24.01.2013 Views

Chapter 15, Problem 1. Find the Laplace transform of: (a) cosh at (b ...

Chapter 15, Problem 1. Find the Laplace transform of: (a) cosh at (b ...

Chapter 15, Problem 1. Find the Laplace transform of: (a) cosh at (b ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> <strong>1.</strong><br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

(a) <strong>cosh</strong> <strong>at</strong> (b) sinh <strong>at</strong><br />

1 x −x<br />

1 x −x<br />

[Hint: <strong>cosh</strong> x = ( e + e ) , sinh x = ( e − e )<br />

2<br />

<strong>Chapter</strong> <strong>15</strong>, Solution <strong>1.</strong><br />

(a)<br />

<strong>at</strong> -<strong>at</strong><br />

e + e<br />

<strong>cosh</strong>( <strong>at</strong>)<br />

=<br />

2<br />

<strong>cosh</strong>( <strong>at</strong>)<br />

1 ⎡ 1 1 ⎤<br />

= ⎢⎣<br />

+<br />

2 s − a s + a ⎥⎦<br />

(b)<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 2.<br />

[ ] =<br />

L 2 2 s a<br />

e<br />

sinh( <strong>at</strong>)<br />

=<br />

-<strong>at</strong><br />

e<br />

2<br />

sinh( <strong>at</strong>)<br />

1 ⎡ 1 1 ⎤<br />

= ⎢⎣<br />

−<br />

2 s − a s + a ⎥⎦<br />

<strong>at</strong> −<br />

[ ] =<br />

2<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

.]<br />

s<br />

−<br />

L 2 2 s − a<br />

Determine <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

(a) cos( ω t + θ ) (b) sin( ω t + θ )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 2.<br />

(a) f ( t)<br />

= cos( ωt)<br />

cos( θ)<br />

− sin( ωt)<br />

sin( θ)<br />

F( s)<br />

= cos( θ)<br />

L cos( ωt)<br />

− sin( θ)<br />

L sin( ωt)<br />

scos(<br />

θ)<br />

− ωsin(<br />

θ)<br />

F( s)<br />

= 2 2<br />

s + ω<br />

[ ] [ ]<br />

(b) f ( t)<br />

= sin( ωt)<br />

cos( θ)<br />

+ cos( ωt)<br />

sin( θ)<br />

F( s)<br />

= sin( θ)<br />

L cos( ωt)<br />

+ cos( θ)<br />

L sin( ωt)<br />

ssin(<br />

θ)<br />

− ωcos(<br />

θ)<br />

F( s)<br />

=<br />

2 2<br />

s + ω<br />

[ ] [ ]<br />

a


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 3.<br />

Obtain <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each <strong>of</strong> <strong>the</strong> following functions:<br />

(a) e tu()<br />

t<br />

t −2<br />

cos3<br />

(b) e tu(<br />

t)<br />

t −2<br />

sin 4<br />

(c) e tu()<br />

t<br />

t −3<br />

<strong>cosh</strong> 2<br />

(d) e tu(<br />

t)<br />

t −4<br />

sinh<br />

(e) te tu()<br />

t<br />

t −<br />

sin 2<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 3.<br />

(a) [ e cos( 3t)<br />

u(<br />

t)<br />

]=<br />

-2t L<br />

(b) [ e sin( 4t)<br />

u(<br />

t)<br />

]=<br />

-2t L<br />

L<br />

<strong>cosh</strong>( <strong>at</strong>)<br />

( s<br />

( s<br />

=<br />

s<br />

s + 2<br />

+ 2)<br />

+<br />

4<br />

2)<br />

(c) Since [ ] 2<br />

[ e <strong>cosh</strong>( 2t)<br />

u(<br />

t)<br />

]=<br />

-3t L<br />

s<br />

2 − a<br />

( s<br />

(d) Since L [ sinh( <strong>at</strong>)<br />

] = 2<br />

[ e sinh( t)<br />

u(<br />

t)<br />

]=<br />

-4t L<br />

-t<br />

(e) L [ sin( 2t)<br />

]<br />

s<br />

a<br />

2 − a<br />

( s<br />

2<br />

=<br />

( s + 1)<br />

e 2<br />

+<br />

2 +<br />

2 +<br />

s + 3<br />

+ 3)<br />

1<br />

4)<br />

+ 4<br />

2 −<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

9<br />

2 −<br />

16<br />

If f ( t)<br />

← ⎯→ F(<br />

s)<br />

t f ( t)<br />

← ⎯→<br />

- d<br />

F(<br />

s)<br />

ds<br />

Thus,<br />

- d<br />

-t -1<br />

[ ] [ 2<br />

L t e sin( 2t)<br />

= 2 ( ( s + 1)<br />

+ 4)<br />

]<br />

ds<br />

2<br />

=<br />

⋅ 2(<br />

s + 1)<br />

2 2<br />

(( s + 1)<br />

+ 4)<br />

-t [ t e sin( 2t)<br />

]=<br />

L 2 2<br />

(( s + 1)<br />

+ 4)<br />

1<br />

4<br />

4(<br />

s +<br />

1)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 4.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong> following:<br />

g t = 6cos 4t<br />

−1<br />

(a) () ( )<br />

−3(<br />

t−2<br />

)<br />

(b) f () t = 2tu()<br />

t + 5e<br />

u(<br />

t − 2)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 4.<br />

(a)<br />

(b)<br />

G(<br />

s)<br />

F(<br />

s)<br />

= 6<br />

s<br />

2<br />

s<br />

+ 4<br />

2 e<br />

= + 5<br />

s s<br />

2<br />

e<br />

−2s<br />

2 +<br />

3<br />

−s<br />

−s<br />

6se<br />

=<br />

2<br />

s + 16<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 5.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each <strong>of</strong> <strong>the</strong> following functions:<br />

