25.01.2013 Views

The Surface Finish Effect on the Creep Corrosion in PCB - IPC Outlook

The Surface Finish Effect on the Creep Corrosion in PCB - IPC Outlook

The Surface Finish Effect on the Creep Corrosion in PCB - IPC Outlook

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Creep</strong> Corrosi<strong>on</strong> <strong>in</strong> <strong>PCB</strong><br />

1 Cherie Chen*, 1 Jeffrey ChangB<strong>in</strong>g Lee, 1 Graver Chang, 1 Jandel L<strong>in</strong><br />

2 Casa Hsieh, 2 Jesse Liao, 2 Jerry Huang<br />

1 IST-Integrated Service Technology, Inc.<br />

2 Tripod Technology Corporati<strong>on</strong><br />

1 Hs<strong>in</strong>chu City, Taiwan<br />

<strong>Creep</strong> corrosi<strong>on</strong> normally happens <strong>in</strong> <strong>the</strong> end system, <strong>PCB</strong>, c<strong>on</strong>nectors and comp<strong>on</strong>ents are widely noted due to <strong>the</strong> exposure of<br />

high sulfur envir<strong>on</strong>ments under elevated humidity. In this study, <strong>the</strong> major focus is <strong>the</strong> <strong>in</strong>vestigati<strong>on</strong> of <strong>PCB</strong>s with 3 different<br />

types of surface f<strong>in</strong>ish (ImAg, Post-Treatment ImAg, HT-OSP), SMD vs NSMD and n<strong>on</strong> clean organic acid flux residue from<br />

simulat<strong>in</strong>g wave solder<strong>in</strong>g process under MFG Test (Mixed Flow<strong>in</strong>g Gas Test). <str<strong>on</strong>g>The</str<strong>on</strong>g> realistic mixed flow<strong>in</strong>g gas (H2S, SO2, NO2,<br />

Cl2) at certa<strong>in</strong> c<strong>on</strong>centrati<strong>on</strong> of each and relative humidity are designed to accelerate creep corrosi<strong>on</strong> happen<strong>in</strong>g.<br />

One of <strong>the</strong> purposes <strong>in</strong> this study is to <strong>in</strong>vestigate <strong>the</strong> effect of <strong>the</strong> mixed flow<strong>in</strong>g gas with various H2S c<strong>on</strong>centrati<strong>on</strong> (500 ppb,<br />

1000 ppb, 1700 ppb) at 5 days durati<strong>on</strong> <strong>on</strong> <strong>the</strong> corrosi<strong>on</strong> rate (nm/day) <strong>in</strong> <strong>the</strong> Cu coup<strong>on</strong> and Ag coup<strong>on</strong> <strong>in</strong> order to understand<br />

how H2S drives <strong>the</strong> corrosi<strong>on</strong> accelerati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> data are also verified by <strong>the</strong> methods of Weight Ga<strong>in</strong> Analysis and X-Secti<strong>on</strong><br />

with SEM/EDX.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result shows much higher corrosi<strong>on</strong> rates are observed <strong>on</strong> Cu coup<strong>on</strong> <strong>in</strong> both Individual and Mixed Flow<strong>in</strong>g Gas Tests. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

corrosi<strong>on</strong> rate of Cu coup<strong>on</strong> rapidly <strong>in</strong>creases with H2S c<strong>on</strong>centrati<strong>on</strong> above 1000 ppb. Ag coup<strong>on</strong> have more active corrosi<strong>on</strong> <strong>in</strong><br />

low H2S c<strong>on</strong>centrati<strong>on</strong> than high H2S c<strong>on</strong>centrati<strong>on</strong>. Flak<strong>in</strong>g corrosi<strong>on</strong> also happens <strong>on</strong> <strong>the</strong> Cu coup<strong>on</strong> with heavy corrosi<strong>on</strong><br />

product <strong>in</strong> <strong>the</strong> high H2S c<strong>on</strong>centrati<strong>on</strong> test c<strong>on</strong>diti<strong>on</strong>. And more visible creep corrosi<strong>on</strong> is observed <strong>on</strong> HT-OSP f<strong>in</strong>ished circuit<br />

boards and SMD, as <strong>the</strong> residue of organic acid flux residue is not able to prevent corrosi<strong>on</strong> occurrence.<br />

Key Words: <strong>Creep</strong> Corrosi<strong>on</strong>, <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g>, Organic Acid Flux, Mixed Flow<strong>in</strong>g Gas Test (MFG), SMD, NSMD<br />

Introducti<strong>on</strong><br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Many volcanoes erupted <strong>in</strong> Iceland, Japan, Ind<strong>on</strong>esia and <strong>the</strong> Philipp<strong>in</strong>es <strong>in</strong> <strong>the</strong> recent two years. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are 2,000 ext<strong>in</strong>ct<br />

volcanoes and 523 active volcanoes distributed <strong>in</strong> four major volcanic belts <strong>in</strong> <strong>the</strong> world. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are twenty volcanic erupti<strong>on</strong>s at<br />

any time and volcanic activity <strong>in</strong>creased significantly s<strong>in</strong>ce year 2000. This released more sulfides pos<strong>in</strong>g a threat to <strong>the</strong><br />

envir<strong>on</strong>ment. <str<strong>on</strong>g>The</str<strong>on</strong>g> general and volcanic gas compositi<strong>on</strong>s are shown <strong>in</strong> Figure 2. H2O and SO2 released <strong>in</strong>to <strong>the</strong> air may cause<br />

corrosi<strong>on</strong> after a volcanic erupti<strong>on</strong>.<br />

Figure 1. <str<strong>on</strong>g>The</str<strong>on</strong>g> major volcanic belts <strong>in</strong> <strong>the</strong> world.


Figure 2. <str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> of general and volcanic gas compositi<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many types of active sulfur compounds that are able to cause corrosi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> creep corrosi<strong>on</strong> is <strong>the</strong> mass transport<br />

process where solid corrosi<strong>on</strong> products migrate over a surface without <strong>the</strong> <strong>in</strong>volvement of an electric field. [1] <str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong><br />

am<strong>on</strong>g <strong>Creep</strong> Corrosi<strong>on</strong>, Dendrite, and CAF is shown <strong>in</strong> Table 1, which illustrate different mechanism to electrical failure. [2]<br />

Table 1. <str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> am<strong>on</strong>g <strong>Creep</strong> Corrosi<strong>on</strong>, Dendrite and CAF. [2]<br />

Comparis<strong>on</strong><br />

<strong>Creep</strong><br />

Corrosi<strong>on</strong><br />

Dendrite CAF<br />

Substrate Cu Cu/Ag/T<strong>in</strong>-<br />

Lead…<br />

Cu<br />

Corrosi<strong>on</strong><br />

Product<br />

Cu2S<br />

FO Cu Oxide/<br />

Hydroxide<br />

Electr<strong>on</strong> X Cathode to Anode to<br />

Migrati<strong>on</strong><br />

Anode Cathode<br />

Failure Mode Short /<br />

Open<br />

Short Short<br />

Humidity<br />

Requirement<br />

Yes Yes Yes<br />

Voltage<br />

Requirement<br />

No Yes Yes<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of creep corrosi<strong>on</strong> <strong>in</strong> Dr. P<strong>in</strong>g Zhao’s previous published paper described <strong>the</strong> process of Dissoluti<strong>on</strong> →<br />

Diffusi<strong>on</strong> → Re-depositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> multiple m<strong>on</strong>o-layers of water are adsorbed <strong>on</strong> <strong>the</strong> surface under high relative humidity and<br />

<strong>the</strong>n <strong>the</strong> corrosi<strong>on</strong> products dissolve <strong>in</strong>to <strong>the</strong>se water layers. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, <strong>the</strong>y diffuse over <strong>the</strong> surface <strong>in</strong> soluti<strong>on</strong> down <strong>the</strong><br />

c<strong>on</strong>centrati<strong>on</strong> gradient and re-deposit. <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of creep corrosi<strong>on</strong> is shown <strong>in</strong> Figure 3. [3]<br />

