman 934-<br />

AH<br />

For dissolved and suspended solids testing in<br />

sanitary water analysis procedures<br />

Glass fiber 1.50 Suspended solids in water analysis<br />

Whatman Internati<strong>on</strong>al<br />

Ltd., Maidst<strong>on</strong>e, UK.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Advantec MFS Inc.,<br />

Pleas<strong>on</strong>t<strong>on</strong>, CA, USA.<br />

Advantec MFS Inc.,<br />

Pleas<strong>on</strong>t<strong>on</strong>, CA, USA.<br />

Whatman Internati<strong>on</strong>al<br />

Ltd., Maidst<strong>on</strong>e, UK.<br />

Pall corporati<strong>on</strong>,<br />

Ann Arbor, MI, USA.<br />

Whatman Internati<strong>on</strong>al<br />

Ltd., Maidst<strong>on</strong>e, UK.<br />

WEFTEC®.06


WEFTEC®.06<br />

Filtrati<strong>on</strong> Test. The filtrati<strong>on</strong> test apparatus c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 mL capacity glass funnel, stainless<br />

steel support screen for the filter, glass base for the stainless steel support, silic<strong>on</strong>e stopper,<br />

polytetrafluoroethylene support screen gaskets, aluminum clamp, and graduated Erlenmeyer<br />

flask with a side arm to attach to vacuum. The vacuum (25 in mmHg) was applied by using<br />

lubricated reciprocating <strong>laboratory</strong> pumps (Model No. 0522-V4B-G18ODX, Gast Manufacturing<br />

Corporati<strong>on</strong>, Bent<strong>on</strong> Harbor, Michigan).<br />

The filtrati<strong>on</strong> test for DOC measurement was carried out in 50 mL increments. The filtrates were<br />

collected in separate vials for each 50 mL increment and then analyzed for TOC. Filtrati<strong>on</strong> was<br />

c<strong>on</strong>tinued up to a cumulative volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 mL for all <str<strong>on</strong>g>filters</str<strong>on</strong>g> studied except for Gelman FP-<br />

Vericel and Gelman HT-Tuffryn. For these two <str<strong>on</strong>g>filters</str<strong>on</strong>g>, the filtrati<strong>on</strong> was carried out up to a<br />

cumulative volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 mL because both were found to be highly c<strong>on</strong>taminated in a previous<br />

study (Karanfil et al., 2003). For each type <str<strong>on</strong>g>of</str<strong>on</strong>g> filter, in order to determine the average DOC<br />

<str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>, 3 to 4 <str<strong>on</strong>g>filters</str<strong>on</strong>g> were tested. For each type <str<strong>on</strong>g>of</str<strong>on</strong>g> filter, a clean setup was used.<br />

The setup was tested for any organic c<strong>on</strong>taminati<strong>on</strong> by passing 50 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW through it twice<br />

without the filter and testing the passing water for TOC.<br />

For COD determinati<strong>on</strong>, according to Standard Methods (APHA et al., 1998), the maximum<br />

volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> sample are 10 mL and 50 mL for the closed and open reflux methods, respectively.<br />

Since the objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to determine the organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>, and to<br />

find its interference in the organic parameter determinati<strong>on</strong>, COD was determined for the first 50<br />

mL filtrate <strong>on</strong>ly. The sample for COD was withdrawn <str<strong>on</strong>g>from</str<strong>on</strong>g> the 50 mL filtrate before it was<br />

analyzed for DOC.<br />

SBOD and BDOC measurements were studied for the <str<strong>on</strong>g>filters</str<strong>on</strong>g> whose 100 mL filtrate had DOC ≥<br />

0.3 mg/L. This cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f initial DOC was chosen to be high enough for the method detecti<strong>on</strong> limit<br />

(MDL) <str<strong>on</strong>g>of</str<strong>on</strong>g> the BDOC procedure (or DOC difference before and after incubati<strong>on</strong>), which is 0.10<br />

to 0.15 mg/L (Khan et al., 1999).<br />

Biochemical oxygen demand (BOD) analysis can be carried out in 60 mL or 300 mL BOD<br />

bottles. For BDOC measurement, there is no standard method. BDOC is the measure <str<strong>on</strong>g>of</str<strong>on</strong>g> DOC<br />

depleti<strong>on</strong> in the sample after inoculati<strong>on</strong> with microorganisms. Assuming that the DOC<br />

measurement requires 40 mL, the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> sample required for BDOC is at least 80 mL. As a<br />

result, for BDOC measurement, 100 mL is probably a minimum volume that would be filtered.<br />

In this study, 300 mL BOD bottles were used for simultaneous SBOD and BDOC<br />

determinati<strong>on</strong>s, and the minimum volume required was 340 mL: 40 mL for initial DOC<br />

measurement (for BDOC determinati<strong>on</strong>) and 300 mL for incubati<strong>on</strong>.<br />

The BDOC and SBOD measurements for each filter type were c<strong>on</strong>ducted in four replicates. To<br />

obtain sample for two replicate <strong>analyses</strong>, eight 100 mL filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> 8 different <str<strong>on</strong>g>filters</str<strong>on</strong>g> were<br />

combined. Then, the mixture was transferred to a 1 L pyrex bottle. After that, 800 µL <str<strong>on</strong>g>of</str<strong>on</strong>g> BOD<br />

nutrient salt soluti<strong>on</strong> was added to the sample. The sample was then aerated for 20 to 30 minutes<br />

using Kimble glass diffusers to attain dissolved oxygen (DO) saturati<strong>on</strong> in the sample for BOD<br />

measurement. Then, the sample was transferred into two 40 mL vials for initial DOC<br />

measurement and two BOD bottles, which c<strong>on</strong>tained 0.25 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> washed mixed liquor suspended<br />

solids (MLSS) as a seed.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

906


The MLSS was obtained <str<strong>on</strong>g>from</str<strong>on</strong>g> an activated sludge municipal wastewater treatment plant. The<br />

sample for two more replicates was obtained following the same procedure.<br />

BDOC was based <strong>on</strong> 5 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong>. For FP-Vericel, HT-Tuffryn, Millipore Nyl<strong>on</strong>, and<br />