2<br />

4 −2t<br />

(a) t cos(<br />

2t<br />

+ 30°<br />

) u(<br />

t)<br />

(b) 3t<br />

e u(<br />

t)<br />

d<br />

−(<br />

t−1) (c) 2tu() t − 4 δ () t (d) 2e<br />

u(<br />

t)<br />

dt<br />

t 3<br />

(e) 5u ( t 2)<br />

(f) 6e u(<br />

t)<br />

−<br />

n<br />

d<br />

(g) δ () t n<br />

dt<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 5.<br />

(a) L [ 2t<br />

+ 30°<br />

) ]<br />

L<br />

cos(<br />

s cos( 30°<br />

) − 2sin(<br />

30°<br />

)<br />

=<br />

2 s + 4<br />

2 t cos( 2t<br />

+ 30°<br />

)<br />

2 d ⎡s<br />

cos( 30°<br />

) −1⎤<br />

= 2 ds ⎢⎣ 2 s + 4<br />

d d ⎡⎛<br />

= ⎢⎜<br />

ds ds ⎜<br />

⎢⎣<br />

⎝<br />

3 ⎞<br />

s −1⎟<br />

2 ⎟<br />

⎠<br />

d ⎡ 3<br />

⎛<br />

2 -1<br />

= ⎢ s + 4 − 2s⎜<br />

ds<br />

⎜<br />

⎢⎣<br />

2<br />

⎝<br />

[ ] ⎥ ⎦<br />

=<br />

-<br />

=<br />

3<br />

2<br />

( - 2s)<br />

⎛<br />

2⎜<br />

⎜<br />

−<br />

⎝<br />

2 -1<br />

( s + 4)<br />

⎥<br />

⎥<br />

3<br />

2 -2<br />

( ) s −1⎟<br />

( s + 4)<br />

⎥<br />

⎥<br />

3 ⎞ ⎛<br />

s −1⎟<br />

2s⎜<br />

2 ⎟ ⎜<br />

⎠<br />

−<br />

⎝<br />

( ) ( ) ( ) ( ) 3<br />

2 2 2 2 2 2<br />

2<br />

s + 4 s + 4 s + 4 s + 4<br />

(-3<br />

=<br />

3s<br />

−<br />

3s<br />

3 s<br />

+ 2 −<br />

3 s<br />

( 8s<br />

+<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

3<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

( ) ( ) 3<br />

2 2<br />

2<br />

s + 4<br />

s + 4<br />

+ 2)(s<br />

2<br />

+<br />

4)<br />

4<br />

+<br />

2<br />

⎛<br />

) ⎜<br />

⎝<br />

3<br />

3s<br />

− 8s<br />

( ) ( ) 3<br />

2 3<br />

2<br />

s + 4 s + 4<br />

[ t cos( 2t<br />

+ 30°<br />

) ]=<br />

2<br />

8 −<br />

12<br />

L<br />

3 s<br />

( ) 3 2<br />

s<br />

−<br />

6s<br />

+ 4<br />

2<br />

+<br />

2<br />

⎤<br />

⎦<br />

( 8s<br />

+<br />

2<br />

3 ⎞<br />

s −1⎟<br />

2 ⎟<br />

⎠<br />

2<br />

3s<br />

3<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

) ⎜<br />

⎝<br />

⎤<br />

⎦<br />

3 ⎞<br />

s −1⎟<br />

2 ⎟<br />


4<br />

-2t<br />

4!<br />

(b) L [ ] = ⋅ =<br />

3t<br />

e<br />

3<br />

( s + 2)<br />

5<br />

( s<br />

72<br />

5<br />

+ 2)<br />

⎡ d ⎤ 2<br />

2<br />

(c) L⎢⎣ 2t u(<br />

t)<br />

− 4 δ(<br />

t)<br />

⎥⎦<br />

= 2 − 4(<br />

s ⋅1−<br />

0)<br />

= 2 4s<br />

dt s<br />

s<br />

−<br />

(d) 2e<br />

-1)<br />

u(<br />

t)<br />

-t 2e<br />

u(<br />

t)<br />

2e<br />

-(t-1)<br />

L [ 2e u(<br />

t)<br />

]=<br />

s + 1<br />

-(t =<br />

(e) Using <strong>the</strong> scaling property,<br />

L 5u(<br />

t 2)<br />

1<br />

= 5⋅<br />

⋅<br />

1 2 s<br />

1 1<br />

= 5⋅<br />

2 ⋅<br />

( 1 2)<br />

2s<br />

[ ] =<br />

6<br />

s + 1 3<br />

-t<br />

3<br />

(f) L [ 6e u(<br />

t)<br />

] = =<br />

18<br />

3s<br />

+ 1<br />

(g) Let f ( t)<br />

= δ(<br />

t)<br />

. Then, F ( s)<br />

= <strong>1.</strong><br />

n<br />

n<br />

⎡ d ⎤ ⎡ d<br />

L ⎢ n δ(<br />

t)<br />

⎥ = L<br />

⎣ ⎦<br />

⎢ n<br />

dt ⎣ dt<br />

⎤<br />

n<br />

n−<br />

1<br />

n−2<br />

f ( t)<br />

⎥ = s F(<br />

s)<br />

− s f ( 0)<br />

− s f ′ ( 0)<br />

− L<br />

⎦<br />

n<br />

n<br />

⎡ d ⎤ ⎡ d<br />

L ⎢ n δ(<br />

t)<br />

⎥ = L<br />

⎣ ⎦<br />

⎢ n<br />

dt ⎣ dt<br />

n ⎡ d ⎤<br />

n<br />

L⎢<br />

n δ ( t)<br />

⎥ = s<br />

⎣ dt ⎦<br />

⎤<br />

n n−1<br />

n−2<br />

f ( t)<br />

⎥ = s ⋅1−<br />

s ⋅ 0 − s ⋅ 0 − L<br />

⎦<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

5<br />

s


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 6.<br />

<strong>Find</strong> F(s) given th<strong>at</strong><br />

⎧2t,<br />

0 < t < 1<br />

⎪<br />

f () t = ⎨t,<br />

1 < t < 2<br />

⎪<br />

⎩0,<br />

o<strong>the</strong>rwise<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 6.<br />

∞<br />

1 2<br />

−st −st −st<br />

∫ ∫ ∫<br />

F() s = f() t e dt = 2te dt+ 2e<br />

dt<br />

0 0 1<br />

e 1 e 2 2<br />

s 0 −s<br />

1 s<br />

−st −st<br />

2 2 ( −st − 1) + 2 =<br />

−s−2s (1 −e −se<br />

)<br />

2<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 7.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> following signals:<br />

(a) f () t = ( 2 t + 4)<br />

u()<br />

t<br />

−2t<br />

(b) g()<br />

t = ( 4 + 3e<br />

) u()<br />

t<br />

(c) h( t)<br />

= ( 6 sin(<br />

3t)<br />

+ 8cos(<br />

3t)<br />

) u(<br />

t)<br />

−2t<br />

x t = e <strong>cosh</strong> 4t<br />

u t<br />

( ) ()<br />

(d) () ( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 7.<br />

2 4<br />

(a) Fs () = + 2<br />

s s<br />

(b)<br />

(c )<br />

4 3<br />

Gs () = +<br />

s s+<br />

2<br />

H(<br />

s)<br />

= 6<br />

s<br />

2<br />

3<br />

+ 8<br />

+ 9 s<br />

2<br />

s 8s<br />

+ 18<br />

=<br />

2<br />

+ 9 s + 9<br />

(d) From <strong>Problem</strong> <strong>15</strong>.1,<br />

s<br />

L{<strong>cosh</strong> <strong>at</strong>}<br />

= 2 2<br />

s − a<br />

s+ 2 s+<br />

2<br />

X() s = =<br />

2 2 2<br />

( s+ 2) − 4 s + 4s−12 ( a)<br />

2 4<br />

+<br />

2<br />

s s<br />

4 3 8s<br />

+ 18<br />

, ( b)<br />

+ , ( c)<br />

, ( d)<br />

s s + 2 2<br />

s + 9 s<br />

s + 2<br />

+ 4s<br />

−12<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

2


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 8.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> F(s), given th<strong>at</strong> f(t) is:<br />

(a) 2tu ( t − 4)<br />

(b) 5cos() t δ ( t − 2)<br />

(c) e u(<br />

t t)<br />

t −<br />

−<br />

sin 2t<br />

u t −τ<br />

(d) ( ) ( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 8.<br />

(a) 2t=2(t-4) + 8<br />

f(t) = 2tu(t-4) = 2(t-4)u(t-4) + 8u(t-4)<br />

2 −4s8 −4s ⎛ 2 8⎞<br />

−4s<br />

Fs () = e + e = e<br />

2 ⎜ + 2 ⎟<br />

s s ⎝s s⎠<br />

(b)<br />

(c)<br />

∞ ∞<br />

−st −st −st −2s<br />

∫ ∫ δ<br />

5cos(2)e<br />

t = 2<br />

0 0<br />

–2s<br />

Fs ( ) = fte ( ) dt= 5cos t ( t− 2) e dt= 5coste = 5cos 2e<br />

−t −( t−τ)<br />

−τ<br />

e = e e<br />

−τ −( t−τ)<br />

f() t = e e u( t−<br />

τ )<br />

− τ s+<br />

−τ −τs1<br />

e<br />

Fs () = e e =<br />

s+ 1 s+<br />

1<br />

( 1)<br />

(d) sin 2t = sin[2( t− τ ) + 2 τ] = sin 2( t− τ)cos 2τ + cos 2( t−<br />

τ)sin2τ f( t) = cos2τsin2( t−τ) u( t− τ) + sin2τ cos2( t−τ) u( t−<br />

τ)<br />

−τs 2<br />

−τs<br />

s<br />

Fs () = cos2τe+ sin2τe<br />

2 2<br />

s + 4 s + 4<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 9.<br />

Determine <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong>se functions:<br />

(a) f () t = ( t − 4) u(<br />

t − 2)<br />

(b) () 2 ( 1)<br />

4 − t<br />

g t = e u t −<br />

(c) h() t = 5cos( 2t<br />

−1)<br />

u()<br />

t<br />

p t = 6 u t − 2 − u t − 4<br />

(d) ( ) [ ( ) ( ) ]<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 9.<br />

(a) f ( t)<br />

= ( t − 4)<br />

u(<br />

t − 2)<br />

= ( t − 2)<br />

u(<br />

t − 2)<br />

− 2u(<br />

t − 2)<br />

-2s -2s<br />

e 2e<br />

F( s)<br />

= 2 − 2 s s<br />

-4t -4 -4(t-1)<br />

(b) g(<br />

t)<br />

= 2e<br />

u(<br />

t −1)<br />

= 2e<br />

e u(<br />

t −1)<br />

G(<br />

s)<br />

=<br />

e<br />

2e<br />

( s<br />

4<br />

-s<br />

+<br />

4)<br />

(c) h( t)<br />

= 5cos(<br />

2t<br />

−1)<br />

u(<br />

t)<br />

cos( A − B)<br />

= cos( A)<br />

cos( B)<br />

+ sin( A)<br />

sin( B)<br />

cos( 2t<br />

− 1)<br />

= cos( 2t)<br />

cos( 1)<br />

+ sin( 2t)<br />

sin( 1)<br />

h ( t)<br />

= 5cos(<br />

1)<br />

cos( 2t)<br />

u(<br />

t)<br />

+<br />

5sin(<br />

1)<br />

sin( 2t)<br />

u(<br />

t)<br />

s<br />

2<br />

H( s)<br />

= 5cos(<br />

1)<br />

⋅ 2 + 5sin(<br />

1)<br />

⋅ 2<br />

s + 4 s + 4<br />

2.<br />

702s<br />

8.<br />

4<strong>15</strong><br />

H(<br />

s)<br />

= 2 + 2 s + 4 s + 4<br />

(d) p( t)<br />

= 6u(<br />

t − 2)<br />

− 6u(<br />

t − 4)<br />

P(<br />

s)<br />

=<br />

6<br />

e<br />

s<br />

-2s<br />

6<br />

−<br />

e<br />

s<br />

-4s<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 10.<br />

In two different ways, find <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong><br />

d −t<br />

g()<br />

t = ( te cost<br />

)<br />

dt<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 10.<br />

(a) By taking <strong>the</strong> deriv<strong>at</strong>ive in <strong>the</strong> time domain,<br />