Figure 3. <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of creep corrosi<strong>on</strong> from Dr. P<strong>in</strong>g Zhao’s previous published paper[3]<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are a number of factors that lead to creep corrosi<strong>on</strong> <strong>in</strong> <strong>PCB</strong>s, as shown <strong>in</strong> Table 2. In this paper, <strong>the</strong> study is focused <strong>on</strong> <strong>the</strong><br />

factors of <strong>PCB</strong> board design (SMD vs NSMD), surface f<strong>in</strong>ish, flux residue <strong>in</strong> wave solder<strong>in</strong>g and MFG test c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

creep corrosi<strong>on</strong> <strong>on</strong> a <strong>PCB</strong> will <strong>in</strong>duce electrical failure <strong>in</strong> <strong>the</strong> electr<strong>on</strong>ic product. Obvious corroded <strong>PCB</strong>s are identified <strong>in</strong> some<br />

locati<strong>on</strong>s with elevated level of sulfur-based gases, <strong>in</strong>clud<strong>in</strong>g paper mills, waste-water treatment plants, landfills, swamps, and<br />

exit / entrance ramp, especially <strong>in</strong> <strong>the</strong> develop<strong>in</strong>g countries. [4]<br />

Table 2. <str<strong>on</strong>g>The</str<strong>on</strong>g> factors to creep corrosi<strong>on</strong><br />

Factors to <strong>Creep</strong> Corrosi<strong>on</strong> Studied <strong>in</strong> this paper<br />

1 <strong>PCB</strong> board design v<br />

2 <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g><br />

v<br />

3 Flux residue<br />

v<br />

4 Solder Mask Geometry v<br />

5 Solder Paste Coverage


6 Reflow<br />

7 Wave Solder<strong>in</strong>g process<br />

8 MFG Test C<strong>on</strong>diti<strong>on</strong>s v<br />

In <strong>the</strong> electr<strong>on</strong>ic <strong>in</strong>dustry, <strong>the</strong>re have been a number of test methods developed to evaluate <strong>the</strong> corrosi<strong>on</strong> resistance from <strong>the</strong> view<br />

po<strong>in</strong>t of <strong>PCB</strong> materials, <strong>PCB</strong> assembly process and gas c<strong>on</strong>diti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> MFG test method was carried out <strong>in</strong> 1980’s. It’s <strong>the</strong><br />

primary test method used currently <strong>in</strong> <strong>the</strong> electr<strong>on</strong>ic <strong>in</strong>dustry.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> MFG test is a laboratory test where <strong>the</strong> temperature (℃), relative humidity (%RH), c<strong>on</strong>centrati<strong>on</strong> of gaseous pollutants (ppb<br />

level), and o<strong>the</strong>r critical variables (such as volume exchange rate and airflow rate) are carefully def<strong>in</strong>ed, m<strong>on</strong>itored and<br />

c<strong>on</strong>trolled. [5] <str<strong>on</strong>g>The</str<strong>on</strong>g> purpose of MFG test is to use <strong>the</strong> comb<strong>in</strong>ati<strong>on</strong> of four most comm<strong>on</strong> corrosive gases <strong>in</strong> <strong>the</strong> envir<strong>on</strong>ment, H2S,<br />

Cl2, NO2, SO2 to simulate and accelerate atmospheric corrosi<strong>on</strong> due to exposure. Many specific and applicati<strong>on</strong>-oriented MFG<br />

test methods created for <strong>in</strong>dustrial applicati<strong>on</strong>s are shown <strong>in</strong> Table 3. [6][7][8][9]<br />

But <strong>the</strong>re is still no accepted <strong>in</strong>dustry standard created for MFG test to correlate to real service life yet. From <strong>the</strong> literature<br />

published, <strong>the</strong> critical factor that causes creep corrosi<strong>on</strong> is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> of H2S. <strong>IPC</strong> 3-11g Corrosi<strong>on</strong> of Metal <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> Task<br />

Group also had a draft discussi<strong>on</strong> for sett<strong>in</strong>g 1500ppb possibility as <strong>the</strong> m<strong>in</strong>imum c<strong>on</strong>centrati<strong>on</strong> of H2S <strong>in</strong> <strong>IPC</strong>/APEX 2011.<br />

Fur<strong>the</strong>r progress will be updated <strong>in</strong> <strong>the</strong> next publicati<strong>on</strong>.<br />

Table3. MFG test methods for <strong>in</strong>dustrial applicati<strong>on</strong>s c<strong>on</strong>centrati<strong>on</strong>: (unit: ppb) [6][7][8][9]<br />

C<strong>on</strong>diti<strong>on</strong> Class H2S CL2 NO2 S02 Temp RH<br />

Telcordia<br />

Indoor 10 10 200 100 30℃ 70%<br />

Outdoor 100 20 200 200 30℃ 70%<br />

ALU Intl. 1500-2000 20 200 200 40℃ 70%<br />

Battelle<br />

EIA<br />

IEC<br />

Class 2 10 10 200 - 30℃ 70%<br />

Class 3 100 20 200 - 30℃ 75%<br />

Class 4 200 50 200 - 50℃ 75%<br />

II 10 10 200 - 30℃ 70%<br />

II A 10 10 200 100 30℃ 70%<br />

III 100 20 200 - 30℃ 75%<br />

IIIA 100 20 200 200 30℃ 70%<br />

IV 200 30 200 - 40℃ 75%<br />

1 100 - - 500 25℃ 75%<br />

2 10 10 200 - 30℃ 70%<br />

3 100 20 200 - 30℃ 75%<br />

4 10 10 200 200 25℃ 75%<br />

IBM 40 3 610 350 30℃ 70%<br />

Experiment<br />

1. MFG test set up<br />

a. Chamber feature is shown <strong>in</strong> figure 4<br />

b. MFG Test Flow<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Figure 4. MFG test system <strong>in</strong> IST’s lab.<br />

Figure 5 shows <strong>the</strong> flow chart. 4 k<strong>in</strong>ds of <strong>in</strong>dividual gas com<strong>in</strong>g from <strong>the</strong> bottom side are mixed before gett<strong>in</strong>g <strong>in</strong>to <strong>the</strong><br />

chamber. <str<strong>on</strong>g>The</str<strong>on</strong>g> gas flow <strong>in</strong> <strong>the</strong> chamber is com<strong>in</strong>g from <strong>the</strong> bottom side. <str<strong>on</strong>g>The</str<strong>on</strong>g> gas emissi<strong>on</strong> com<strong>in</strong>g from <strong>the</strong> chamber first goes


<strong>in</strong>to Filter Tank for neutralizati<strong>on</strong> and <strong>the</strong>n goes to Active Carb<strong>on</strong> for deodorizati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> f<strong>in</strong>al gas emissi<strong>on</strong> is n<strong>on</strong>-toxic and<br />

n<strong>on</strong>-pollut<strong>in</strong>g.<br />

c. Uniformity measurement <strong>in</strong> <strong>the</strong> MFG chamber<br />

Figure 5. IST MFG test flow chart<br />

In order to make sure that each board will experience <strong>the</strong> same test c<strong>on</strong>diti<strong>on</strong>s and <strong>the</strong> test boards <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> chamber will<br />

not be <strong>in</strong>terfere with <strong>the</strong> gas flow it is necessary to verify <strong>the</strong> corrosi<strong>on</strong> level <strong>in</strong> different locati<strong>on</strong>s of <strong>the</strong> chamber. A total of<br />

12 Cu coup<strong>on</strong>s and 12 Ag coup<strong>on</strong>s with 99.99% purity (1 <strong>in</strong>ch x 1 <strong>in</strong>ch) are cleaned through proprietary chemical clean<strong>in</strong>g<br />

procedure and hung <strong>in</strong> different area of <strong>the</strong> chamber with some test boards for 5 days exposure with various H2S c<strong>on</strong>centrati<strong>on</strong><br />

(500 ppb, 1000 ppb, 1700 ppb) to understand how H2S drives <strong>the</strong> corrosi<strong>on</strong> accelerati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> chamber set up is shown <strong>in</strong><br />

Figure 6. <str<strong>on</strong>g>The</str<strong>on</strong>g> weight ga<strong>in</strong> after <strong>the</strong> test c<strong>on</strong>firms whe<strong>the</strong>r <strong>the</strong> corrosi<strong>on</strong> degrees <strong>in</strong> different locati<strong>on</strong>s of <strong>the</strong> chamber are all <strong>in</strong><br />