GH Polypro <str<strong>on</strong>g>filters</str<strong>on</strong>g>, DOC c<strong>on</strong>centrati<strong>on</strong> remaining after 5 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> was high. In order<br />

to check whether the BDOC at 5 days (BDOC5) was a major porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total biodegradable<br />

leached organics, the incubati<strong>on</strong> was c<strong>on</strong>tinued for these <str<strong>on</strong>g>filters</str<strong>on</strong>g> until 28 days and BDOC was<br />

determined (BDOC28). When the filtrate <str<strong>on</strong>g>from</str<strong>on</strong>g> the FP Vericel filter was tested for BOD without<br />

any diluti<strong>on</strong>, the final DO after 5 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> was below 1 mg/L. The criteria for BOD<br />

measurement are the depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DO ≥ 2 mg/L and the final DO ≥ 1 mg/L. This filtrate was later<br />

diluted at a 1:2 ratio (1 porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample and 2 porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW) for the BOD and BDOC<br />

tests.<br />

Soak Test. Wide-mouthed, 500 mL Erlenmeyer flasks were used. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> were individually<br />

placed inside the flasks with 100 mL DDW. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> were allowed to be in the DDW for 24<br />

hours, and then, 40 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> the water were taken for DOC analysis. Then, the remaining water<br />

was drained and refilled with a new batch <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 mL DDW and the DOC analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> samples<br />

was performed after 24 hours. This was c<strong>on</strong>tinued until there was no <str<strong>on</strong>g>leaching</str<strong>on</strong>g> observed <str<strong>on</strong>g>from</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g> (when the DOC was less than 0.10 mg/L). The soak test <strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> would provide a<br />

reas<strong>on</strong>able estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. Results <str<strong>on</strong>g>from</str<strong>on</strong>g> the soak test could<br />

be used to determine how much organics leach during the filtrati<strong>on</strong> test compared with the<br />

maximum <str<strong>on</strong>g>leaching</str<strong>on</strong>g> and to provide informati<strong>on</strong> <strong>on</strong> the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using a different filter<br />

cleaning method. The soak test samples were analyzed <strong>on</strong>ly for DOC as DOC is the most<br />

accurate and precise parameter am<strong>on</strong>g the four parameters measured in the filtrati<strong>on</strong> test.<br />

Moreover, the soak test does not represent the way the filter is used for measuring SCOD,<br />

SBOD, and BDOC, so there is no necessity to get the informati<strong>on</strong> <strong>on</strong> the other parameters for the<br />

soak test samples. DOC is a good enough parameter to serve the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the soak test.<br />

Glassware Cleaning<br />

All the glassware used for this study except the filtrati<strong>on</strong> funnel and filtrati<strong>on</strong> base was cleaned<br />

by the following procedure. First, all the glassware was washed with hot water and a <strong>laboratory</strong><br />

grade cleaning soluti<strong>on</strong> (7X, ICN Biomedicals Inc., Aurora, Ohio). Then, it was rinsed pr<str<strong>on</strong>g>of</str<strong>on</strong>g>usely<br />

with DDW, soaked in 10% nitric acid overnight and again rinsed pr<str<strong>on</strong>g>of</str<strong>on</strong>g>usely with DDW,<br />

respectively. The 10% nitric acid used for the soaking was prepared <str<strong>on</strong>g>from</str<strong>on</strong>g> a 70% reagent grade<br />

soluti<strong>on</strong> (Mallinckrodt Baker, Inc., Phillipsburg, New Jersey). Lastly, the cleaned glassware was<br />

baked at 550°C in a muffle furnace for 30 minutes. The cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrati<strong>on</strong> funnel and<br />

filtrati<strong>on</strong> base included all cleaning steps but baking.<br />

Analyses and Measurements<br />

WEFTEC®.06<br />

DOC was determined according to Standard Methods (APHA et al., 1998) using a TOC analyzer<br />

(Phoenix 8000, Emers<strong>on</strong> Process Management: Tekmar-Dohrmann Divisi<strong>on</strong>, Mas<strong>on</strong>, Ohio,<br />

USA). The COD for the samples were analyzed by using the closed reflux colorimetric method<br />

(APHA et al., 1998) using a spectrophotometer (Hach, DR/4000V, Loveland, Colarado, USA)<br />

and the Hach digesti<strong>on</strong> vials (Hach, Loveland, Colarado, USA) with a c<strong>on</strong>centrati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

907


to 40 ppm. BOD and BDOC <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples were measured simultaneously following the<br />

procedure by Khan et al. (1999). The <strong>on</strong>ly modificati<strong>on</strong>s to the procedure were the usage <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.25<br />

mL MLSS instead <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mL and eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial filtrati<strong>on</strong> step using a 0.7 µm pore size<br />

glass fiber filter. Only 0.25 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> MLSS was used as inoculum, as it resulted in the DO<br />

depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> < 1 mg/L in the blank (Criteri<strong>on</strong> for depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DO in the blank, APHA et al.,<br />

1998). The initial filtrati<strong>on</strong> step was eliminated because the samples for SBOD and BDOC<br />

<strong>analyses</strong> were likely to be particulate free as they were the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> different <str<strong>on</strong>g>filters</str<strong>on</strong>g> and<br />

DDW was used to generate them. DO was measured using a meter (Ori<strong>on</strong> model 850A Plus,<br />

Thermo Ori<strong>on</strong>, Beverly, Massachusetts, USA).<br />

Statistical Analyses<br />

The data were analyzed using the Tukey-Kramer multiple comparis<strong>on</strong>s, t-test, and paired t-test.<br />

The statistical <strong>analyses</strong> were performed using the Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Excel XP and Statistical Analysis<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (SAS® 1999 versi<strong>on</strong> 8, Cary North Carolina, USA).<br />

RESULTS AND DISCUSSION<br />

Filtrati<strong>on</strong> Test<br />

WEFTEC®.06<br />

DOC Results. The DOC <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>filters</str<strong>on</strong>g> until a cumulative filtrati<strong>on</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 mL is<br />

shown in Figure 1. It is evident that in all <str<strong>on</strong>g>filters</str<strong>on</strong>g> except for Gelman FP-Vericel and Gelman HT-<br />

Tuffryn the DOC <str<strong>on</strong>g>leaching</str<strong>on</strong>g> ceased within the first few initial incremental volumes. Gelman FP-<br />

Vericel had the highest organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> c<strong>on</strong>tinuing until a cumulative filtrati<strong>on</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000<br />

mL (data not shown) followed by Gelman HT-Tuffryn, which had DOC <str<strong>on</strong>g>leaching</str<strong>on</strong>g> until a<br />

cumulative filtrati<strong>on</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 mL (data not shown). The DOC values <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates<br />

reported in this study compares well with those reported by Karanfil et al. (2003) for all <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

except for Gelman GH Polypro. The reas<strong>on</strong> for observing the difference for this filter is not<br />

clear. It might be because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lot or batch variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested.<br />

Statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> hydrophilic nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> using the<br />

Tukey-Kramer procedure indicated significant difference am<strong>on</strong>g the manufacturers (p = 0.05<br />

criteri<strong>on</strong>, data not shown). The difference am<strong>on</strong>g the manufacturers could be because <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

differences in the manufacturing processes and/or the additives. For the polyethersulf<strong>on</strong>e <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different pore sizes, there was no significant difference in the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Supor 450 filter (0.45 µm pore size) when compared with those <str<strong>on</strong>g>from</str<strong>on</strong>g> Supor 200 (0.20 µm pore<br />

size) and Supor 800 (0.80 µm pore size), but there was a difference between those <str<strong>on</strong>g>from</str<strong>on</strong>g> Supor<br />

200 and Supor 800 (Tukey-Kramer procedure, p = 0.05 criteri<strong>on</strong>, data not shown). This suggests<br />

that when the difference in pore size between the <str<strong>on</strong>g>filters</str<strong>on</strong>g> compared is large, the difference in<br />

organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> them becomes significant. This observati<strong>on</strong> was c<strong>on</strong>firmed by no<br />

significant difference in mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> between the cellulose acetate <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

different pore sizes (0.20 µm and 0.45 µm) and a significant difference in mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

<str<strong>on</strong>g>leaching</str<strong>on</strong>g> between the Whatman GF/F and 934-AH glass fiber <str<strong>on</strong>g>filters</str<strong>on</strong>g> (pore sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.70 µm and<br />

1.50 µm) based <strong>on</strong> two tailed t-test at p = 0.05.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

908


Figure 1 - DOC Results <str<strong>on</strong>g>from</str<strong>on</strong>g> Filtrati<strong>on</strong> Test <strong>on</strong> all 19 Filters<br />

DOC (mg/L)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Versapor<br />

GN-6<br />

FP Vericel<br />

HT Tuffryn<br />

Nylaflo<br />

Millipore nyl<strong>on</strong><br />

Magna nyl<strong>on</strong><br />

Whatman nyl<strong>on</strong><br />

Supor 200<br />

Supor 450<br />

Supor 800<br />

WCN<br />

Polycarb<strong>on</strong>ate<br />

GH Polypro<br />

Cellu.ace. (0.45)<br />

Cellu. ace. (0.20)<br />

GF/F<br />

A/E<br />

934-AH<br />

Filter type<br />

WEFTEC®.06<br />

50 mL<br />

100 mL<br />

150 mL<br />

200 mL<br />

250 mL<br />

300 mL<br />

For all three filter materials tested for the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore size, organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> tended to increase<br />

with decreasing pore size. The higher organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller pore size can be<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> the following reas<strong>on</strong>s. The <str<strong>on</strong>g>filters</str<strong>on</strong>g> with smaller pore sizes had more<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane materials that were tightly packed than the <str<strong>on</strong>g>filters</str<strong>on</strong>g> with larger pore sizes.<br />

There were more membrane surface areas available for c<strong>on</strong>tact with DDW in the smaller pore<br />

sized <str<strong>on</strong>g>filters</str<strong>on</strong>g> than the larger pore sized <str<strong>on</strong>g>filters</str<strong>on</strong>g>. In additi<strong>on</strong>, the c<strong>on</strong>tact time <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW filtered <strong>on</strong> the<br />

filter was higher for the smaller pore sized <str<strong>on</strong>g>filters</str<strong>on</strong>g> compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the larger pore sized <str<strong>on</strong>g>filters</str<strong>on</strong>g>.<br />

As a result, more <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the smaller pore sized <str<strong>on</strong>g>filters</str<strong>on</strong>g> was observed.<br />

SCOD Results. The COD <str<strong>on</strong>g>of</str<strong>on</strong>g> the first 50 mL filtrate <str<strong>on</strong>g>from</str<strong>on</strong>g> all 19 <str<strong>on</strong>g>filters</str<strong>on</strong>g> is shown in Figure 2. The<br />

error bars represent standard deviati<strong>on</strong>. FP-Vericel filter, which had the highest DOC<br />

c<strong>on</strong>taminati<strong>on</strong>, also showed highest COD in its filtrate. Average COD <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> four<br />

different FP-Vericel was 48 ± 3 mg/L. FP-Vericel filter was followed by HT-Tuffryn in the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> DOC c<strong>on</strong>taminati<strong>on</strong> and so was COD. The average COD <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> HT-<br />

Tuffryn filter was 35 ± 4 mg/L. The COD <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> the other <str<strong>on</strong>g>filters</str<strong>on</strong>g> were less than 8<br />

mg/L which should not be c<strong>on</strong>cerned as Standard Methods (APHA et al., 1998) states that COD<br />

values less than 25 mg/L would be qualitative than quantitative.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

909


Figure 2 - COD C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the First 50 mL Filtrate<br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> all 19 Filters<br />

COD (mg/L)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Gelman Versapor<br />

Gelman GN-6<br />

Gelman FP-Vericel<br />

Gelman HT-Tuffryn<br />

Gelman Nylaflo<br />

Millipore Nyl<strong>on</strong><br />

Osm<strong>on</strong>ic Magna Nyl<strong>on</strong><br />

Whatman Nyl<strong>on</strong><br />

Gelman Supor 200<br />

Gelman Supor 450<br />

Gelman Supor 800<br />

Whatman (WCN)<br />

Corning<br />

Gelman GH Polypro<br />

Cellulose Acetate (0.45 )<br />

Cellulose Acetate (0.2 )<br />

Whatman GF/F<br />

Whatman A/E<br />

Whatman 934-AH<br />

Filter type<br />

SBOD Results. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> SBOD analysis are shown in Table 2. Only the types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g>,<br />

that met the DOC criteri<strong>on</strong> specified above in the Experimental Setup and Procedure subsecti<strong>on</strong>,<br />

are presented except 0.20 µm pore size cellulose acetate filter. The filtrate <str<strong>on</strong>g>from</str<strong>on</strong>g> 0.20 µm pore<br />

size cellulose acetate filter was not included for BOD and BDOC <strong>analyses</strong>, since the mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> it was not statistically different <str<strong>on</strong>g>from</str<strong>on</strong>g> that <str<strong>on</strong>g>from</str<strong>on</strong>g> 0.45 µm pore size cellulose<br />

acetate filter. Moreover, for SBOD and BDOC determinati<strong>on</strong>s, the pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> the filter required<br />

is <strong>on</strong>ly 0.45 µm (the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f for soluble or dissolved fracti<strong>on</strong>). The filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman FP-<br />