-t -t<br />

-t<br />

g(<br />

t)<br />

= ( -t e + e ) cos( t)<br />

− t e sin( t)<br />

-t -t<br />

-t<br />

g(<br />

t)<br />

= e cos( t)<br />

− t e cos( t)<br />

− t e sin( t)<br />

s + 1 d ⎡ s + 1 ⎤ d ⎡ 1 ⎤<br />

G( s)<br />

= + ⎢ ⎥ +<br />

2<br />

2 ⎢ 2 ⎥<br />

(s + 1) + 1 ds ⎣(<br />

s + 1)<br />

+ 1⎦<br />

ds ⎣(<br />

s + 1)<br />

+ 1⎦<br />

2<br />

2<br />

s + 1 s + 2s 2s + 2 s (s + 2)<br />

G( s)<br />

= 2 − 2<br />

2 − 2<br />

2 = 2<br />

2<br />

s + 2s<br />

+ 2 (s + 2s<br />

+ 2)<br />

(s + 2s<br />

+ 2)<br />

(s + 2s<br />

+ 2)<br />

(b) By applying <strong>the</strong> time differenti<strong>at</strong>ion property,<br />

G( s)<br />

= sF(<br />

s)<br />

− f ( 0)<br />

-t<br />

where f ( t)<br />

= t e cos( t)<br />

, f ( 0)<br />

= 0<br />

⎡ ⎤<br />

2<br />

2<br />

- d s + 1 (s)(s + 2s) s (s +<br />

2)<br />

G( s)<br />

= ( s)<br />

⋅ ⎢ 2 ⎥ = 2<br />

2 = 2<br />

2<br />

ds ⎣(<br />

s + 1)<br />

+ 1⎦<br />

(s + 2s<br />

+ 2)<br />

(s + 2s<br />

+ 2)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 1<strong>1.</strong><br />

<strong>Find</strong> F(s) if:<br />

(a) f () t<br />

t<br />

6e <strong>cosh</strong> 2t<br />

−<br />

8 <strong>cosh</strong> 2<br />

3<br />

f t<br />

− t<br />

= e tu t −<br />

=<br />

−2t<br />

(b) f ( t)<br />

= 3te<br />

sinh 4t<br />

(c) () ( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 1<strong>1.</strong><br />

s<br />

(a) Since L [ <strong>cosh</strong>( <strong>at</strong>)<br />

] = 2 2 s − a<br />

6(<br />

s + 1)<br />

6(<br />

s + 1)<br />

F( s)<br />

= 2 = 2 ( s + 1)<br />

− 4 s + 2s<br />

− 3<br />

sinh( <strong>at</strong>)<br />

a<br />

= 2 s − a<br />

sinh( 4t)<br />

( 3)(<br />

4)<br />

=<br />

2 =<br />

( s + 2)<br />

−16<br />

s<br />

(b) Since L [ ] 2<br />

L<br />

-2t<br />

[ e<br />

]<br />

3 2<br />

12<br />

+ 4s<br />

−12<br />

F( s)<br />

= L<br />

- d<br />

ds<br />

−<br />

24(<br />

s + 2)<br />

2 -2<br />

( s)<br />

= ( 12)(<br />

2s<br />

+ 4)(<br />

s + 4s<br />

−12)<br />

=<br />

( s + 4s<br />

− 12<br />

- 2t<br />

2<br />

-1<br />

[ t ⋅ 3e<br />

sinh( 4t)<br />

] = [ 12(<br />

s + 4s<br />

12)<br />

]<br />

F 2 2 )<br />

1 t -t<br />

(c) <strong>cosh</strong>( t)<br />

= ⋅ ( e + e )<br />

2<br />

1 -3t t -t<br />

f ( t)<br />

= 8e<br />

⋅ ⋅ ( e + e ) u(<br />

t − 2)<br />

2<br />

-2t<br />

-4t<br />

= 4e<br />

u(<br />

t − 2)<br />

+ 4e<br />

u(<br />

t − 2)<br />

= 4e<br />

-4<br />

e<br />

-2(t<br />

-2)<br />

u(<br />

t<br />

− 2)<br />

+ 4e<br />

-8<br />

− 2)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

e<br />

-4(t-2)<br />

-4 -2(t-2)<br />

-4 -2s -2<br />

[ 4e<br />

e u(<br />

t − 2)<br />

] = 4e<br />

e L [ e u(<br />

t)<br />

]<br />

L ⋅<br />

-(2s+<br />

4)<br />

4e<br />

-4<br />

-2(t-2)<br />

L [ 4e<br />

e u(<br />

t − 2)<br />

] =<br />

s + 2<br />

-8<br />

-4(t-2)<br />

Similarly, L [ 4e<br />

e u(<br />

t − 2)<br />

]<br />

Therefore,<br />

+<br />

4e<br />

F(<br />

s)<br />

=<br />

s + 2<br />

-(2s+<br />

4e<br />

+<br />

s + 4<br />

=<br />

u<br />

( t<br />

-(2s+<br />

4e<br />

=<br />

s + 4<br />

-(2s 4)<br />

8) -(2s+<br />

6) 2 -2<br />

2 -2<br />

e [ ( 4e<br />

+ 4e<br />

) s + ( 16e<br />

+ 8e<br />

) ]<br />

8)<br />

s<br />

2<br />

+<br />

6s<br />

+ 8


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 12.<br />

−2t<br />

If g()<br />

t = e cos 4t<br />

find G(s).<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 12.<br />

s+ 2 s+<br />

2<br />

Gs () = =<br />

2 2 2<br />

( s+ 2) + 4 s + 4s+ 20<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 13.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> following functions:<br />

(a) t u () t<br />

t cos (b) e t t u(<br />

t)<br />

t −<br />

sin<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 13.<br />

(a) tf ( t)<br />

← ⎯→<br />

d<br />

− F(<br />

s)<br />

ds<br />

If f(t) = cost, <strong>the</strong>n<br />

F(<br />

s)<br />

=<br />

s<br />

2<br />

s<br />

+ 1<br />

sin βt<br />

(c) u()<br />

t<br />

t<br />

and<br />

F(<br />

s)<br />

= −<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

-<br />

L ( t cos t)<br />

=<br />

(b) Let f(t) = e -t sin t.<br />

1 1<br />

F ( s)<br />

= = 2<br />

2<br />

( s + 1)<br />

+ 1 s + 2s<br />

+ 2<br />

2<br />

dF ( s + 2s<br />

+ 2)(<br />

0)<br />

− ( 1)(<br />

2s<br />

+ 2)<br />

=<br />

2<br />

2<br />

ds ( s + 2s<br />

+ 2)<br />

− dF 2(<br />

s + 1)<br />

( e t sin t)<br />

= − = 2<br />

ds ( s + 2s<br />

+ 2)<br />

t<br />

L<br />

f ( t)<br />

(c ) ←⎯→<br />

∫ F(<br />

s)<br />

ds<br />

t<br />

∞<br />

d<br />

ds<br />

( s<br />

s<br />

2<br />

2<br />

2<br />

−1<br />

+ 1)<br />

Let<br />

s<br />

f ( t)<br />

= sin βt,<br />

<strong>the</strong>n F(<br />

s)<br />

=<br />

β<br />

2 2<br />

∞<br />

s<br />

+ β<br />

2<br />

( s<br />

2<br />

+ 1)(<br />

1)<br />

− s(<br />

2s)<br />

2 2<br />

( s + 1)<br />

⎡sin<br />

βt ⎤ β 1 −1<br />

s ∞ π −1<br />

s −1<br />

β<br />

L<br />

⎢<br />

ds β tan<br />

tan tan<br />

2 2<br />

t ⎥<br />

= ∫ =<br />

= − =<br />

s + β β β s<br />

⎣ ⎦<br />

2 β s<br />

s


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 14.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> signal in Fig. <strong>15</strong>.26.<br />

Figure <strong>15</strong>.26<br />

For Prob. <strong>15</strong>.14.<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 14.<br />