<strong>the</strong> reas<strong>on</strong>able range and make sure <strong>the</strong> gas c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong>side <strong>the</strong> chamber is stable and uniform. <str<strong>on</strong>g>The</str<strong>on</strong>g> weight ga<strong>in</strong> and<br />

corrosi<strong>on</strong> product of each coup<strong>on</strong> is verified by <strong>the</strong> methods of Weight Ga<strong>in</strong> Analysis, X-Secti<strong>on</strong> and u-XPS to def<strong>in</strong>e<br />

acceptable uniformity.<br />

d. Test c<strong>on</strong>diti<strong>on</strong><br />

Figure 6. Chamber set up of uniformity test<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> critical factor of creep corrosi<strong>on</strong> is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> of H2S, which has been already been shown <strong>in</strong> previously published<br />

papers. In order to get more visible creep corrosi<strong>on</strong> phenomen<strong>on</strong>, 1700 ppb is chosen for <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> of H2S <strong>in</strong> this<br />

experiment based <strong>on</strong> <strong>the</strong> ALU’s study. [10] <str<strong>on</strong>g>The</str<strong>on</strong>g> MFG test c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> this study is shown <strong>in</strong> Table 4.<br />

Table 4. MFG Test C<strong>on</strong>diti<strong>on</strong> <strong>in</strong> this experiment (ppb)<br />

H2S Cl2 NO2 SO2 Temp. RH Durati<strong>on</strong><br />

1700 20 200 200 40℃ 90% 21days<br />

Before MFG test, all of <strong>the</strong> test boards are reflowed <strong>on</strong>e time. <str<strong>on</strong>g>The</str<strong>on</strong>g> reflow profile is shown <strong>in</strong> Figure 7. After reflow, all <strong>PCB</strong>s are<br />

placed <strong>in</strong> <strong>the</strong> MFG chamber <strong>in</strong> figure 8.<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.


Figure 7.<str<strong>on</strong>g>The</str<strong>on</strong>g> reflow profile prior to MFG test<br />

Figure 8. <strong>PCB</strong> placement for MFG Test<br />

2. <strong>PCB</strong> design<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Table 5 shows <strong>the</strong> DOE matrix to <strong>in</strong>vestigate material, process and design effect <strong>on</strong> <strong>the</strong> creep corrosi<strong>on</strong>. Two groups A and B of<br />

sample are <strong>in</strong>vestigated <strong>in</strong> this study. Group A is NSMD. (See Figure 9) Group B is Comb-Pattern design. (See Figure 10)<br />

Table 5. Test Vehicle of <strong>the</strong> DOE matrix<br />

Group Test Vehicle Feature Factors to study<br />

A HF <strong>PCB</strong> 80 x 80 mm NSMD <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g>:<br />

B HF <strong>PCB</strong> 80 x 80 mm SMD<br />

Comb L<strong>in</strong>e<br />

1) ImAg<br />

2) Post-Treatment ImAg<br />

3) HT OSP 1 ; HTOSP 2<br />

Flux:<br />

Flux 1 ; Flux 2<br />

Figure 9: Test board design of Group A


a. SMD vs NSMD is shown <strong>in</strong> Figure 11<br />

b. <str<strong>on</strong>g>Surface</str<strong>on</strong>g> f<strong>in</strong>ish comparis<strong>on</strong> is shown <strong>in</strong> table 6<br />

c. Flux residue <strong>in</strong> wave solder<strong>in</strong>g<br />

Figure 10: Test board design of Group B<br />

Figure 11. SMD vs NSMD features<br />

Table 6: <str<strong>on</strong>g>The</str<strong>on</strong>g> descripti<strong>on</strong> of surface f<strong>in</strong>ishes vehicle<br />

In Group B, two types NC(No Clean) and OA(Organic Acid) Flux are sprayed <strong>on</strong> <strong>PCB</strong> with <strong>the</strong> simulati<strong>on</strong> of wave solder<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong> by bak<strong>in</strong>g <strong>the</strong> flux residue <strong>on</strong> <strong>the</strong> <strong>PCB</strong>.<br />

<strong>PCB</strong>s of Group B are put <strong>in</strong> <strong>the</strong> oven at 125℃ for 5 m<strong>in</strong>utes and <strong>the</strong>n at 270℃ for 1 m<strong>in</strong>ute after <strong>the</strong> NC OA Flux are<br />

sprayed <strong>on</strong> it to simulate wave solder<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong> and have flux residue rema<strong>in</strong><strong>in</strong>g <strong>on</strong> <strong>the</strong> <strong>PCB</strong>.<br />

Result and Discussi<strong>on</strong><br />

a. Uniformity Test<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Experiment <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> Supplier<br />

Group A<br />

ImAg Vendor 1<br />

Post-Treatment ImAg Vendor 2<br />

HT OSP 1 Vendor 3<br />

HT OSP 2 Vendor 2<br />

Group B ImAg Vendor 1<br />

Before and after <strong>the</strong> uniformity test, 5 weight<strong>in</strong>gs are c<strong>on</strong>ducted by <strong>the</strong> microbalance and <strong>the</strong> average is calculated. After <strong>the</strong><br />

weight ga<strong>in</strong>, corrosi<strong>on</strong> product is verified by <strong>the</strong> methods of Weight Ga<strong>in</strong> Analysis, Coulometeric Reducti<strong>on</strong>(CR) and<br />

X-Secti<strong>on</strong> with SEM/EDS.(See Figure 12 and Figure 13.) <str<strong>on</strong>g>The</str<strong>on</strong>g> data from <strong>the</strong> three methods are c<strong>on</strong>sistent with each o<strong>the</strong>r. It<br />

can be def<strong>in</strong>ed that <strong>the</strong> gas <strong>in</strong>side of <strong>the</strong> chamber is uniform.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> effect of <strong>the</strong> mixed flow<strong>in</strong>g gas with various H2S c<strong>on</strong>centrati<strong>on</strong> (500 ppb, 1000 ppb, 1700 ppb) at 5 days durati<strong>on</strong><br />

showed that a much higher corrosi<strong>on</strong> rate is observed <strong>on</strong> Cu coup<strong>on</strong>s <strong>in</strong> both <strong>the</strong> Individual and Mixed Flow<strong>in</strong>g Gas Test.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> rate of Cu coup<strong>on</strong>s rapidly <strong>in</strong>creases with H2S c<strong>on</strong>centrati<strong>on</strong> after reach<strong>in</strong>g at 1000 ppb. Ag coup<strong>on</strong>s have<br />

more active corrosi<strong>on</strong> <strong>in</strong> lower H2S c<strong>on</strong>centrati<strong>on</strong> than higher H2S c<strong>on</strong>centrati<strong>on</strong>. Flak<strong>in</strong>g corrosi<strong>on</strong> also happens <strong>on</strong> <strong>the</strong> Cu<br />

coup<strong>on</strong> with heavy corrosi<strong>on</strong> product <strong>in</strong> <strong>the</strong> high H2S c<strong>on</strong>centrati<strong>on</strong> test c<strong>on</strong>diti<strong>on</strong>. (See Figure 14, Figure 15, Figure16.)<br />

Figure 12. Weight ga<strong>in</strong> analysis by CR [11]<br />

Figure 13. Weight ga<strong>in</strong> analysis by X-Secti<strong>on</strong> with SEM/EDS<br />

Figure 14. Thickness analysis of Cu2S/Ag2S


. SMD vs NSMD effect <strong>on</strong> <strong>the</strong> creep corrosi<strong>on</strong><br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Figure 15. Weight ga<strong>in</strong> analysis of Cu/Ag coup<strong>on</strong>s<br />

Figure 16. Corrosi<strong>on</strong> Rate of Cu/Ag coup<strong>on</strong>s<br />

Accord<strong>in</strong>g to previous experiment, creep corrosi<strong>on</strong> can be observed <strong>on</strong> both SMD and NSMD features. <str<strong>on</strong>g>The</str<strong>on</strong>g> degree of creep<br />

corrosi<strong>on</strong> <strong>on</strong> SMD board features grows laterally across solder mask and is greater than that at <strong>the</strong> metal/lam<strong>in</strong>ate <strong>in</strong>terface <strong>on</strong><br />