Vericel, Gelman HT-Tuffryn and Gelman GH Polypro had BOD c<strong>on</strong>centrati<strong>on</strong> greater than the<br />

MDL <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mg/L while for the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> the other <str<strong>on</strong>g>filters</str<strong>on</strong>g>, their BOD c<strong>on</strong>centrati<strong>on</strong>s were<br />

below 2 mg/L. The BOD c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman FP-Vericel and HT-Tuffryn<br />

were high and proper cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>filters</str<strong>on</strong>g> should be carried out before using them for SBOD<br />

determinati<strong>on</strong>. The BOD c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample is determined using the following equati<strong>on</strong>:<br />

BOD = [(DOi – DOf)sample - (DOi – DOf)blank]F<br />

WEFTEC®.06<br />

where DOi is the initial dissolved oxygen c<strong>on</strong>centrati<strong>on</strong>, DOf is the final dissolved oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>, blank refers to DDW with just the seed, and F is the diluti<strong>on</strong> factor.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

910


911<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

Table 2 - SBOD and BDOC Results<br />

Filter Type<br />

Average<br />

BOD<br />

(mg/L)<br />

Average<br />

Initial<br />

DOC<br />

(mg/L)<br />

Average<br />

BDOC5<br />

(mg/L)<br />

Average<br />

Percent<br />

Biodegradable<br />

Average<br />

BDOC28<br />

(mg/L)<br />

Average<br />

Percent<br />

Biodegradable<br />

Significant<br />

Difference<br />

between<br />

BDOC5 and<br />

BDOC28<br />

95 Percent<br />

C<strong>on</strong>fidence<br />

Interval <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Total BDOC<br />

(mg/L)<br />

Gelman GN-6 0.59 ± 0.29 0.36 ± 0.06 0.23 ± 0.04 63 ± 7 - - - 0.28 – 0.29<br />

Gelman FP-<br />

Vericel<br />

14.48 ± 0.53 7.14 ± 0.03 4.59 ± 0.06 64 ± 1 6.20 ± 0.04 87 ± 1 Yes 6.14 – 6.26<br />

Gelman HT-<br />

Tuffryn<br />

5.11 ± 0.49 2.51 ± 0.07 1.86 ± 0.16 74 ± 8 2.00 ± 0.17 80 ± 9 No 1.72 – 2.27<br />

Millipore Nyl<strong>on</strong> 0.91 ± 0.69 0.60 ± 0.03 0.34 ± 0.10 56 ± 15 0.57 ± 0.03 95 ± 2 Yes 0.52 – 0.62<br />

Osm<strong>on</strong>ics Magna<br />

Nyl<strong>on</strong><br />

0.68 ± 0.27 0.35 ± 0.03 0.00 ± 0.00 0 - - - 0.00 – 0.00<br />

Whatman Nyl<strong>on</strong> 0.81 ± 0.38 0.81 ± 0.02 0.65 ± 0.05 80 ± 4 - - - 0.57– 0.72<br />

Whatman (WCN) 1.40 ± 0.16 0.40 ± 0.02 0.18 ± 0.02 42 ± 11 - - - 0.10 – 0.24<br />

Gelman GH<br />

Polypro<br />

2.97 ± 0.32 1.49 ± 0.08 0.84 ± 0.11 56 ± 5 0.95 ± 0.10 64 ± 3 No 0.80 – 1.11<br />

Cellulose Acetate<br />

(0.45 µm)<br />

0.13 ± 0.10 0.30 ± 0.00 0.20 ± 0.01 66 ± 3 - - - 0.18 – 0.21<br />

Whatman A/E 0.94 ± 0.22 0.49 ± 0.05 0.43 ± 0.03 88 ± 9 - - - 0.39 – 0.47<br />

WEFTEC®.06


WEFTEC®.06<br />

With interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>, the DOf <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample will be less because <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al BOD<br />

exerted by the organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> and this will result in SBOD overestimati<strong>on</strong>. For<br />

samples <str<strong>on</strong>g>of</str<strong>on</strong>g> which the SBOD determinati<strong>on</strong> requires diluti<strong>on</strong>, the interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> will be<br />

amplified by the diluti<strong>on</strong> factor if the diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample is performed before filtrati<strong>on</strong>. If the<br />

diluti<strong>on</strong> is performed after filtrati<strong>on</strong>, depending <strong>on</strong> the diluti<strong>on</strong> factor, the interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g> in the SBOD determinati<strong>on</strong> either remains unchanged (because <str<strong>on</strong>g>of</str<strong>on</strong>g> the inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the diluti<strong>on</strong><br />

factor) or becomes too low to be detected.<br />

BDOC Results. The BDOC results <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested are shown in Table 2. BDOC5 <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman GN-6, Whatman (WCN) and cellulose acetate (0.45 µm) <str<strong>on</strong>g>filters</str<strong>on</strong>g> were close<br />

to the MDL <str<strong>on</strong>g>of</str<strong>on</strong>g> the BDOC procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.15 mg/L. These results indicate that the interference in<br />

BDOC measurement <str<strong>on</strong>g>from</str<strong>on</strong>g> these <str<strong>on</strong>g>filters</str<strong>on</strong>g> is minimal when compared with the other <str<strong>on</strong>g>filters</str<strong>on</strong>g>.<br />

The filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman FP-Vericel filter, which had the highest organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g>, had the<br />

highest BDOC c<strong>on</strong>centrati<strong>on</strong> am<strong>on</strong>g the <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested. There was a significant difference (t-test, p<br />

= 0.05 criteri<strong>on</strong>, n = 4) in the BDOC c<strong>on</strong>centrati<strong>on</strong> obtained after 5 and 28 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong><br />

suggesting that when sufficient amount <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> is provided all <str<strong>on</strong>g>of</str<strong>on</strong>g> the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g><br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> it will be biodegradable (p = 7.77×10 -9 ). The BDOC <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman HT-<br />

Tuffryn filter was also high. The c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> until 28 days for this filter did not<br />

show BDOC c<strong>on</strong>centrati<strong>on</strong> significantly different <str<strong>on</strong>g>from</str<strong>on</strong>g> that obtained after 5 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong><br />

(t-test, p = 0.05 criteri<strong>on</strong>, n = 4) indicating that the <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> this filter has both<br />

biodegradable and n<strong>on</strong>-biodegradable organics (p = 0.28). Similar results were obtained for the<br />

filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Gelman GH Polypro. There was no significant difference (p = 0.18) between the<br />