Taking <strong>the</strong> deriv<strong>at</strong>ive <strong>of</strong> f(t) twice, we obtain <strong>the</strong> figures below.<br />

f’(t)<br />

5<br />

0 t<br />

2 4 6<br />

-2.5<br />

f’’(t)<br />

5δ (t) 2.5δ(t-6)<br />

0 2 6<br />

-7.5δ(t-2)<br />

f” = 5δ(t) – 7.5δ(t–2) + 2.5δ(t–6)<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term,<br />

s 2 F(s) = 5 – 7.5e –2s + 2.5e –6s or<br />

F(<br />

s)<br />

Please note th<strong>at</strong> we can obtain <strong>the</strong> same answer by representing <strong>the</strong> function as,<br />

f(t) = 5tu(t) – 7.5u(t–2) + 2.5u(t–6).<br />

=<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

5<br />

s<br />

−<br />

7.<br />

5<br />

e<br />

−2s<br />

s<br />

2<br />

+<br />

2.<br />

5<br />

e<br />

−6s<br />

s<br />

2


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> <strong>15</strong>.<br />

Determine <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> function in Fig. <strong>15</strong>.27.<br />

Figure <strong>15</strong>.27<br />

For Prob. <strong>15</strong>.<strong>15</strong>.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution <strong>15</strong>.<br />

This is a periodic function with T=3.<br />

F1() s<br />

Fs () 3s<br />

1 e − =<br />

−<br />

To get F1(s), we consider f(t) over one period.<br />

f1(t) f1’(t) f1’’(t)<br />

5 5<br />

5δ(t)<br />

0 1 t 0 1 t 0 1 t<br />

f1” = 5δ(t) –5δ(t–1) – 5δ’(t–1)<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term,<br />

Hence,<br />

–5δ(t-1)<br />

s 2 F1(s) = 5 –5e –s – 5se –s or F1(s) = 5(1 – e –s – se –s )/s 2<br />

1−<br />

e − se<br />

F(s) = 5<br />

2 −3s<br />

s ( 1−<br />

e )<br />

Altern<strong>at</strong>ively, we can obtain <strong>the</strong> same answer by noting th<strong>at</strong> f1(t) = 5tu(t) – 5tu(t–1) –<br />

5u(t–1).<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

−s<br />

−s<br />

–5δ(t-1)<br />

–5δ’(t-1)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 16.<br />

Obtain <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> f(t) in Fig. <strong>15</strong>.28.<br />

Figure <strong>15</strong>.28<br />

For Prob. <strong>15</strong>.16.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 16.<br />

f ( t)<br />

= 5u(<br />

t)<br />

− 3u(<br />

t −1)<br />

+ 3u(<br />

t − 3)<br />

− 5u(<br />

t −<br />

1<br />

-s<br />

-3s<br />

-4s<br />

F ( s)<br />

= [ 5 −<br />

3e<br />

+ 3e<br />

− 5e<br />

]<br />

s<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

4)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 17.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> f(t) shown in Fig. <strong>15</strong>.29.<br />

Figure <strong>15</strong>.29<br />

For Prob. <strong>15</strong>.17.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 17.<br />

Taking <strong>the</strong> deriv<strong>at</strong>ive <strong>of</strong> f(t) gives f’(t) as shown below.<br />

f’(t)<br />

2δ(t)<br />

-δ(t-1) – δ(t-2)<br />

f’(t) = 2δ(t) – δ(t–1) – δ(t–2)<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term,<br />

sF(s) = 2 – e –s – e –2s which leads to<br />

F(s) = [2 – e –s – e –2s ]/s<br />

We can also obtain <strong>the</strong> same answer noting th<strong>at</strong> f(t) = 2u(t) – u(t–1) – u(t–2).<br />

t<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 18.<br />

Obtain <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong> functions in Fig. <strong>15</strong>.30.<br />

Figure <strong>15</strong>.30<br />

For Prob. <strong>15</strong>.18.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 18.<br />

(a) g( t)<br />

= u(<br />

t)<br />

− u(<br />

t −1)<br />

+ 2[<br />

u(<br />

t −1)<br />

− u(<br />

t − 2)<br />

] + 3[<br />

u(<br />

t − 2)<br />

− u(<br />

t − 3)<br />

]<br />

= u( t)<br />

+ u(<br />

t −1)<br />

+ u(<br />

t − 2)<br />

− 3u(<br />

t − 3)<br />

1 s<br />

-s<br />

-2s<br />

-3<br />

G ( s)<br />

= ( 1 + e + e − 3e<br />

)<br />

s<br />

(b) h( t)<br />

= 2t<br />

[ u(<br />

t)<br />

− u(<br />

t −1)<br />

] + 2[<br />

u(<br />

t −1)<br />

− u(<br />

t − 3)<br />

]<br />

+ ( 8 − 2t)<br />

[ u(<br />

t − 3)<br />

− u(<br />

t − 4)<br />

]<br />

= 2t u(<br />

t)<br />

− 2(<br />

t −1)<br />

u(<br />

t −1)<br />

− 2u(<br />

t −1)<br />

+ 2u(<br />

t −1)<br />

− 2u(<br />

t − 3)<br />

− 2( t − 3)<br />

u(<br />

t − 3)<br />

+ 2u(<br />

t − 3)<br />

+ 2(<br />

t − 4)<br />

u(<br />

t − 4)<br />

= 2t u(<br />

t)<br />

− 2(<br />

t −1)<br />

u(<br />

t −1)<br />

− 2(<br />

t − 3)<br />

u(<br />

t − 3)<br />

+ 2(<br />

t − 4)<br />

u(<br />

t − 4)<br />

2 2 2 2 -s<br />

-3s<br />

-4s<br />

-s<br />

-3s<br />

-4s<br />

H ( s)<br />

= 2 ( 1−<br />

e ) − 2 e + 2 e = 2 ( 1 −<br />

e − e + e )<br />

s s s s<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 19.<br />

Calcul<strong>at</strong>e <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> train <strong>of</strong> unit impulses in Fig. <strong>15</strong>.3<strong>1.</strong><br />

Figure <strong>15</strong>.31<br />

For Prob. <strong>15</strong>.19.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 19.<br />

1<br />

Since L [ δ(<br />

t)<br />

] = 1 and T = 2 , ( s)<br />

=<br />

1 − e<br />

F -2s<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 20.<br />

The periodic function shown in Fig. <strong>15</strong>.32 is defined over its period as<br />

() ⎨<br />

⎩ ⎧sinπ<br />

t,<br />

0 < t < 1<br />

g t<br />

0,<br />

1 < t < 2<br />

<strong>Find</strong> G(s)<br />

Figure <strong>15</strong>.32<br />

For Prob. <strong>15</strong>.20.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 20.<br />

Let g1 ( t)<br />

= sin( πt),<br />

0 < t < 1<br />

= sin( πt)<br />

[ u(<br />

t)<br />

− u(<br />

t −1)<br />

]<br />

= sin( πt)<br />

u(<br />

t)<br />

− sin( πt)<br />

u(<br />

t −1)<br />

Note th<strong>at</strong> sin( π ( t −1))<br />

= sin( πt<br />

− π)<br />

= -sin(<br />

πt)<br />

.<br />

So, ( t)<br />

= sin( πt)<br />

u(t) + sin( π(<br />

t -1))<br />

u(t -1)<br />

g 1<br />

G<br />

1<br />

( s)<br />

G(<br />

s)<br />

=<br />

s<br />

2<br />

π<br />

+ π<br />

G1<br />

( s)<br />

- 1−<br />

e<br />

= 2s<br />

2<br />

- ( 1+<br />

e<br />

=<br />

( s<br />

2<br />

s<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

)<br />

-s π<br />

( 1 + e )<br />

2 + π )( 1 − e<br />

-2s<br />

)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 2<strong>1.</strong><br />

Obtain <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> periodic waveform in Fig. <strong>15</strong>.33.<br />

Figure <strong>15</strong>.33<br />

For Prob. <strong>15</strong>.2<strong>1.</strong><br />

<strong>Chapter</strong> <strong>15</strong>, Solution 2<strong>1.</strong><br />

T = 2π<br />

Let ( t)<br />

= 1−<br />

[ u(<br />

t)<br />

− u(<br />

t − 2π)<br />

]<br />

f 1<br />

f1( t)<br />

⎛ t ⎞<br />

⎜ ⎟<br />

⎝ 2π<br />

⎠<br />

t 1<br />

= u(<br />

t)<br />

− u(<br />

t)<br />

+ ( t − 2π)<br />

u(<br />

t − 2π)<br />

2π<br />

2π<br />

-2πs<br />

[ -1<br />

+ e ]<br />

-2πs<br />

1 1 e 2π<br />

s +<br />

F1<br />

( s)<br />

= − + =<br />

s 2 2<br />

2<br />

2πs<br />

2πs<br />

2πs<br />

F(<br />

s)<br />

F1<br />

( s)<br />

- 1−<br />

e<br />

= Ts<br />

=<br />

2πs<br />

−1<br />

+ e<br />

2πs<br />

2<br />

( 1−<br />

e<br />

−2πs<br />

-2πs<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 22.<br />

<strong>Find</strong> <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong> functions in Fig. <strong>15</strong>.34.<br />