NSMD board feature. <str<strong>on</strong>g>The</str<strong>on</strong>g> difference is expla<strong>in</strong>ed as follow<strong>in</strong>g discussi<strong>on</strong>, which also refers to some published papers. [11][12]<br />

1) <str<strong>on</strong>g>The</str<strong>on</strong>g> migrati<strong>on</strong> <strong>on</strong> <strong>the</strong> lam<strong>in</strong>ate around NSMD areas has to overcome <strong>the</strong> land between Cu pad and solder mask.<br />

2) SMD is a much smoo<strong>the</strong>r surface so that <strong>the</strong> corrosi<strong>on</strong> product can travel much more readily across <strong>the</strong> planar surface.<br />

3) A gap is made at <strong>the</strong> <strong>in</strong>terface between soldermask and Cu pad shown <strong>in</strong> figure 17 and figure 18 due to <strong>the</strong> poor soldermask<br />

process<strong>in</strong>g (exposed Cu at edge of soldermask), so that creep corrosi<strong>on</strong> emanates from SMD features. Figure 19 shows <strong>the</strong><br />

creep corrosi<strong>on</strong> of SMD and NSMD board features.<br />

Figure 17. Normal and poor soldermask process<strong>in</strong>g


Figure 18. <strong>Creep</strong> corrosi<strong>on</strong> occurred from <strong>the</strong> exposed copper at <strong>the</strong> edge of soldermask.<br />

c. <str<strong>on</strong>g>Surface</str<strong>on</strong>g> f<strong>in</strong>ish effect <strong>on</strong> <strong>the</strong> creep corrosi<strong>on</strong> (Group A)<br />

Figure 19. <strong>Creep</strong> corrosi<strong>on</strong> <strong>on</strong> SMD and NSMD board features.<br />

In <strong>the</strong> mid of 2006, ROHS legislati<strong>on</strong> has been implemented and <strong>the</strong> use of lead <strong>in</strong> electr<strong>on</strong>ic products is prohibited. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>PCB</strong><br />

manufactures are driven to transiti<strong>on</strong> from lead coat<strong>in</strong>g f<strong>in</strong>al f<strong>in</strong>ishes to lead free alternatives. <str<strong>on</strong>g>The</str<strong>on</strong>g> most comm<strong>on</strong> lead free<br />

surface f<strong>in</strong>ishes applied today are ImAg (Immersi<strong>on</strong> Silver) and OSP (Organic Solderability Preservatives) to date based <strong>on</strong><br />

solder jo<strong>in</strong>t reliability validati<strong>on</strong>. With creep corrosi<strong>on</strong> c<strong>on</strong>cerns <strong>in</strong> high reliability product like telecom, network product and so<br />

<strong>on</strong>, <strong>the</strong> 2 available surface f<strong>in</strong>ish were found not to be good candidates to prevent its occurrence. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, <strong>on</strong>e improved ImAg<br />

surface f<strong>in</strong>ish with post-treatment is designed for comparis<strong>on</strong> besides <strong>the</strong> above 2 candidates <strong>in</strong> <strong>the</strong> creep corrosi<strong>on</strong> resistance<br />

study. Group A <strong>PCB</strong> is NSMD design with 3 different types of surface f<strong>in</strong>ish, and Group B <strong>PCB</strong> is Comb-Pattern design with<br />

ImAg surface f<strong>in</strong>ish.<br />

<strong>Creep</strong> corrosi<strong>on</strong> is observed <strong>on</strong> all <strong>the</strong> three types of surface f<strong>in</strong>ish based <strong>on</strong> <strong>the</strong> visual <strong>in</strong>specti<strong>on</strong> and <strong>the</strong> analysis through<br />

Cross-Secti<strong>on</strong>, SEM/EDS and electrical measurement <strong>in</strong> Table 7.<br />

Table 7. <strong>Creep</strong> corrosi<strong>on</strong> of different surface f<strong>in</strong>ishes<br />

F<strong>in</strong>ally, <strong>the</strong> corrosi<strong>on</strong> severity of <strong>the</strong> three <strong>PCB</strong> f<strong>in</strong>ishes is ranked as below.<br />

OSP > ImAg > Post-Treatment ImAg<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> creep corrosi<strong>on</strong> evoluti<strong>on</strong> of NSMD is shown <strong>in</strong> Figure 20.<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> \ Result Corrosi<strong>on</strong> <strong>on</strong> pad Corrosi<strong>on</strong> <strong>on</strong> Trace Short<strong>in</strong>g Occurrence<br />

ImAg O O X<br />

Post-Treatment ImAg O X X<br />

HT OSP 1 O O O<br />

HT OSP 2 O O O


ImAg and Post-Treatment ImAg<br />

Figure 20: <strong>Creep</strong> corrosi<strong>on</strong> evoluti<strong>on</strong> of NSMD <strong>PCB</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> <strong>in</strong> SEM/EDS analysis between ImAg and Post-Treatment ImAg coat<strong>in</strong>g show that <strong>the</strong> corrosi<strong>on</strong> rate of ImAg is<br />

higher than Post-Treatment ImAg. In figure 21, <strong>the</strong> corrosi<strong>on</strong> of ImAg creeps <strong>on</strong>to <strong>the</strong> trace from pad, but <strong>the</strong> corrosi<strong>on</strong> of<br />

Post-Treatment ImAg <strong>on</strong>ly occur <strong>on</strong> <strong>the</strong> pad and doesn’t creep to <strong>the</strong> trace. <str<strong>on</strong>g>The</str<strong>on</strong>g> pad of ImAg has been corroded and flaked as<br />

shown <strong>in</strong> figure 22, <strong>the</strong>refore, it is c<strong>on</strong>cluded Post-Treatment ImAg has <strong>the</strong> better performance than normal ImAg.<br />

Spectrum C O Al Si S Cu Ag Total<br />

1 15.58 76.94 7.48 100.00<br />

2 6.05 15.00 74.07 4.88 100.00<br />

3 21.78 2.31 0.78 9.72 51.40 14.00 100.00<br />

4 49.46 22.75 7.60 3.14 8.49 8.55 100.00<br />

5 23.30 11.62 59.11 5.97 100.00<br />

6 16.15 11.42 31.22 41.22 100.00<br />

7 51.55 30.08 1.17 8.08 2.32 6.80 100.00<br />

8 43.06 56.94 100.00<br />

9 48.05 51.95 100.00<br />

Max. 51.55 56.94 1.17 8.08 15.58 76.94 41.22<br />

M<strong>in</strong>. 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

Figure 21: Top view SEM/EDS analysis<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Spectrum C O Si S Cu Ag Total<br />

1 14.41 48.86 36.73 100.00<br />

2 14.08 62.16 23.76 100.00<br />

3 3.77 3.10 14.60 24.88 53.65 100.00<br />

4 5.63 13.53 34.90 45.94 100.00<br />

5 39.61 41.00 18.16 1.23 100.00<br />

6 42.06 44.37 13.57 100.00<br />

7 100.00 100.00<br />

Max. 42.06 100.00 18.16 14.60 62.16 53.65<br />

M<strong>in</strong>. 0.00 0.00 0.00 0.00 0.00 0.00<br />

Figure 22: Pad comparis<strong>on</strong> of side view<br />

Porosity <strong>in</strong> surface f<strong>in</strong>ish is an <strong>in</strong>herent characteristic. When <strong>the</strong> Cu pad is rougher, it will promote micro-voids. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Post-Treatment is molecular self-assembly M<strong>on</strong>olayer. <str<strong>on</strong>g>The</str<strong>on</strong>g> molecule will selectively attach itself to available copper, as shown<br />

<strong>in</strong> Figure 23.