BDOC c<strong>on</strong>centrati<strong>on</strong>s obtained after 5 and 28 days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong>.<br />

The BDOC <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> the three hydrophilic nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested were different as seen in<br />

Table 2. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> Whatman nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> were biodegradable after 5<br />

days <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> and about 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> Millipore nyl<strong>on</strong> were<br />

biodegradable after 5 days. The incubati<strong>on</strong> when c<strong>on</strong>tinued until 28 days for the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Millipore nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> indicated that there was no significant difference between the initial DOC<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the leached organics and BDOC28 (t-test, p = 0.19). All <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>leaching</str<strong>on</strong>g> organics <str<strong>on</strong>g>from</str<strong>on</strong>g> them<br />

were biodegradable if sufficient time was allowed. For the other hydrophilic nyl<strong>on</strong> filter, namely<br />

Osm<strong>on</strong>ics nyl<strong>on</strong>, the <str<strong>on</strong>g>leaching</str<strong>on</strong>g> organics were not susceptible to biodegradati<strong>on</strong>.<br />

Although the membrane material <str<strong>on</strong>g>of</str<strong>on</strong>g> Osm<strong>on</strong>ics magna nyl<strong>on</strong> filter is same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> the Whatman<br />

and Millipore nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g>, the biodegradability <str<strong>on</strong>g>of</str<strong>on</strong>g> the leached organics was completely<br />

different. No BDOC exerti<strong>on</strong> in the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> Osm<strong>on</strong>ics magna nyl<strong>on</strong> <str<strong>on</strong>g>filters</str<strong>on</strong>g> could be<br />

because either the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> them are in fact biorefractory/n<strong>on</strong>biodegradable or the<br />

leachate c<strong>on</strong>tains some toxic compounds that affect the microbial activity <strong>on</strong> the DOC. There<br />

will be no interference when using Osm<strong>on</strong>ics magna nyl<strong>on</strong> filter for BDOC measurement if the<br />

reas<strong>on</strong> for no BDOC is because they are not biodegradable. On the other hand, if toxicity is the<br />

reas<strong>on</strong> for having no biodegradability, the usage <str<strong>on</strong>g>of</str<strong>on</strong>g> this filter will impose an error in the BDOC<br />

measurement. The interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> during BDOC measurement varies for different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g>. However, the exact magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> interference in BDOC measurement <str<strong>on</strong>g>from</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g> cannot be determined <str<strong>on</strong>g>from</str<strong>on</strong>g> this study al<strong>on</strong>e as there are several factors, such as volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sample filtered, type and volume <str<strong>on</strong>g>of</str<strong>on</strong>g> inoculum, and incubati<strong>on</strong> time, that can affect the BDOC<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

912


esult.<br />

Soak Test<br />

WEFTEC®.06<br />

The DOC data <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples <str<strong>on</strong>g>of</str<strong>on</strong>g> all 19 <str<strong>on</strong>g>filters</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the soak test are shown in Table 3. In 18 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 19 <str<strong>on</strong>g>filters</str<strong>on</strong>g>, the soak test samples showed that DOC stopped <str<strong>on</strong>g>leaching</str<strong>on</strong>g> (DOC ≤ 0.10 mg/L)<br />

within four days. Gelman FP-Vericel filter, exhibited the <str<strong>on</strong>g>leaching</str<strong>on</strong>g> until 10 days (data not<br />

shown). For most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>, the DOC <str<strong>on</strong>g>leaching</str<strong>on</strong>g> was found <strong>on</strong>ly in the samples obtained after<br />

soaking the <str<strong>on</strong>g>filters</str<strong>on</strong>g> for <strong>on</strong>e day in DDW. The DOC data <str<strong>on</strong>g>of</str<strong>on</strong>g> the soak test samples had less<br />

variability when compared with the DOC data <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrati<strong>on</strong> test samples.<br />

The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> different <str<strong>on</strong>g>filters</str<strong>on</strong>g> when subjected to filtrati<strong>on</strong> and<br />

soak tests is shown in Table 4. Significant difference between the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>from</str<strong>on</strong>g> the<br />

filtrati<strong>on</strong> and soak tests was determined statistically using t-test at p = 0.05. The difference in the<br />

mass for <str<strong>on</strong>g>filters</str<strong>on</strong>g>, which had DOC c<strong>on</strong>centrati<strong>on</strong> less than 0.1 mg/L in either the filtrati<strong>on</strong> test or<br />

soak test, was not determined. From the table, it is observed that in all <str<strong>on</strong>g>filters</str<strong>on</strong>g> except for<br />

Whatman GF/F filter, the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> when subjected to the soak<br />

test was statistically either not different <str<strong>on</strong>g>from</str<strong>on</strong>g> or greater than the mass <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> the filtrati<strong>on</strong><br />

test indicating that soaking the <str<strong>on</strong>g>filters</str<strong>on</strong>g> would result in removing most <str<strong>on</strong>g>of</str<strong>on</strong>g> the leachable organics<br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. The possible reas<strong>on</strong> for the different results <str<strong>on</strong>g>from</str<strong>on</strong>g> the two tests could be because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> less soluble organics in the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. The less soluble organics were less<br />

susceptible to <str<strong>on</strong>g>leaching</str<strong>on</strong>g> during the filtrati<strong>on</strong> test because <str<strong>on</strong>g>of</str<strong>on</strong>g> less c<strong>on</strong>tact time with DDW.<br />

Guidelines for the Use and Cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> Filters<br />

Table 5 summarizes the interference caused by organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g> <strong>on</strong> organic <strong>analyses</strong><br />

and the recommended filter cleaning method. The interference with DOC analysis was found in<br />

14 out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 19 <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested. The interference in SCOD analysis was observed <strong>on</strong>ly in 2 <str<strong>on</strong>g>filters</str<strong>on</strong>g>.<br />

The interference in SBOD analysis was found in 3 out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 <str<strong>on</strong>g>filters</str<strong>on</strong>g> tested. Although the BOD<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> other <str<strong>on</strong>g>filters</str<strong>on</strong>g> was less than the MDL <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 mg/L, the interference will be<br />

amplified by the diluti<strong>on</strong> factor if the sample is filtered through the filter after diluti<strong>on</strong>. This<br />

amplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interference by the diluti<strong>on</strong> factor is applicable to all the organic parameters<br />

studied. The BDOC <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates was greater than the MDL <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.15 mg/L in 9 out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g> tested. For the other filter (Osm<strong>on</strong>ics Magna Nyl<strong>on</strong>), the organics leached were not<br />

biodegradable at all. However, it cannot be c<strong>on</strong>cluded that there is no interference <str<strong>on</strong>g>from</str<strong>on</strong>g> this filter<br />

since the exact reas<strong>on</strong> for no biodegradability in the leached organics is not known. Thus,<br />

interference <str<strong>on</strong>g>from</str<strong>on</strong>g> this filter in BDOC analysis is reported as inc<strong>on</strong>clusive in Table 5.<br />