Figure <strong>15</strong>.34<br />

For Prob. <strong>15</strong>.22.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 22.<br />

(a) Let g1 ( t)<br />

= 2t,<br />

0 < t < 1<br />

= 2t [ u(<br />

t)<br />

− u(<br />

t −1)<br />

]<br />

= 2t u(<br />

t)<br />

− 2(<br />

t −1)<br />

u(<br />

t −1)<br />

+ 2u(<br />

t −1)<br />

-s<br />

2 2e<br />

2 -s<br />

G 1(<br />

s)<br />

= 2 − 2 + e<br />

s s s<br />

G1(<br />

s)<br />

G( s)<br />

= -sT<br />

,<br />

1−<br />

e<br />

T = 1<br />

-s -s<br />

2(<br />

1 − e + se<br />

)<br />

G(<br />

s)<br />

= 2 -s<br />

s ( 1 − e )<br />

(b) Let h = h 0 + u(<br />

t)<br />

, where h 0 is <strong>the</strong> periodic triangular wave.<br />

Let 1 h be h 0 within its first period, i.e.<br />

⎧ 2t<br />

h ⎨<br />

1 ( t)<br />

=<br />

⎩4<br />

− 2t<br />

0 < t < 1<br />

1 < t < 2<br />

h1 ( t)<br />

= 2t<br />

u(<br />

t)<br />

− 2t<br />

u(<br />

t −1)<br />

+ 4u<br />

( t −1)<br />

− 2t<br />

u(<br />

t −1)<br />

− 2(<br />

t − 2)<br />

u(<br />

t<br />

h1 ( t)<br />

= 2t<br />

u(<br />

t)<br />

− 4(<br />

t −1)<br />

u(<br />

t −1)<br />

− 2(<br />

t − 2)<br />

u(<br />

t − 2)<br />

-2s<br />

2 4 2e<br />

2<br />

-s<br />

-s<br />

2<br />

H1 ( s)<br />

= 2 − 2 e − 2 = 2 ( 1−<br />

e )<br />

s s s s<br />

-s 2 2 ( 1−<br />

e )<br />

H 0 ( s)<br />

= 2 -2s<br />

s ( 1−<br />

e )<br />

H(<br />

s)<br />

1 2 ( 1 − e<br />

= +<br />

2 s s ( 1 − e<br />

-s<br />

2 )<br />

)<br />

-2s<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

−<br />

2)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 23.<br />

Determine <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong> periodic functions in Fig. <strong>15</strong>.35.<br />

Figure <strong>15</strong>.35<br />

For Prob. <strong>15</strong>.23.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 23.<br />

(a) Let<br />

f1 ( t)<br />

f1( t)<br />

=<br />

f1( t)<br />

= u(<br />

t)<br />

⎧ 1<br />

= ⎨<br />

⎩-1<br />

0 < t < 1<br />

1 < t < 2<br />

[ u(<br />

t)<br />

− u(<br />

t −1)<br />

] − [ u(<br />

t −1)<br />

− u(<br />

t − 2)<br />

]<br />

1<br />

s<br />

−<br />

2 u(<br />

t<br />

−1)<br />

+<br />

u(<br />

t<br />

1<br />

s<br />

−<br />

2)<br />

-s<br />

-2s<br />

F1 ( s)<br />

= ( 1−<br />

2e<br />

+ e ) = ( 1−<br />

F1<br />

( s)<br />

F( s)<br />

= -sT<br />

,<br />

( 1−<br />

e )<br />

-s 2 ( 1 − e )<br />

F(<br />

s)<br />

=<br />

-2s<br />

s(<br />

1 − e )<br />

T = 2<br />

2<br />

2<br />

2<br />

(b) Let h ( t)<br />

= t [ u(<br />

t)<br />

− u(<br />

t − 2)<br />

] = t u(<br />

t)<br />

− t u(<br />

t − 2)<br />

1<br />

2<br />

2<br />

h1<br />

( t)<br />

= t u(<br />

t)<br />

− ( t − 2)<br />

u(<br />

t − 2)<br />

−<br />

2 4 4<br />

-2s<br />

-2s<br />

H1( s)<br />

= 3 ( 1−<br />

e ) − 2 e − e<br />

s<br />

s s<br />

H1(<br />

s)<br />

H( s)<br />

= -Ts<br />

, T = 2<br />

( 1−<br />

e )<br />

-2s<br />

-2s 2<br />

2(<br />

1 −<br />

e ) − 4se<br />

( s + s )<br />

H(<br />

s)<br />

=<br />

3 -2s<br />

s ( 1 − e )<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

e<br />

-s<br />

)<br />

2<br />

4(<br />

t<br />

-2s<br />

−<br />

2)<br />

u(<br />

t<br />

−<br />

2)<br />

−<br />

4u(<br />

t<br />

−<br />

2)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 24.<br />

Given th<strong>at</strong><br />

s<br />

2<br />

+<br />

10 2<br />

s + 6<br />

F () s =<br />

s(<br />

s + 1)<br />

( s + 3)<br />

Evalu<strong>at</strong>e f(0) and f ( ∞)<br />

if <strong>the</strong>y exist.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 24.<br />

f(0) = lim sF( s)<br />

= lim<br />

2<br />

s + 10s+ 6<br />

2 3<br />

1/ s+ 10/ s + 6/ s 0<br />

= lim = = 0<br />

s→∞ s→∞ 2<br />

( s+ 1) ( s+ 2) s→∞<br />

(1+ 1/ s)(1+ 2/ s)<br />

1<br />

2<br />

s + 10s+ 6 6<br />

f( ∞ ) = lim sF( s)<br />

= lim = = 3<br />

s→0 s→0<br />

2<br />

( s+ 1) ( s+<br />

2) (1)(2)<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 25.<br />

Let<br />

5<br />

()<br />

( s + 1)<br />

F s =<br />

( s + 2)(<br />

s + 3)<br />

(a) Use <strong>the</strong> initial and final value <strong>the</strong>orems to find f(0) and ( ∞)<br />

f .<br />

(b) Verify your answer in part (a) by finding f(t), using partial fractions.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 25.<br />

5( ss+ 1) 5(1+ 1/ s)<br />

(a) f(0) = lim sF( s)<br />

= lim = lim = 5<br />

s→∞ s→∞ ( s+ 2)( s+ 3) s→∞<br />

(1+ 2/ s)(1+ 3/ s)<br />

5( ss+<br />

1)<br />

f( ∞ ) = lim sF( s)<br />

= lim = 0<br />

s→0 s→0<br />

( s+ 2)( s+<br />

3)<br />

(b)<br />

5( s+ 1) A B<br />

Fs () = = +<br />

( s+ 2)( s+ 3) s+ 2 s+<br />

3<br />

5( −1) A= =− 5,<br />

1<br />

5( −2)<br />

B=<br />

= 10<br />

−1<br />

−5<br />

10<br />

Fs () = +<br />

s+ 2 s+<br />

3<br />

⎯⎯→ ft () =− 5e + 10e<br />

f(0) = -5 + 10 = 5<br />

f( ∞ )= -0 + 0 = 0.<br />

−2t −3t<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 26.<br />

Determine <strong>the</strong> initial and final values <strong>of</strong> f(t), if <strong>the</strong>y exist, given th<strong>at</strong>:<br />

2<br />

s + 3<br />

(a) F () s = 3 2<br />

s + 4s<br />

+ 6<br />

2<br />

s − 2s<br />

+ 1<br />

(b) F () s =<br />

2<br />

s − 2 s + 2s<br />

+ 4<br />

( )( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 26.<br />

3<br />

s + 3s<br />

(a) f ( 0)<br />

= limsF(<br />

s)<br />

= lim 3 2 = 1<br />

s→∞<br />

s→∞<br />

s + 4s<br />

+ 6<br />

(b)<br />

Two poles are not in <strong>the</strong> left-half plane.<br />

f ( ∞) does not exist<br />

3 2 s − 2s<br />

+ s<br />

( 0)<br />

= limsF(<br />

s)<br />

= lim<br />

→∞<br />

s→∞<br />

( s − 2)(<br />

s + 2s<br />

2 1<br />

1−<br />

+ 2<br />

= lim s s = 1<br />

s→∞<br />

⎛ 2 ⎞⎛<br />

2 4 ⎞<br />

⎜1−<br />

⎟⎜1<br />

+ + 2 ⎟<br />

⎝ s ⎠⎝<br />

s s ⎠<br />

f 2<br />

s +<br />

One pole is not in <strong>the</strong> left-half plane.<br />

f ( ∞) does<br />

not exist<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

4)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 27.<br />

Determine <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each <strong>of</strong> <strong>the</strong> following functions:<br />