<str<strong>on</strong>g>The</str<strong>on</strong>g> silver layer is gett<strong>in</strong>g denser with better coverage of Cu pad prevent<strong>in</strong>g corrosi<strong>on</strong> happen<strong>in</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> Post-Treatment ImAg with<br />

more organic preservative is designed to have better performance than ImAg under <strong>the</strong> corrosive gas exposure. [2]<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> of <strong>the</strong> 2 HT OSP<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Figure 23: <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of Self-Assembly M<strong>on</strong>olayer. [2]<br />

Both HT OSP 1 and HT OSP 2 have worse performance than ImAg, but <strong>the</strong>re is not enough evidences to judge which <strong>on</strong>e is <strong>the</strong><br />

worst. HT OSP 1 has creep and flak<strong>in</strong>g corrosi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> product <strong>on</strong> <strong>the</strong> pad is th<strong>in</strong>ner and smoo<strong>the</strong>r. HT OSP 2 has<br />

creep corrosi<strong>on</strong> but <strong>the</strong> pad isn’t flaked. <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> product <strong>on</strong> <strong>the</strong> pad of HT OSP 2 is thicker and rougher as shown <strong>in</strong><br />

Figure 24. Figure 25 shows <strong>the</strong> side view of HT OSP 1 and HT OSP 2. Both of <strong>the</strong>m have creep corrosi<strong>on</strong> from pad to <strong>the</strong> trace<br />

and <strong>the</strong> pad crater. HT OSP 2 has thicker corrosi<strong>on</strong> product <strong>on</strong> <strong>the</strong> pad.<br />

Figure 24: Top view of HT OSP1 and HT OSP2<br />

Figure 25: Both HT OSP1 and HT OSP2 have creep corrosi<strong>on</strong> product.<br />

ImAg has a higher porosity ratio than Post-Treatment ImAg and it is assumed that OSP might have higher porosity ratio than<br />

ImAg <strong>in</strong> Figure 26. Currently <strong>the</strong>re are three test<strong>in</strong>g methods for surface f<strong>in</strong>ish porosity <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are Gas Exposure<br />

Method, Electrolysis Imag<strong>in</strong>g Method and Salt Spray Test Method. But all of <strong>the</strong>m are not <strong>the</strong> ideal and reliable test methods to<br />

identify quantitatively <strong>the</strong> porosity.


d. u-XPS Analysis<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Figure 26: Qualitative comparis<strong>on</strong> of porosity ratio am<strong>on</strong>g surface f<strong>in</strong>ish<br />

Figure 27: Atomic Percent Profile of ImAg<br />

Figure 28: Atomic Percent Profile of Post-Treatment ImAg<br />

Figure 29: Atomic Percent Profile of HT OSP1<br />

Figure 30: Atomic Percent Profile of HT OSP2


e. Flux Residue effect <strong>on</strong> <strong>the</strong> creep corrosi<strong>on</strong> (Group B)<br />

Wave-solder<strong>in</strong>g flux residues can promote creep corrosi<strong>on</strong> and this has been published <strong>in</strong> Dr. C. Xu’s paper. [1][10] It is<br />

expected we will get a similar result <strong>in</strong> this study. <str<strong>on</strong>g>The</str<strong>on</strong>g> SEM/EDS of corroded pad with flux residue is shown <strong>in</strong> Figure 31. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

creep corrosi<strong>on</strong> is found <strong>in</strong> Figure 32 with SEM/EDS analysis. Flux residue will cause moisture absorpti<strong>on</strong> and <strong>the</strong> H+ i<strong>on</strong>ic<br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> will dissociate Cu oxide and accelerate creep corrosi<strong>on</strong>. [2]<br />

Figure 31: SEM/EDS analysis of corroded Pad<br />

Figure 32: SEM/EDS analysis of creep corrosi<strong>on</strong><br />

<strong>Creep</strong> corrosi<strong>on</strong> typically occurs when copper is exposed to an envir<strong>on</strong>ment c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g sulfur. Cu2S is <strong>the</strong> primary creep<br />

corrosi<strong>on</strong> product. Cu2S is produced by <strong>the</strong> attack of <strong>the</strong> copper at <strong>the</strong> edge of <strong>the</strong> soldermask. Cu2S film can migrate across any<br />

surface that it c<strong>on</strong>tacts. <strong>Creep</strong> appears to beg<strong>in</strong> by growth of dendrites. As <strong>the</strong> corrosi<strong>on</strong> products <strong>in</strong>crease <strong>in</strong> thickness, <strong>the</strong><br />

resistance decreases until functi<strong>on</strong>al short<strong>in</strong>g occurs.<br />

C<strong>on</strong>clusi<strong>on</strong> and Fur<strong>the</strong>r Research<br />

<strong>Creep</strong> corrosi<strong>on</strong> can be driven by multiple factors. In additi<strong>on</strong> to envir<strong>on</strong>mental factors, such as polluti<strong>on</strong>, temperature, humidity<br />

<strong>the</strong> complicated <strong>PCB</strong> manufactur<strong>in</strong>g process is also ano<strong>the</strong>r c<strong>on</strong>cern. <str<strong>on</strong>g>The</str<strong>on</strong>g>re might be many potential <strong>in</strong>fluences <strong>on</strong> creep<br />

corrosi<strong>on</strong> dur<strong>in</strong>g <strong>the</strong> process and not <strong>on</strong>ly surface f<strong>in</strong>ish, flux, and board design. <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> occurrence <strong>on</strong> <strong>the</strong> <strong>PCB</strong> is very<br />

sensitive to surface chemical properties. I<strong>on</strong>ic cleanl<strong>in</strong>ess and <strong>the</strong> roughness and surface chemistry of <strong>the</strong> soldermask might be<br />

o<strong>the</strong>r factors that <strong>in</strong>fluence <strong>the</strong> rate of creep corrosi<strong>on</strong> growth. That will be <strong>the</strong> topic for fur<strong>the</strong>r study.<br />

References<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

[1] C. Xu, W. Reents, J. Franey, J. Yaemsiri and Devaney,”<strong>Creep</strong> Corrosi<strong>on</strong> of OSP and ImAg PWB <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g>es” Alcatel-Lucent,<br />

Murray Hill, NJ and Raleigh, NC, USA<br />

[2] He J<strong>in</strong>gqiang, Tu Yunhua, “电子产品的爬行腐蚀失效”, Huawei Technologies Co., Ltd. EMAsia-Ch<strong>in</strong>a.com<br />

[3] He J<strong>in</strong>gqiang, Tu Yunhua, Liu Sang, ”<strong>PCB</strong> <strong>Creep</strong> Corrosi<strong>on</strong> and Board Design C<strong>on</strong>siderati<strong>on</strong>s”, Huawei Technologies Co.,<br />

Ltd. Shenzhen, Guang D<strong>on</strong>g, P.R. Ch<strong>in</strong>a<br />

[4] Craig Hillman, Joelle Arnold, Seth B<strong>in</strong>field, and Jeremy Seppi, “ SILVER AND SULFUR: CASE STUDIES, PHYSICS,<br />

AND POSSIBLE SOLUTIONS” DfR Soluti<strong>on</strong>s, College Park, MD, USA<br />

[5] American Society for Test<strong>in</strong>g and Material, ASTM Designati<strong>on</strong> B845-97: Standard Guide for Mixed Flow<strong>in</strong>g Gas (MFG)<br />

Tests for Electrical C<strong>on</strong>tacts, 1997<br />

[6] Internati<strong>on</strong>al Electro-technical Commissi<strong>on</strong>, IEC Standard 68-2-60(sec<strong>on</strong>d editi<strong>on</strong>) Envir<strong>on</strong>mental Test<strong>in</strong>g-Part2:<br />

Tests-Flow<strong>in</strong>g mixed gas corrosi<strong>on</strong> test, 1995.<br />

[7] Electr<strong>on</strong>ic Industries Associati<strong>on</strong>, EIA Standard TP-65A: Mixed Flow<strong>in</strong>g Gas, Jan. 1998


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

[8] Telcordia GR-63-CORE Issue2, Secti<strong>on</strong> 5.5,”Airborne C<strong>on</strong>tam<strong>in</strong>ants Test Methods”, Nov. 2000<br />

[9] Chao, J.G., Gore, R.R., “Evaluati<strong>on</strong> of a mixed flow<strong>in</strong>g gas test,”1991 Proceed<strong>in</strong>gs of <strong>the</strong> Thirty Seventh IEEE Holm<br />

C<strong>on</strong>ference <strong>on</strong> Electrical C<strong>on</strong>tacts,pp.216-228, Piscataway, NJ:IEEE,1991.<br />