Table 5 reveals that in most <str<strong>on</strong>g>filters</str<strong>on</strong>g> which showed interference in organic analysis, the suggested<br />

cleaning method is to soak the <str<strong>on</strong>g>filters</str<strong>on</strong>g> in DDW. In <str<strong>on</strong>g>filters</str<strong>on</strong>g>, which either had no organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> or<br />

had no statistical difference in the total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <str<strong>on</strong>g>leaching</str<strong>on</strong>g> when subjected to filtrati<strong>on</strong> and<br />

soak tests, the suggested cleaning method is discarding initial filtrati<strong>on</strong> volumes, as it c<strong>on</strong>sumes<br />

less time than the cleaning by soaking. It is clear <str<strong>on</strong>g>from</str<strong>on</strong>g> Table 5 that the soak time and the<br />

filtrati<strong>on</strong> volume to be discarded differ <str<strong>on</strong>g>from</str<strong>on</strong>g> filter to filter.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

913


914<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

Table 3 - Soak Test Results<br />

Filter Type<br />

Average DOC <str<strong>on</strong>g>of</str<strong>on</strong>g> Soak Samples (mg/L)<br />

Day 1 Day 2 Day 3 Day 4<br />

Average Total<br />

Mass <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Soak Test<br />

(µg)<br />

95 Percent C<strong>on</strong>fidence<br />

Interval Estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Total Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong><br />

(µg)<br />

Gelman Versapor 0.70 ± 0.02 0.04 ± 0.04 - - 70 ± 2 67 – 74<br />

Gelman GN-6 1.32 ± 0.16 0.06 ± 0.04 - - 132 ± 12 106 – 158<br />

Gelman FP-Vericel 21.8 ± 1.40 3.47 ± 0.55 1.49 ± 0.12 1.07 ± 0.05 3076 ± 124 1 2878 – 3274 1<br />

Gelman HT-Tuffryn 5.24 ± 0.34 0.63 ± 0.02 0.35 ± 0.00 0.06 ± 0.02 623 ± 33 569 – 676<br />

Gelman Nylaflo 0.09 ± 0.00 - - - 9 ± 0.4 9 – 11<br />

Millipore Nyl<strong>on</strong> 0.84 ± 0.03 0.04 ± 0.04 - - 84 ± 3 79 – 89<br />

Osm<strong>on</strong>ic Magna Nyl<strong>on</strong> 0.40 ± 0.07 0.01 ± 0.01 - - 40 ± 7 29 – 51<br />

Whatman Nyl<strong>on</strong> 0.91 ± 0.03 0.08 ± 0.02 - - 91 ± 3 86 – 96<br />

Gelman Supor 200 0.29 ± 0.02 0.23 ± 0.04 0.01 ± 0.02 - 52 ± 6 43 – 61<br />

Gelman Supor 450 0.12 ± 0.05 0.13 ± 0.02 0.09 ± 0.00 - 24 ± 3 19 – 30<br />

Gelman Supor 800 0.23 ± 0.01 0.03 ± 0.02 - - 23 ± 1 21 – 26<br />

Whatman (WCN) 0.66 ± 0.08 0.14 ± 0.02 0.05 ± 0.01 - 80 ± 9 66 – 95<br />

Whatman Nucleopore 0.05 ± 0.01 - - - 5 ± 0.8 4 – 6<br />

Gelman GH Polypro 1.46 ± 0.15 0.11 ± 0.02 0.04 ± 0.03 - 157 ± 16 131 – 183<br />

Cellulose acetate (0.20 µm) 0.57 ± 0.03 0.04 ± 0.00 - - 57 ± 3 52 – 62<br />

Cellulose acetate (0.45 µm) 0.28 ± 0.04 0.07 ± 0.03 - - 28 ± 4 22 – 34<br />

Whatman GF/F 0.11 ± 0.02 0.03 ± 0.01 - - 11 ± 2 8.0 – 14<br />

Gelman A/E 0.82 ± 0.11 0.08 ± 0.01 - - 82 ± 12 64 – 100<br />

Whatman 934-AH 0.07 ± 0.00 - - - 7 ± 0 6 – 9<br />

1 Based <strong>on</strong> 10 days <str<strong>on</strong>g>of</str<strong>on</strong>g> soaking (data not shown).<br />

WEFTEC®.06


Table 4 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> <str<strong>on</strong>g>from</str<strong>on</strong>g> Filtrati<strong>on</strong> and Soak Tests<br />

Filter Type<br />

Mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Carb<strong>on</strong> <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Filtrati<strong>on</strong> Test<br />

(µg)<br />

WEFTEC®.06<br />

Mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Carb<strong>on</strong> <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Soak Test<br />

(µg)<br />

Gelman Versapor 18.5 ± 2.6 70± 2 26<br />

Percent<br />

Mass <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

Filtrati<strong>on</strong><br />

Test<br />

Significant<br />

Difference<br />

between Soak and<br />

Filtrati<strong>on</strong> Tests<br />

Yes (p = 8.79E-<br />

08)<br />

Gelman GN-6 94 ± 21 132 ± 12 71 Yes (p = 0.278)<br />

Gelman FP-Vericel 1063 ± 32 3076 ± 124 35 Yes (p = 7.3E-08)<br />

Gelman HT-Tuffryn 390 ± 44 623 ± 33 63 Yes (p = 0.0002)<br />

Gelman Nylaflo 3 ± 3 1 9 ± 0 1 - -<br />

Millipore Nyl<strong>on</strong> 81 ± 6 84 ± 3 96 No (p = 0.38)<br />

Osm<strong>on</strong>ic Magna Nyl<strong>on</strong> 32 ± 5 40 ± 7 80 No (p = 0.09)<br />