1 2<br />

(a) F () s = +<br />

s s + 1<br />

3s<br />

+ 1<br />

(b) G () s =<br />

s + 4<br />

4<br />

(c) H () s =<br />

( s + 1)(<br />

s + 3)<br />

12<br />

(d) J<br />

() s = 2<br />

s + 2 s + 4<br />

( ) ( )<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 27.<br />

(a) f ( t)<br />

= u(<br />

t)<br />

+ 2e<br />

u(<br />

t)<br />

(b)<br />

(c)<br />

(d)<br />

G(<br />

s)<br />

=<br />

3(<br />

s<br />

-t<br />

+ 4)<br />

−11<br />

11<br />

= 3 −<br />

s + 4 s + 4<br />

-4t<br />

g ( t)<br />

= 3δ<br />

( t)<br />

−11e<br />

u(<br />

t)<br />

4 A B<br />

H(<br />

s)<br />

=<br />

= +<br />

( s + 1)(<br />

s + 3)<br />

s + 1 s + 3<br />

A = 2,<br />

B = -2<br />

2 2<br />

H(<br />

s)<br />

= −<br />

s + 1 s + 3<br />

h(<br />

t)<br />

-t -3t<br />

= 2e − 2e<br />

u(t)<br />

12 A B<br />

( s)<br />

=<br />

= +<br />

( s + 2)<br />

( s + 4)<br />

s + 2 ( s + 2)<br />

12<br />

12<br />

B = = 6 , C 2 3<br />

2<br />

( -2)<br />

= =<br />

C<br />

+<br />

s 4<br />

J 2 2 +<br />

12 = A ( s + 2)<br />

( s + 4)<br />

+ B(<br />

s + 4)<br />

+ C(<br />

s +<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 0 = A + C ⎯⎯→<br />

A = -C = -3<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

2 2)<br />

1 s: 0 = 6A<br />

+ B + 4C<br />

= 2A<br />

+ B ⎯⎯→<br />

B = -2A = 6<br />

0 s : 12 = 8A<br />

+ 4B<br />

+ 4C<br />

= -24 + 24 + 12 = 12<br />

- 3 6 3<br />

J( s)<br />

= + 2 +<br />

s + 2 ( s + 2)<br />

s + 4<br />

j(<br />

t)<br />

-4t -2t -2t<br />

= 3 e − 3e<br />

+ 6t<br />

e u(t)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 28.<br />

<strong>Find</strong> <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> following functions:<br />

20<br />

(a) ()<br />

( s + 2)<br />

F s = 2<br />

s(<br />

s + 6s<br />

+ 25)<br />

6 36 20<br />

(b) ()<br />

1 2 3<br />

2<br />

s + s +<br />

P s =<br />

s + s + s +<br />

( )( )( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 28.<br />

20( s+ 2) A Bs+ C<br />

(a) Fs () = = +<br />

2 2<br />

ss ( + 6s+ 25) s s + 6s+ 25<br />

2 2<br />

20( s+ 2) = A( s + 6s+ 25 s) + Bs + Cs<br />

Equ<strong>at</strong>ing components,<br />

s 2 : 0 = A + B or B= - A<br />

s: 20 = 6A + C<br />

constant: 40 – 25 A or A = 8/5, B = -8/5, C= 20 – 6A= 52/5<br />

8 52 8 24 52<br />

− s+ − ( s+<br />

3) + +<br />

8 5 5 8<br />

Fs () = + = + 5 5 5<br />

2 2 2 2<br />

5 s ( s+ 3) + 4 5 s ( s+<br />

3) + 4<br />

8 8 −3t 19 −3t<br />

f () t = u() t − e cos4t+ e sin4t<br />

5 5 5<br />

2<br />

6s + 36s+ 20 A B C<br />

(b) Ps () = = + +<br />

( s+ 1)( s+ 2)( s+ 3) s+ 1 s+ 2 s+<br />

3<br />

6− 36+ 20<br />

A = =−5<br />

( − 1+ 2)( − 1+ 3)<br />

24 − 72 + 20<br />

B = = 28<br />

( −1)(1)<br />

54 − 108 + 20<br />

C = =−17<br />

( −2)( −1)<br />

−5<br />

28 17<br />

Ps () = + −<br />

s+ 1 s+ 2 s+<br />

3<br />

pt e e e ut<br />

−t −2t −3t<br />

( ) = ( − 5 + 28 −<br />

17 ) ( )<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 29.<br />

<strong>Find</strong> <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

2s<br />

+ 26<br />

V () s = 2<br />

s s + 4s<br />

+ 13<br />

( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 29.<br />

V(<br />

s)<br />

V(<br />

s)<br />

=<br />

=<br />

2<br />

s<br />

2<br />

s<br />

As + B 2<br />

2<br />

+<br />

; 2s<br />

+ 8s<br />

+ 26 + As + Bs = 2s<br />

+ 26 → A = −2and<br />

B = −6<br />

2 2<br />

( s + 2)<br />

+ 3<br />

2(<br />

s + 2)<br />

2 3<br />

−<br />

−<br />

2 2 3 2 2<br />

( s + 2)<br />

+ 3 ( s + 2)<br />

+ 3<br />

−2t<br />

2 −2t<br />

v(t) = ( 2 − 2e<br />

cos3t<br />

− e sin 3t)<br />

u(<br />

t),<br />

t ≥ 0<br />

3<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 30.<br />

<strong>Find</strong> <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

2<br />

6s + 8s<br />

+ 3<br />

(a) F 1()<br />

s = 2<br />

s(<br />

s + 2s<br />

+ 5)<br />

2<br />

s + 5s<br />

+ 6<br />

(b) F 2 () s = 2 ( s + 1)<br />

( s + 4)<br />

10<br />

(c) F 3 () s =<br />

2<br />

s + 1 s + 4s<br />

+ 8<br />

( )( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 30.<br />

(a)<br />

2<br />

6 8 3<br />

1() = = +<br />

2 2<br />

F s<br />

s + s+ A Bs+ C<br />

ss ( + 2s+ 5) s s + 2s+ 5<br />

6 + 8 + 3 = ( + 2 + 5) + +<br />

We equ<strong>at</strong>e coefficients.<br />

s 2 : 6 = A + B<br />

s: 8= 2A + C<br />

constant: 3=5A or A=3/5<br />

B=6-A = 27/5, C=8-2A = 34/5<br />

2 2 2<br />

s s A s s Bs Cs<br />

3/5 27 s/5+ 34/5 3/5 27( s+<br />

1)/5+ 7/5<br />

F1() s = + = +<br />

2 2 2<br />

s s + 2s+ 5 s ( s+<br />

1) + 2<br />

⎡3 27 −t 7 −t<br />

⎤<br />

f1() t =<br />

⎢<br />

+ e cos2t+ e sin2 t u() t<br />

⎣5 5 10 ⎥<br />

⎦<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


(b)<br />

+ 5 + 6<br />

( s+ 1) ( s+ 4) s+ 1 ( s+ 1) s+<br />

4<br />

2<br />

s s A B C<br />

2() = = + +<br />

2 2<br />

F s<br />

s + 5s+ 6 = A( s+ 1)( s+ 4) + B( s+ 4) + C( s+<br />

1)<br />

Equ<strong>at</strong>ing coefficients,<br />

2 2<br />

s 2 : 1=A+C<br />

s: 5=5A+B+2C<br />

constant: 6=4A+4B+C<br />

Solving <strong>the</strong>se gives<br />

A=7/9, B= 2/3, C=2/9<br />

7/9 2/3 2/9<br />

F2() s = + + 2<br />

s+ 1 ( s+ 1) s+<br />

4<br />

⎡7 2 2 ⎤<br />

f t =<br />

⎢<br />

e + te + e u t<br />

⎣9 3 9 ⎥<br />

⎦<br />

−t −t −4t<br />

2()<br />

()<br />

10 A Bs+ C<br />

(c ) F 3() s = = +<br />

2 2<br />

( s+ 1)( s + 4s+ 8) s+ 1 s + 4s+ 8<br />

2 2<br />

10 = As ( + 4s+ 8) + Bs ( + s) + Cs ( + 1)<br />

s 2 : 0 = A + B or B = -A<br />

s: 0=4A+ B + C<br />

constant: 10=8A+C<br />

Solving <strong>the</strong>se yields<br />

A=2, B= -2, C= -6<br />

2 −2s− 6 2 2( s+<br />

1) 4<br />

F 3() s = + = − −<br />

2 2 2 2 2<br />

s+ 1 s + 4s+ 8 s+ 1 ( s+ 1) + 2 ( s+<br />

1) + 2<br />

f3(t) = (2e –t – 2e –t cos(2t) – 2e –t sin(2t))u(t).<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 3<strong>1.</strong><br />

<strong>Find</strong> f(t) for each F(s):<br />

10s<br />

s + 1 s + 2 s + 3<br />

(a) ( )( )( )<br />

2s<br />

2<br />

+ 4s<br />

+ 1<br />

(b) ( )( ) 3<br />

s + 1 s + 2<br />

s + 1<br />

s + 2<br />

2<br />

s + 2s<br />

+ 5<br />

(c) ( )( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 3<strong>1.</strong><br />