[10] C. Xu, W. Reents, J. Franey, J. Yaemsiri and J. Devaney,”<strong>Creep</strong> Corrosi<strong>on</strong> of OSP and ImAg PWB <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g>es”,<br />

Alcatel-Lucent, Murray Hill, NJ and Raleigh, NC, USA<br />

[11] Coulometeric Reducti<strong>on</strong> data is c<strong>on</strong>ducted by IBM’s Dr. PJ S<strong>in</strong>gh <strong>in</strong> INEMI <strong>Creep</strong> Corrosi<strong>on</strong> project<br />

[12] Lenora Toscano, Ernest L<strong>on</strong>g, Ph.D., and Swans<strong>on</strong>,”CREEP CORROSION ON <strong>PCB</strong> SURFACES: IMPROVEMENTS OF<br />

PREDICTIVE TEST METHODS ANDDEVELOPMENTS REGARDING PREVENTION TECHNIQUES”, Mac Dermid,<br />

Waterbury, CT,USA<br />

[13] Randy Schueller, Ph.D, ”CREEP CORROSION ON LEAD-FREE PRINTED CIRCUIT BOARDS IN HIGH SULFUR<br />

ENVIRONMENTS”, Dell Inc. Aust<strong>in</strong>, TX, USA


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Creep</strong> Corrosi<strong>on</strong> <strong>in</strong> <strong>PCB</strong><br />

Presenter : Cherie Chen


• Introducti<strong>on</strong><br />

• Experiment Purpose<br />

• Experiment Design<br />

• Experiment Result<br />

• C<strong>on</strong>clusi<strong>on</strong><br />

• Q & A<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Outl<strong>in</strong>e


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Introducti<strong>on</strong>


• Pacific R<strong>in</strong>g of Fire<br />

• East Africa R<strong>in</strong>g of Fire<br />

• Mediterranean R<strong>in</strong>g of Fire<br />

• Java R<strong>in</strong>g of Fire<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Major Volcanic Belts <strong>in</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g> World<br />

Refer to :新竹市青草湖社区大学网站


Frequent Volcanic Erupti<strong>on</strong>s <strong>in</strong> Recent Years<br />

Volcanic Erupti<strong>on</strong>s <strong>in</strong> 2010 ~ 2011<br />

Time Volcano Area<br />

2010.03 Eyjafjallajokull Volcano Ice Island<br />

2010.10 Merapi Volcano Ind<strong>on</strong>esia<br />

2011.01 Mount Etha Volcano Italy<br />

2011.02 Bulusan Volcano Philipp<strong>in</strong>es<br />

2011.03 Kilauea Volcano Hawaii<br />

2011.03 Sh<strong>in</strong>moedake Volcano Japan<br />

2011.03 Kagoshima Volcano Japan<br />

? Mount Changbai Volcano Ch<strong>in</strong>a<br />

? Mount Tatun Volcano Taiwan<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Geological experts say :<br />

• 20 Volcanic Erupti<strong>on</strong>s<br />

any time<br />

• Volcanic Activities occur<br />

more frequently s<strong>in</strong>ce<br />

2000.<br />

Italy Vesuvius Volcanic Erupti<strong>on</strong>s Crater of Mount Vesuvius


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Silent Mount Before Volcanic Erupti<strong>on</strong>s<br />

Mount Changbai <strong>in</strong> Ch<strong>in</strong>a Mount Tatun <strong>in</strong> Taiwan<br />

refer to : http://chifoto.blogspot.com/<br />

取自新华网


Reuni<strong>on</strong> Volcano<br />

Alaska Volcano<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Volcanic Erupti<strong>on</strong>s<br />

Refer to 新华网 Refer 取自新华网 to 中广网<br />

Refer to 新华网<br />

Ice Island Volcano<br />

World Geological Park –Mount Yandang<br />

Refer to 世界地质公园网络办公室


<str<strong>on</strong>g>The</str<strong>on</strong>g> Product of Volcanic Erupti<strong>on</strong>s ~ Ash<br />

• Diameter is less than 2mm<br />

• Composed of <strong>the</strong> rocks, m<strong>in</strong>erals and volcanic glass fragments<br />

• From <strong>the</strong> rock and magma crushed <strong>in</strong>to small particles dur<strong>in</strong>g <strong>the</strong><br />

volcanic erupti<strong>on</strong>s<br />

• Different from <strong>the</strong> soot,hard and <strong>in</strong>soluble <strong>in</strong> water<br />

• In additi<strong>on</strong> to <strong>the</strong> climate impact of volcanic ash, but also <strong>on</strong> human<br />

and animal damage to <strong>the</strong> respiratory system<br />

取自Nati<strong>on</strong>al Geographic<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> of general and volcanic gas compositi<strong>on</strong>s<br />

General Gas Compositi<strong>on</strong> Volcanic Gas Compositi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> general gas compositi<strong>on</strong> and volcanic gas compositi<strong>on</strong> are closely<br />

related to exhaust gas of volcanic erupti<strong>on</strong>s.<br />

Refer to 台湾台北科技大学网站


<strong>Creep</strong> Corrosi<strong>on</strong><br />

• <strong>Creep</strong> corrosi<strong>on</strong> typically occurs when copper is exposed to an<br />

envir<strong>on</strong>ment c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g sulfur.<br />

•Cu 2S is <strong>the</strong> primary creep corrosi<strong>on</strong> product. Cu 2S is produced by <strong>the</strong><br />

attack of <strong>the</strong> copper at <strong>the</strong> edge of <strong>the</strong> soldermask.<br />

•<strong>Creep</strong> appears to beg<strong>in</strong> by growth of dendrites. As <strong>the</strong> corrosi<strong>on</strong><br />

products <strong>in</strong>crease <strong>in</strong> thickness, <strong>the</strong> resistance decreases until<br />

functi<strong>on</strong>al short<strong>in</strong>g occurs.<br />

<strong>Creep</strong> Corrosi<strong>on</strong> <strong>on</strong> <strong>PCB</strong> <strong>Creep</strong> Corrosi<strong>on</strong> <strong>on</strong> PPF SOIC<br />

Refer to : Dr. Randy Schueller’s published paper<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Refer to : <strong>the</strong> published paper of Maryland University


Comparis<strong>on</strong> am<strong>on</strong>g <strong>Creep</strong> Corrosi<strong>on</strong>, Dendrite and CAF<br />

Comparis<strong>on</strong><br />

<strong>Creep</strong><br />

Corrosi<strong>on</strong><br />

Dendrite CAF<br />

Substrate Cu Cu/Ag/T<strong>in</strong>-<br />

Lead…<br />

Cu<br />

Corrosi<strong>on</strong><br />

Product<br />

Cu2S<br />

FO Cu Oxide/<br />

Hydroxide<br />

Electr<strong>on</strong> X Cathode to Anode to<br />

Migrati<strong>on</strong><br />

Anode Cathode<br />

Failure Mode Short /<br />

Open<br />

Short Short<br />

Humidity<br />

Requirement<br />

Yes Yes Yes<br />

Voltage<br />

Requirement<br />

No Yes Yes<br />

CAF<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Refer to 中国赛宝实验室可靠性分析中心<br />

<strong>Creep</strong> Corrosi<strong>on</strong><br />

Dendrite<br />

Refer to 北京工业大学现代教育技术中心


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Mechanism of <strong>Creep</strong> Corrosi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism of creep corrosi<strong>on</strong> <strong>in</strong> Dr. P<strong>in</strong>g Zhao’s previous published<br />

paper described <strong>the</strong> process of Dissoluti<strong>on</strong> → Diffusi<strong>on</strong> → Re-depositi<strong>on</strong><br />

<strong>Creep</strong> Corrosi<strong>on</strong> <strong>on</strong> <strong>the</strong> Gull-W<strong>in</strong>g Lead of PSOP 1. <str<strong>on</strong>g>The</str<strong>on</strong>g> multiple m<strong>on</strong>olayers<br />

of water are<br />

adsorbed <strong>on</strong> <strong>the</strong><br />

surface under high<br />

relative humidity and<br />

<strong>the</strong>n <strong>the</strong> corrosi<strong>on</strong><br />

products dissolve <strong>in</strong>to<br />

<strong>the</strong>se water layers.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g>y diffuse over <strong>the</strong><br />

surface <strong>in</strong> soluti<strong>on</strong><br />

down <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong><br />

gradient and redeposit.