Whatman Nyl<strong>on</strong> 80 ± 8 91 ± 3 88 Yes (p = 0.04)<br />

Gelman Supor 200 17 ± 9 52 ± 6 33<br />

Yes (p = 2.03E-<br />

05)<br />

Gelman Supor 450 7 ± 4 1 24± 3 29 -<br />

Gelman Supor 800 5 ± 1 1 23 ± 1 22 -<br />

Whatman (WCN) 30 ± 7 80 ± 9 38 Yes (p = 0.0001)<br />

Whatman Nucleopore 4 ± 1 1 5 ± 1 1 - -<br />

Gelman GH Polypro 87 ± 30 157 ± 16 55 Yes (p = 0.024)<br />

Cellulose acetate (0.20 µm) 39 ± 5 57 ± 3 68 Yes (p = 0.002)<br />

Cellulose acetate (0.45 µm) 32 ± 7 28 ± 4 114 No (p = 0.28)<br />

Whatman GF/F 21 ± 5 11 ± 2 190 Yes 2 (p = 0.024)<br />

Whatman A/E 56 ± 16 82 ± 12 68 Yes (p = 0.035)<br />

Whatman 934-AH 2 ± 2 1 7± 1 1 - -<br />

1<br />

Values below the DOC cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 mg/L and therefore not included in comparis<strong>on</strong>.<br />

2<br />

Only filter which showed statistically higher carb<strong>on</strong> mass in filtrati<strong>on</strong> test than soak test.<br />

Gelman FP-Vericel and Gelman HT-Tuffryn <str<strong>on</strong>g>filters</str<strong>on</strong>g> should be avoided for dissolved organic<br />

<strong>analyses</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> their high organic c<strong>on</strong>taminati<strong>on</strong> and cleaning difficulty. The 0.45 µm pore<br />

sized, Gelman Versapor, Gelman GN-6, Millipore Nyl<strong>on</strong>, Whatman Nyl<strong>on</strong>, Osm<strong>on</strong>ics Magna<br />

Nyl<strong>on</strong>, Gelman Supor 450, Whatman Cellulose Nitrate, Gelman GH Polypro, and Cellulose<br />

acetate <str<strong>on</strong>g>filters</str<strong>on</strong>g> can be used for dissolved organics <strong>analyses</strong> after appropriate cleaning. Gelman<br />

Nylaflo, does not introduce any artifacts to organic <strong>analyses</strong>, and thus can be used for organic<br />

<strong>analyses</strong> without any pretreatment. However, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the possible variati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

<str<strong>on</strong>g>from</str<strong>on</strong>g> lot to lot, they should be tested for c<strong>on</strong>taminati<strong>on</strong> before use. Although some <str<strong>on</strong>g>of</str<strong>on</strong>g> the other<br />

<str<strong>on</strong>g>filters</str<strong>on</strong>g>, which are not listed above, had minimal or no organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g>, they were not <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.45 µm<br />

pore size, and thus their use in dissolved organic <strong>analyses</strong> should be avoided. It should also be<br />

noted that the interference estimated in this study is based <strong>on</strong> DDW, but in real water samples<br />

the interference <str<strong>on</strong>g>from</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g> might be or might not be the same. This is because the<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the real water sample such as the chemical compositi<strong>on</strong>, pH, and particle size<br />

distributi<strong>on</strong> may not be the same as those <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW. These characteristics could affect the<br />

interacti<strong>on</strong> between the sample and the filter material resulting in different degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interference.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

915


916<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

Table 5 - Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Interference Caused by Organic Leaching From Filters <strong>on</strong> Analyses and Suggested Cleaning Method<br />

Filter Type<br />

Interference in the Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DOC COD BOD BDOC<br />

Suggested Cleaning Method<br />

Gelman Versapor Yes N 1 N 1 Soak in 100 mL DDW for 24 hours<br />

Gelman GN-6 Yes Yes Soak in 100 mL DDW for 24 hours<br />

Gelman FP-Vericel Yes Yes Yes Yes Soak in 100 mL DDW for 10 days<br />

Gelman HT-Tuffryn Yes Yes Yes Yes Soak in 100 mL DDW for 72 hours<br />

Gelman Nylaflo N 1 N 1 Requires no pretreatment, however filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DDW before use for analysis<br />

Millipore Nyl<strong>on</strong> Yes Yes Filter at least 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW before use for analysis<br />

Osm<strong>on</strong>ic Magna Nyl<strong>on</strong> Yes I 2 Filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW before use for analysis<br />

Whatman Nyl<strong>on</strong> Yes Yes Soak in 100 mL DDW for 24 hours<br />

Gelman Supor 200 Yes N 1 N 1 Soak in 100 mL DDW for 48 hours<br />

Gelman Supor 450 N 1 N 1 Requires no pretreatment, however filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Gelman Supor 800 N 1 N 1<br />

DDW before use for analysis<br />

Requires no pretreatment, however filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DDW before use for analysis<br />

Whatman (WCN) Yes Yes Soak in 100 mL DDW for 48 hours<br />

Whatman Nucleopore N 1 N 1 Requires no pretreatment, however filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DDW before use for analysis<br />

Gelman GH Polypro Yes Yes Yes Soak in 100 mL DDW for 48 hours<br />

Cellulose acetate (0.20 µm) Yes Yes Soak in 100 mL DDW for 24 hours<br />

Cellulose acetate (0.45 µm) Yes Yes Filter at least 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW before use for analysis<br />

Whatman GF/F Yes N 1 N 1 Filter at least 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> DDW before use for analysis<br />

Gelman A/E Yes Yes Soak in 100 mL DDW for 24 hours<br />

Whatman 934-AH N 1 N 1<br />

1 N-Not tested.<br />

2 I-Inc<strong>on</strong>clusive.<br />

Requires no pretreatment, however filter at least 100 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DDW before use for analysis<br />

WEFTEC®.06


CONCLUSIONS<br />

This research determined the interference caused by the organics <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g> 19 comm<strong>on</strong>ly<br />

used <str<strong>on</strong>g>filters</str<strong>on</strong>g> in the <strong>analyses</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter and compared the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> <str<strong>on</strong>g>from</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>filters</str<strong>on</strong>g> when subjected to two different c<strong>on</strong>diti<strong>on</strong>s namely soak and filtrati<strong>on</strong> tests. Five <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

had negligible or no organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> (DOC < 0.1 mg/L) while two <str<strong>on</strong>g>filters</str<strong>on</strong>g>, Gelman FP-Vericel<br />

and Gelman HT-Tuffryn, had very high organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> (DOC > 5 mg/L) and should not be<br />

used without proper cleaning. Different amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> were observed in the <str<strong>on</strong>g>filters</str<strong>on</strong>g><br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same material but <str<strong>on</strong>g>from</str<strong>on</strong>g> different manufacturers and in the <str<strong>on</strong>g>filters</str<strong>on</strong>g> made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same<br />

material, manufactured by the same manufacturer but <str<strong>on</strong>g>of</str<strong>on</strong>g> substantially different pore sizes. The<br />