(a)<br />

F(<br />

s)<br />

=<br />

( s<br />

+<br />

1)(<br />

s<br />

10s<br />

+<br />

2)(<br />

s<br />

-10<br />

A = F(<br />

s)<br />

( s + 1)<br />

s = -1<br />

= = -5<br />

2<br />

- 20<br />

B = F(<br />

s)<br />

( s + 2)<br />

s = -2 = = 20<br />

-1<br />

- 30<br />

C = F(<br />

s)<br />

( s + 3)<br />

s = -3<br />

= = -<strong>15</strong><br />

2<br />

F(<br />

s)<br />

- 5 20 <strong>15</strong><br />

= + −<br />

s + 1 s + 2 s + 3<br />

-t<br />

-2t<br />

A B C<br />

= + +<br />

+ 3)<br />

s + 1 s + 2 s + 3<br />

-3t<br />

f ( t)<br />

= (-5e<br />

+<br />

20e<br />

−<strong>15</strong>e<br />

) u(<br />

t)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


2s<br />

+ 4s<br />

+ 1<br />

( s + 1)(<br />

s + 2)<br />

A<br />

s + 1<br />

B<br />

s + 2<br />

C<br />

( s + 2)<br />

D<br />

( s + 2)<br />

2<br />

(b) F(<br />

s)<br />

=<br />

3 = + + 2 + 3<br />

(c)<br />

A = F(<br />

s)<br />

( s + 1)<br />

s = -1<br />

= -1<br />

D = F(<br />

s)<br />

( s + 2)<br />

s=<br />

-2<br />

3 =<br />

2s<br />

2<br />

+ 4s<br />

+ 1 = A(<br />

s + 2)(<br />

s + 4s<br />

+ 4)<br />

+ B(<br />

s + 1)(<br />

s<br />

+ C ( s + 1)(<br />

s + 2)<br />

+ D(<br />

s + 1)<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s: 0 = A + B ⎯⎯→<br />

B = -A = 1<br />

-1<br />

+ 4s<br />

2 2 +<br />

2 s : 2 = 6A<br />

+ 5B<br />

+ C = A + C ⎯⎯→<br />

C = 2 − A = 3<br />

1 s: 4 = 12A<br />

+ 8B<br />

+ 3C<br />

+ D = 4A<br />

+ 3C<br />

+ D<br />

4 = 6 + A + D ⎯⎯→<br />

D = -2 − A = -1<br />

0 s : 1 = 8A<br />

+ 4B<br />

+ 2C<br />

+ D = 4A + 2C + D = -4 + 6 −1<br />

= 1<br />

F(<br />

s)<br />

-1<br />

1<br />

= + +<br />

s + 1 s + 2<br />

( s<br />

3<br />

2)<br />

+<br />

−<br />

2 3 ( s 2)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

1<br />

+<br />

2<br />

t<br />

-t -2t<br />

-2t<br />

-2t<br />

f(t) = -e<br />

+ e + 3t<br />

e − e<br />

2<br />

⎛ 2<br />

t ⎞<br />

-t<br />

-2t<br />

f ( t)<br />

= (-e<br />

+ ⎜1+<br />

3t<br />

− ⎟ e ) u(<br />

t)<br />

⎜ 2 ⎟<br />

⎝ ⎠<br />

s + 1 A Bs + C<br />

F( s)<br />

=<br />

2 = + 2<br />

( s + 2)(<br />

s + 2s<br />

+ 5)<br />

s + 2 s + 2s<br />

+ 5<br />

-1<br />

A = F(<br />

s)<br />

( s + 2)<br />

s = -2 =<br />

5<br />

2 2<br />

s + 1 = A ( s + 2s<br />

+ 5)<br />

+ B(<br />

s + 2s)<br />

+ C(<br />

s + 2)<br />

Equ<strong>at</strong>ing coefficients :<br />

1<br />

2 s : 0 = A + B ⎯⎯→<br />

B = -A =<br />

5<br />

1 s : 1 = 2A<br />

+ 2B<br />

+ C = 0 + C ⎯⎯→<br />

C = 1<br />

0 s : 1 = 5A<br />

+ 2C<br />

= -1+<br />

2 = 1<br />

F(<br />

s)<br />

-1<br />

5 1 5⋅<br />

s + 1<br />

= +<br />

s + 2 ( s + 1)<br />

+<br />

-2t<br />

-1<br />

5<br />

= +<br />

+<br />

1 5(<br />

s<br />

+ 1)<br />

4)<br />

4 5<br />

2 2<br />

2 2<br />

2 2<br />

2 s 2 ( s + 1)<br />

+ 2 ( s + 1)<br />

+ 2<br />

-t<br />

f ( t)<br />

= (-0.2e<br />

+<br />

0.<br />

2e<br />

cos( 2t)<br />

+ 0.<br />

4e<br />

sin( 2t))<br />

u(<br />

t)<br />

-t<br />

+


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 32.<br />

Determine <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each <strong>of</strong> <strong>the</strong> following functions:<br />

2<br />

2<br />

8(<br />

s + 1)(<br />

s + 3)<br />

s − 2s<br />

+ 4<br />

s + 1<br />

(a)<br />

(b) 2<br />

2<br />

s s + 2 s + 4 ( s + 1)(<br />

s + 2)<br />

s + 3 s + 4s<br />

+ 5<br />

( )( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 32.<br />

(a)<br />

F(<br />

s)<br />

8(<br />

s + 1)(<br />

s + 3)<br />

=<br />

=<br />

s ( s + 2)(<br />

s + 4)<br />

(c) ( )( )<br />

A B C<br />

+ +<br />

s s + 2 s + 4<br />

F(<br />

s)<br />

s s<br />

(8)(3)<br />

= = 3<br />

( 2)(<br />

4)<br />

F(<br />

s)<br />

( s + 2)<br />

s<br />

(8)(-1)<br />

= = 2<br />

( -4)<br />

F(<br />

s)<br />

( s + 4)<br />

s<br />

(8)(-1)(-3)<br />

= = 3<br />

( -4)<br />

(-2)<br />

A = = 0<br />

B = = -2<br />

C = = -4<br />

F(<br />

s)<br />

f ( t)<br />

3 2 3<br />

= + +<br />

s s + 2 s + 4<br />

= 3 u(<br />

t)<br />

+ 2e<br />

+ 3<br />

s − 2s<br />

+ 4<br />

( s + 1)(<br />

s + 2)<br />

-2t -4t e<br />

A<br />

s + 1<br />

B<br />

s + 2<br />

C<br />

( s + 2)<br />

2<br />

(b) F(<br />

s)<br />

=<br />

2 = + + 2<br />

s<br />

− 2s<br />

+ 4 = A ( s<br />

+ 4s<br />

+ 4)<br />

+ B(<br />

s<br />

+ 3s<br />

+ 2)<br />

+ C(<br />

s<br />

2 2<br />

2<br />

+<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 1 = A + B ⎯⎯→<br />

B = 1−<br />

A<br />

1 s : - 2 = 4A<br />

+ 3B<br />

+ C = 3 + A + C<br />

0 s : 4 = 4A<br />

+ 2B<br />

+ C = -B<br />

− 2 ⎯⎯→<br />

B = -6<br />

A = 1−<br />

B = 7 C = -5 - A = -12<br />

F(<br />

s)<br />

f ( t)<br />

=<br />

7 6<br />

− −<br />

s + 1 s + 2<br />

( s<br />

= 7 e −<br />

6(<br />

1 + 2t)<br />

12<br />

2 + 2)<br />

-t -2t e<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

1)


(c)<br />

2 s + 1 A Bs + C<br />

( s)<br />

=<br />

2 = +<br />

( s + 3)(<br />

s + 4s<br />

+ 5)<br />

s + 3 s + 4s<br />

+ 5<br />

F 2<br />

s<br />

+ 1 = A ( s<br />

+ 4s<br />

+ 5)<br />

+ B(<br />

s<br />

+ 3s)<br />

+ C(<br />

s<br />

2 2<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 1 = A + B ⎯⎯→<br />

B = 1−<br />

A<br />

1 s: 0 = 4A<br />

+ 3B<br />

+ C = 3 + A + C ⎯⎯→<br />

A + C = -3<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

3)<br />

0 s : 1 = 5A<br />

+ 3C<br />

= -9 + 2A ⎯⎯→<br />

A = 5<br />

B = 1−<br />

A = -4 C = -A<br />

− 3 = -8<br />

5 4s<br />

+ 8 5 4(<br />

s + 2)<br />

( s)<br />

= − 2 = −<br />

s + 3 ( s + 2)<br />

+ 1 s + 3 ( s + 2)<br />

+ 1<br />

F 2<br />

-3t -2t<br />

f ( t)<br />

= 5e<br />

−<br />

4e<br />

cos( t)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 33.<br />

Calcul<strong>at</strong>e <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