<str<strong>on</strong>g>The</str<strong>on</strong>g> Factors to <strong>Creep</strong> Corrosi<strong>on</strong><br />

<strong>PCB</strong> Design<br />

SMD & NSMD<br />

Reflow<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g><br />

<str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g><br />

Test<br />

C<strong>on</strong>diti<strong>on</strong><br />

Wave<br />

Solder<strong>in</strong>g<br />

Flux Residue<br />

Solder Paste<br />

Coverage


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

MFG Test


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> MFG test method was carried out <strong>in</strong><br />

1980’s.<br />

• A laboratory test where <strong>the</strong> temperature (�),<br />

relative humidity (%RH), c<strong>on</strong>centrati<strong>on</strong> of<br />

gaseous pollutants (ppb level), and o<strong>the</strong>r critical<br />

variables (such as volume exchange rate and<br />

airflow rate) are carefully def<strong>in</strong>ed, m<strong>on</strong>itored<br />

and c<strong>on</strong>trolled.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> purpose of MFG test is to use <strong>the</strong><br />

comb<strong>in</strong>ati<strong>on</strong> of four most comm<strong>on</strong> corrosive<br />

gases <strong>in</strong> <strong>the</strong> envir<strong>on</strong>ment, H 2S, Cl 2, NO 2, SO 2 to<br />

simulate and accelerate atmospheric corrosi<strong>on</strong><br />

due to exposure.<br />

• Many specific and applicati<strong>on</strong>-oriented MFG<br />

test methods created for <strong>in</strong>dustrial applicati<strong>on</strong>s<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>re is still no accepted <strong>in</strong>dustry standard<br />

created for MFG test to correlate to real service<br />

life yet.<br />

MFG(Mixed Flow<strong>in</strong>g Gas) Test<br />

Applicati<strong>on</strong>-oriented MFG test methods


Brand : Yamasaki<br />

Model : GH-180-VL/M(Japan)<br />

Temperature : 20 � ±50 �<br />

Humidity Range : 70 ~ 95%(RH)<br />

Exchange Rate : 1500 L / hour<br />

Mode : S<strong>in</strong>gle or Mixed flow<strong>in</strong>g gas<br />

Inside Dimensi<strong>on</strong> :<br />

50 cm (W) x 50 cm (D) x 50 cm (H)<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

MFG Test System<br />

MFG Test System MFG Test Flow


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Test C<strong>on</strong>diti<strong>on</strong>s & Gas C<strong>on</strong>centrati<strong>on</strong> Sett<strong>in</strong>g<br />

H2S NO2 Cl2 SO2 Temp. RH Durati<strong>on</strong>(day)<br />

1700 ppb 200ppb 20ppb 200ppb 40� 90% 21<br />

• Gas c<strong>on</strong>centrati<strong>on</strong> is set accord<strong>in</strong>g to <strong>the</strong> exchange rate of <strong>the</strong> chamber<br />

•1500 Litter gas get <strong>in</strong>to <strong>the</strong> chamber and 1500 Little gas emissi<strong>on</strong> go out<br />

Gas C<strong>on</strong>centrati<strong>on</strong><br />

Test C<strong>on</strong>diti<strong>on</strong><br />

Gas H2S Cl2 SO2 NO2<br />

C<strong>on</strong>centrati<strong>on</strong> 1700 ppb 20 ppb 200 ppb 200 ppb<br />

Gas Cyl<strong>in</strong>der 50000 ppm 100 ppm 1000 ppm 1000 ppm<br />

Chamber Exchange Rate<br />

1500 L/H<br />

Liter/per hour (L/H) 0.05 0.3 0.3 0.3<br />

Calculati<strong>on</strong> of Exchange Rate<br />

Gas<br />

H2S<br />

Cl2<br />

SO2<br />

NO2<br />

Gas In = Gas Out<br />

1500 L/H x 1.7 ppm<br />

1500 L/H x 0.02 ppm<br />

1500 L/H x 0.2 ppm<br />

1500 L/H x 0.2 ppm<br />

0.05 L/H x 50000 ppm<br />

0.3 L/H x 100 ppm<br />

0.3 L/H x 1000 ppm<br />

0.3 L/H x 1000 ppm


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Uniformity Measurement <strong>in</strong> <strong>the</strong> MFG chamber


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Chamber Set up of Uniformity Test<br />

Test C<strong>on</strong>diti<strong>on</strong><br />

H2S NO2 Cl2 SO2 Temp. RH Durati<strong>on</strong>(day)<br />

500/1000/1700 ppb 200ppb 20ppb 200ppb 40� 75% 5


Weight Ga<strong>in</strong> Analysis<br />

Ag Coup<strong>on</strong> Ag1 Ag2 Ag3 Ag4 Ag5<br />

Ag2S wt ga<strong>in</strong> (angstroms) 630 910 580 1170 720<br />

Ag2S CR (angstroms) 513 538 535 546 636<br />

Cu Coup<strong>on</strong> Cu1 Cu2 Cu3 Cu4 Cu5<br />

Cu corrosi<strong>on</strong> product wt ga<strong>in</strong> (angstroms) 15880 15630 15060 17840 17790<br />

CR (angstroms) 14603 20361 14127 20547 16574<br />

• Weight ga<strong>in</strong> analysis methods :<br />

a. Weight Measurement<br />

b. Coulometric Reducti<strong>on</strong>(CR)<br />

c. X-Secti<strong>on</strong> with SEM/EDS<br />

•<str<strong>on</strong>g>The</str<strong>on</strong>g> data of weight ga<strong>in</strong> analysis<br />

by <strong>the</strong> three methods are<br />

c<strong>on</strong>sistent to each o<strong>the</strong>r.<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Weight ga<strong>in</strong> Analysis of Cu/Ag coup<strong>on</strong>s <strong>in</strong> 3 different c<strong>on</strong>centrati<strong>on</strong> of H 2S<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> rate of Cu coup<strong>on</strong> rapidly <strong>in</strong>creases while H 2S c<strong>on</strong>centrati<strong>on</strong> after reach<strong>in</strong>g at<br />

1000 ppb.<br />

• Ag coup<strong>on</strong> has more active performance <strong>in</strong> lower H 2S c<strong>on</strong>centrati<strong>on</strong> than higher H 2S<br />

c<strong>on</strong>centrati<strong>on</strong>.<br />

• Flak<strong>in</strong>g corrosi<strong>on</strong> also happens <strong>on</strong> <strong>the</strong> Cu coup<strong>on</strong> with heavy corrosi<strong>on</strong> product <strong>in</strong> <strong>the</strong> high<br />

H 2S c<strong>on</strong>centrati<strong>on</strong> test c<strong>on</strong>diti<strong>on</strong>.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

MFG Test Matrix<br />

Group Test Vehicle Feature Factors to study<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g><br />

1) ImAg<br />

A HF <strong>PCB</strong> 80 x 80 mm NSMD 2) Post-Treatment ImAg<br />

3) HT OSP1<br />

4) HT OSP2<br />

SMD<br />

Flux<br />

B HF <strong>PCB</strong> 80 x 80 mm<br />

Comb L<strong>in</strong>e<br />

1) NC OA Flux1<br />

2) NC OA Flux2<br />

• To <strong>in</strong>vestigate material, process and design effect <strong>on</strong><br />

<strong>the</strong> creep corrosi<strong>on</strong>.<br />

• Two groups( A and B) of test boards are <strong>in</strong>vestigated<br />

<strong>in</strong> this study.