SCOD c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the filtrates <str<strong>on</strong>g>from</str<strong>on</strong>g> 17 <str<strong>on</strong>g>filters</str<strong>on</strong>g> were much lower than the quantitative level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern established by Standard Methods (APHA et al., 1998). Only Gelman FP-Vericel and<br />

Gelman HT-Tuffryn <str<strong>on</strong>g>filters</str<strong>on</strong>g> interfered with the COD test. These two <str<strong>on</strong>g>filters</str<strong>on</strong>g> also leached BOD<br />

c<strong>on</strong>tributing substances above the detecti<strong>on</strong> limit al<strong>on</strong>g with Gelman GH Polypro. Due to higher<br />

sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameter, several more <str<strong>on</strong>g>filters</str<strong>on</strong>g> interfered with the BDOC test compared to the<br />

SBOD test. The soak test showed higher organic <str<strong>on</strong>g>leaching</str<strong>on</strong>g> than the corresp<strong>on</strong>ding filtrati<strong>on</strong> test<br />

for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filters</str<strong>on</strong>g>. The guidelines for the applicati<strong>on</strong> and cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filters</str<strong>on</strong>g>, which are useful<br />

for water quality <strong>laboratory</strong> practiti<strong>on</strong>ers and researchers, were generated based <strong>on</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this study.<br />

REFERENCES<br />

WEFTEC®.06<br />

American Public Health Associati<strong>on</strong>; American Water Works Associati<strong>on</strong>; and Water<br />

Envir<strong>on</strong>ment Federati<strong>on</strong> (1998) Standard Methods for the Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Water and<br />

Wastewater, 20 th ed.; Washingt<strong>on</strong>, D.C.<br />

Aiken, G.; Leenheer, J. (1993) Isolati<strong>on</strong> and Chemical Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dissolved and<br />

Colloidal Organic Matter. Chem. Ecol., 8, 135.<br />

Baeyens, W.; Parmentier, K.; Goeyens, L.; Ducastel, G.; De Gieter, M.; Leermakers, M. (1998)<br />

The Biogeochemical Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Cd, Cu, Pb and Zn in the Scheld Estuary: Results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 1995 Surveys. Hydrobiologia, 366, 45.<br />

Buffle, J.; Perret, D.; Newman, M. (1992) Envir<strong>on</strong>mental Particles. Volume 1, Lewis Publishers,<br />

Boca Rat<strong>on</strong>, Florida.<br />

Burgess, R. M.; McKinney, R. A.; Brown, W. A.; Quin, J. G. (1996) Isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine<br />

Sediment Colloids and Associated Polychlorinated Biphenyls: An Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ultrafiltrati<strong>on</strong> and Reverse Phase Chromatography. Envir<strong>on</strong>. Sci. Technol., 30, 1923.<br />

Danielss<strong>on</strong>, L. G. (1982) On the Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Filters for Distinguishing Between Dissolved and<br />

Particulate Fracti<strong>on</strong>s in Natural Waters. Water Res., 16, 179.<br />

Dubreuil, G.; Prevost, M.; Desjardins, R.; Maclean, R. G. (1997) Bioreactors for the Rapid<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodegradable Dissolved Organic Carb<strong>on</strong> (BDOC) in Drinking Water:<br />

Feed Mode Impact. Envir<strong>on</strong>. Technol., 18, 363.<br />

Horowitz, A. J.; Lum, K. R.; Garbarino, J. R.; Hall, G. E. M.; Lemieux, C.; Demas, C. R. (1996)<br />

Problems Associated with Using Filtrati<strong>on</strong> to Define Dissolved Trace Element<br />

C<strong>on</strong>centrati<strong>on</strong>s in Natural Water Samples. Envir<strong>on</strong>. Sci. Technol., 30, 954.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

917


WEFTEC®.06<br />

Hwang, C. P.; Lackie, T. H.; Munch, R. R. (1979) Correcti<strong>on</strong> for Total Organic Carb<strong>on</strong>, Nitrate,<br />

and Chemical Oxygen Demand when Using the MF-Millipore Filter. Envir<strong>on</strong>. Sci.<br />

Technol., 13, 871.<br />

Kaplan, L. A.; Bott, T. L.; Reas<strong>on</strong>er, D. J. (1993) Evaluati<strong>on</strong> and Simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Assimilable Organic Carb<strong>on</strong> Nutrient Bioassay for Bacterial Growth in Drinking Water.<br />

Appl. Envir<strong>on</strong>. Microb., 59, 1532.<br />

Karanfil, T.; Erdogan, I.; Schlautman, M. A. (2003) Selecting Filter Membranes for Measuring<br />

DOC and UV254. J. Am. Water Works Ass., 95, 86.<br />

Karanfil, T.; Schlautman, M. A.; Erdogan, I. (2002) Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> DOC and UV Measurement<br />

Practices with Implicati<strong>on</strong>s for SUVA Determinati<strong>on</strong>. J. Am. Water Works Ass., 94, 68.<br />

Khan, E.; Babcock, R. W.; Suffet, I. H.; Stenstrom, M. K. (1998) Method Development for<br />

Measuring Biodegradable Organic Carb<strong>on</strong> in Reclaimed and Treated Wastewaters. Water<br />

Envir<strong>on</strong>. Res., 70, 1025.<br />

Khan, E.; King, S.; Babcock, R. W.; Stenstrom, M. K. (1999) Factors Influencing Biodegradable<br />

Dissolved Organic Carb<strong>on</strong> Measurement. J. Envir<strong>on</strong>. Eng.-ACSE. 125, 514.<br />

Norrman, B. (1993) Filtrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Samples for DOC Studies. Mar. Chem., 41, 239.<br />

Otsuki, A.; Fuwa, K. (1977) Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an Organic Compound Leached <str<strong>on</strong>g>from</str<strong>on</strong>g> a Membrane<br />

Filter. Talanta, 24, 584.<br />

Shaw, J. P.; Malley, J. P.; Willoughby, S. A. (2000) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> UV Irradiati<strong>on</strong> <strong>on</strong> Organic Matter.<br />

J. Am. Water Works Ass., 92, 157.<br />

U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (1999) Enhanced Coagulati<strong>on</strong> and Enhanced<br />

Precipitative S<str<strong>on</strong>g>of</str<strong>on</strong>g>tening Guidance Manual; EPA 815-R-99-012; Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Water,<br />

Cincinnati, Ohio.<br />

Copyright ©<br />

2006 Water Envir<strong>on</strong>ment Foundati<strong>on</strong>. All Rights Reserved<br />

918

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!