<strong>PCB</strong> Design & <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g><br />

Group A Group B<br />

SMD Design<br />

SMD & NSMD Design<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

NSMD Design<br />

Group <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> Supplier<br />

Group A<br />

ImAg Supplier 1<br />

Post-Treatment ImAg Supplier 2<br />

HT OSP 1 Supplier 3<br />

HT OSP 2 Supplierr 2<br />

Group B ImAg Supplier 1


• Group B<br />

Flux Residue for Wave Solder<strong>in</strong>g Simulati<strong>on</strong><br />

• Spray 2 different types of NC OA Flux <strong>on</strong> <strong>the</strong> boards<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> boards with flux are baked at 125� for 5 m<strong>in</strong>utes and <strong>the</strong>n 270� for 1<br />

m<strong>in</strong>ute to simulate <strong>the</strong> wave solder<strong>in</strong>g process.<br />

NC OA<br />

Flux 1<br />

NC OA<br />

Flux 2<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Bak<strong>in</strong>g


• Test C<strong>on</strong>diti<strong>on</strong>s:<br />

MFG Test<br />

• All test boards have <strong>on</strong>e time reflow before MFG test<br />

SMT l<strong>in</strong>e & Reflow Profile<br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Chamber set up


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Experiment Result


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

SMD vs NSMD Effec <strong>on</strong> <strong>Creep</strong> Corrosi<strong>on</strong><br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> degree of creep corrosi<strong>on</strong> <strong>on</strong> SMD board feature grows laterally<br />

across solder mask is greater than that at <strong>the</strong> metal/lam<strong>in</strong>ate <strong>in</strong>terface<br />

<strong>on</strong> NSMD board feature.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> difference is expla<strong>in</strong>ed as follow<strong>in</strong>g discussi<strong>on</strong> :<br />

1) <str<strong>on</strong>g>The</str<strong>on</strong>g> migrati<strong>on</strong> <strong>on</strong> <strong>the</strong> lam<strong>in</strong>ate around NSMD areas has to overcome<br />

<strong>the</strong> land between Cu pad and solder mask.<br />

2) SMD is a much smoo<strong>the</strong>r surface so that <strong>the</strong> corrosi<strong>on</strong> product can<br />

travel much more readily across <strong>the</strong> planar surface.<br />

3) A gap is made at <strong>the</strong> <strong>in</strong>terface between soldermask and Cu pad due to<br />

<strong>the</strong> poor soldermask process<strong>in</strong>g (exposed Cu at edge of soldermask),<br />

so that creep corrosi<strong>on</strong> emanate from SMD features.


SMD vs NSMD Effec <strong>on</strong> <strong>Creep</strong> Corrosi<strong>on</strong><br />

Perfect & Normal soldermask process<strong>in</strong>g<br />

<strong>Creep</strong> Corrosi<strong>on</strong> evoluti<strong>on</strong> of SMD & NSMD <strong>PCB</strong><br />

As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<strong>Creep</strong> Corrosi<strong>on</strong> occurred from <strong>the</strong> exposed copper at <strong>the</strong> edge of soldermask<br />

<strong>PCB</strong> <strong>Creep</strong> Corrosi<strong>on</strong> of SMD & NSMD <strong>PCB</strong>


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> <strong>Creep</strong> Corrosi<strong>on</strong>– Group A<br />

• <strong>Creep</strong> corrosi<strong>on</strong> is observed <strong>on</strong> all <strong>the</strong> three types of surface f<strong>in</strong>ish based <strong>on</strong><br />

<strong>the</strong> visual <strong>in</strong>specti<strong>on</strong> and <strong>the</strong> analysis through Cross-Secti<strong>on</strong>, SEM/EDS and<br />

electrical measurement. <str<strong>on</strong>g>The</str<strong>on</strong>g> result show as below.<br />

<str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g> \ Result Corrosi<strong>on</strong> <strong>on</strong> pad Corrosi<strong>on</strong> <strong>on</strong> Trace <strong>Creep</strong> Corrosi<strong>on</strong> Short<strong>in</strong>g Occurrence Rank<br />

ImAg O O O X 2<br />

Post-Treatment ImAg O X O X 3<br />

HT OSP 1<br />

HT OSP 2<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

1<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> severity of <strong>the</strong> three <strong>PCB</strong> surface f<strong>in</strong>ishes is ranked as below.<br />

OSP > ImAg > Post-Treatment ImAg


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

ImAg and Post-Treatment ImAg<br />

Refer to EMAsia-Ch<strong>in</strong>a.com<br />

Post-Treatment is molecular self-assembly<br />

M<strong>on</strong>olayer. <str<strong>on</strong>g>The</str<strong>on</strong>g> molecule will selectively<br />

attach itself to available copper. <str<strong>on</strong>g>The</str<strong>on</strong>g> silver<br />

layer is gett<strong>in</strong>g denser with better coverage<br />

of Cu pad to prevent corrosi<strong>on</strong> happen<strong>in</strong>g.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Post-Treatment ImAg with more<br />

organic preservative is designed to have<br />

better performance than ImAg under <strong>the</strong><br />

corrosive gas exposure.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Comparis<strong>on</strong> of HT OSP1 & HT OSP2<br />

• Both HT OSP 1 and HT OSP 2 have worse performance than ImAg, but <strong>the</strong>re are<br />

no enough evidences to judge which <strong>on</strong>e is <strong>the</strong> worst.<br />

• HT OSP 1 has creep and flak<strong>in</strong>g corrosi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> product <strong>on</strong> <strong>the</strong> pad is<br />

th<strong>in</strong>ner and smoo<strong>the</strong>r.<br />

• HT OSP 2 has creep corrosi<strong>on</strong> but <strong>the</strong> pad isn’t flaked. <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> product <strong>on</strong><br />

<strong>the</strong> pad of HT OSP 2 is thicker and rougher.<br />

• Both of <strong>the</strong>m have creep corrosi<strong>on</strong> from pad<br />

to <strong>the</strong> trace and <strong>the</strong> pad crater. HT OSP 2<br />

has thicker corrosi<strong>on</strong> product <strong>on</strong> <strong>the</strong> pad.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Qualitative Comparis<strong>on</strong> of Porosity Ratio Am<strong>on</strong>g <str<strong>on</strong>g>Surface</str<strong>on</strong>g> <str<strong>on</strong>g>F<strong>in</strong>ish</str<strong>on</strong>g>es<br />

• ImAg has <strong>the</strong> higher porosity ratio than Post-Treatment ImAg, it is<br />

assumed that OSP might have higher porosity ratio than ImAg.<br />

• In Currently <strong>the</strong>re are three test<strong>in</strong>g methods for surface f<strong>in</strong>ish<br />

porosity test <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry, which are Gas Exposure Method,<br />

Electrolysis Imag<strong>in</strong>g Method and Salt Spray Test Method.<br />

But all of <strong>the</strong>m are not <strong>the</strong> ideal and reliable test methods to identify<br />

quantitatively <strong>the</strong> porosity.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

u-XPS Analysis<br />

ImAg vs Post-Treatment ImAg<br />

HT OSP1 vs HT OSP2


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Flux Residue effect <strong>on</strong> <strong>the</strong> creep corrosi<strong>on</strong> – Group B<br />

• Flux residue will cause easily moisture absorpti<strong>on</strong> and <strong>the</strong> H+ of i<strong>on</strong><br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> is helpful to dissociate Cu oxide and accelerate creep<br />

corrosi<strong>on</strong>.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

• <strong>Creep</strong> corrosi<strong>on</strong> can be driven by multiple factors.<br />

• Except envir<strong>on</strong>mental factors, such as polluti<strong>on</strong>, temperature,<br />

humidity, complicated <strong>PCB</strong> manufactur<strong>in</strong>g process is ano<strong>the</strong>r<br />

c<strong>on</strong>cern.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g>re might be many potential <strong>in</strong>fluences to creep corrosi<strong>on</strong><br />

dur<strong>in</strong>g <strong>the</strong> process not <strong>on</strong>ly surface f<strong>in</strong>ish, flux, and board design.<br />

• <str<strong>on</strong>g>The</str<strong>on</strong>g> corrosi<strong>on</strong> occurrence <strong>on</strong> <strong>PCB</strong> is very sensitive to surface<br />

chemical properties. I<strong>on</strong>ic cleanl<strong>in</strong>ess, <strong>the</strong> roughness and surface<br />

chemistry of <strong>the</strong> soldermask might be o<strong>the</strong>r factors to <strong>in</strong>fluence<br />

<strong>the</strong> rate of creep corrosi<strong>on</strong> growth.


As orig<strong>in</strong>ally published <strong>in</strong> <strong>the</strong> <strong>IPC</strong> APEX EXPO Proceed<strong>in</strong>gs.<br />

Welcome your comments !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!