6( s −1)<br />

(a) 4<br />

s −1<br />

−<br />

se<br />

(b) 2<br />

s + 1<br />

s π<br />

(c)<br />

( ) 3<br />

8<br />

s s + 1<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 33.<br />

(a)<br />

6(<br />

s −1)<br />

6 As + B C<br />

F( s)<br />

= 4 = 2 = 2 +<br />

s −1<br />

( s + 1)(<br />

s + 1)<br />

s + 1 s + 1<br />

(b)<br />

2 2<br />

6 = A ( s + s)<br />

+ B(<br />

s + 1)<br />

+ C(<br />

s + 1)<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 0 = A + C ⎯⎯→<br />

A = -C<br />

1 s : 0 = A + B ⎯⎯→<br />

B = -A = C<br />

0 s : 6 = B + C = 2B ⎯⎯→<br />

B = 3<br />

A = -3 , B = 3 , C = 3<br />

3 - 3s + 3 3 - 3s 3<br />

F( s)<br />

= + 2 = + 2 + 2<br />

s + 1 s + 1 s + 1 s + 1 s + 1<br />

-t<br />

f ( t)<br />

= ( 3e<br />

+ 3sin(<br />

t)<br />

− 3cos(<br />

t))<br />

u(<br />

t)<br />

-πs<br />

s e<br />

F( s)<br />

= 2 s + 1<br />

f ( t)<br />

= cos( t − π)<br />

u(<br />

t − π)<br />

F(<br />

s)<br />

=<br />

8<br />

A<br />

= +<br />

(c) 3 2<br />

3<br />

s ( s + 1)<br />

s s + 1 ( s + 1)<br />

( s + 1)<br />

A = 8 , D = -8<br />

8 = A ( s 2<br />

3<br />

+ 3s<br />

+ 3s<br />

+ 1)<br />

+ B(<br />

s + 2s<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s : 0 = A + B ⎯⎯→<br />

B = -A<br />

B<br />

+<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

C<br />

+<br />

D<br />

+ s)<br />

+ C(<br />

s<br />

+ s)<br />

3 2<br />

2 +<br />

2 s : 0 = 3A<br />

+ 2B<br />

+ C = A + C ⎯⎯→<br />

C = -A = B<br />

1 s: 0 = 3A<br />

+ B + C + D = A + D ⎯⎯→<br />

D = -A<br />

0 s : A = 8,<br />

B = −8,<br />

C = −8,<br />

D = −8<br />

F(<br />

s)<br />

8 8<br />

= − −<br />

s s + 1<br />

( s<br />

8<br />

+ 1)<br />

−<br />

8<br />

+<br />

2 3 ( s 1)<br />

-t -t 2 -t<br />

f ( t)<br />

= 8[<br />

1 −<br />

e − t e − 0.<br />

5t<br />

e ] u(<br />

t)<br />

Ds


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 34.<br />

<strong>Find</strong> <strong>the</strong> time functions th<strong>at</strong> have <strong>the</strong> following <strong>Laplace</strong> <strong>transform</strong>s:<br />

2<br />

s + 1<br />

e<br />

(a) F () s = 10 +<br />

(b) G()<br />

s =<br />

2<br />

s + 4<br />

s<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 34.<br />

(a)<br />

(b)<br />

−s<br />

2<br />

s + 4 − 3<br />

( s)<br />

= 10 + 2 = 11−<br />

s + 4 s<br />

F 2<br />

f ( t)<br />

= 11δ ( t)<br />

− <strong>1.</strong><br />

5sin(<br />

2t)<br />

G(<br />

s)<br />

Let<br />

=<br />

e<br />

( s<br />

( s<br />

-s<br />

+<br />

+<br />

+ 4e<br />

2)(<br />

s<br />

1<br />

2)(<br />

s<br />

-2s<br />

+<br />

+<br />

4)<br />

4)<br />

A = 1 2 B = 1 2<br />

G(<br />

s)<br />

(c) Let<br />

2<br />

−2s<br />

+ 4e<br />

+ 6s<br />

+ 8<br />

( )<br />

( )( )<br />

−2s<br />

s + 1 e<br />

(c) H () s =<br />

s s + 3 s + 4<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

3<br />

+ 4<br />

A B<br />

= +<br />

s + 2 s + 4<br />

-s e ⎛ 1 1 ⎞<br />

= ⎜ + ⎟ + 2e<br />

2 ⎝s<br />

+ 2 s + 4⎠<br />

-2s<br />

⎛ 1 1 ⎞<br />

⎜ + ⎟<br />

⎝s<br />

+ 2 s + 4⎠<br />

-2(t-1) -4(t-1)<br />

-2(t-2)<br />

-4(t-2)<br />

g ( t)<br />

= 0.<br />

5[<br />

e − e ] u(<br />

t − 1)<br />

+ 2[<br />

e − e ] u(<br />

t − 2)<br />

s ( s<br />

+<br />

s + 1<br />

3)(<br />

s<br />

+<br />

4)<br />

=<br />

A B C<br />

+ +<br />

s s + 3 s + 4<br />

A = 1 12,<br />

B = 2 3,<br />

C = - 3 4<br />

⎛ 1 1 2 3 3 4 ⎞<br />

H( s)<br />

= ⎜ ⋅ + − ⎟e ⎝12<br />

s s + 3 s + 4⎠<br />

-2s<br />

⎛ 1 2 3 ⎞<br />

-3(t-2)<br />

-4(t-2)<br />

h ( t)<br />

= ⎜ +<br />

e − e ⎟ u(<br />

t − 2)<br />

⎝12<br />

3 4 ⎠


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 35.<br />

Obtain f(t) for <strong>the</strong> following <strong>transform</strong>s:<br />

(a) F()<br />

s =<br />

−6s<br />

( s + 3)<br />

e<br />

( s + 1)(<br />

s + 2)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 35.<br />

(a) Let<br />

(b) Let<br />

G(<br />

s)<br />

=<br />

−2s<br />

4 − e<br />

(b) F()<br />

s = 2<br />

s + 5s<br />

+ 4<br />

( s<br />

+<br />

s + 3<br />

1)(<br />

s<br />

A = 2,<br />

B = -1<br />

+<br />

2)<br />

A B<br />

= +<br />

s + 1 s + 2<br />

2 1<br />

G( s)<br />

= − ⎯⎯→<br />

g(<br />

t)<br />

= 2e<br />

−<br />

s + 1 s + 2<br />

-t -2t<br />

e<br />

-6s F( s)<br />

= e G(<br />

s)<br />

⎯⎯→<br />

f ( t)<br />

= g(<br />

t − 6)<br />

u(<br />

t − 6)<br />

-(t-6) -2(t-6)<br />

f ( t)<br />

= [ 2e<br />

− e ] u(<br />

t − 6)<br />

G(<br />

s)<br />

=<br />

( s<br />

+<br />

1<br />

1)(<br />

s<br />

A = 1 3 , B = -1<br />

3<br />

G(<br />

s)<br />

1<br />

= −<br />

3(<br />

s + 1)<br />

1<br />

g( t)<br />

= −<br />

3<br />

F(<br />

s)<br />

=<br />

-t -4t<br />

[ e e ]<br />

4G(<br />

s)<br />

− e<br />

1<br />

3(<br />

s +<br />

-2t<br />

G(<br />

s)<br />

+<br />

4)<br />

4)<br />

f ( t)<br />

= 4g(<br />

t)<br />

u(<br />

t)<br />

− g(<br />

t − 2)<br />

u(<br />

t −<br />

A B<br />

= +<br />

s + 1 s + 4<br />

(c) F()<br />

s =<br />

4 1<br />

-t<br />

-4t<br />

-(t-2)<br />

-4(t-2)<br />

f ( t)<br />

= [ e −<br />

e ] u(<br />

t)<br />

− [ e − e ] u(<br />

t − 2)<br />

3<br />

3<br />

2 ( s + 3)(<br />

s + 4)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

2)<br />

se<br />

−s


(c) Let<br />

A = - 3<br />

s =<br />

A ( s<br />

s<br />

( s)<br />

=<br />

( s + 3)(<br />

s<br />

A Bs + C<br />

= +<br />

+ 4)<br />

s + 3 s 4<br />

G 2 2 +<br />

13<br />

+ 4)<br />

+ B(<br />

s<br />

+ 3s)<br />

+ C(<br />

s<br />

2 2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 0 = A + B ⎯⎯→<br />

B = -A<br />

1 s: 1 = 3B<br />

+ C<br />

0<br />

s : 0 = 4A<br />

+ 3C<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

3)<br />

A = - 3 13 , B = 3 13 , C = 4 13<br />

- 3 3s<br />

+ 4<br />

13G( s)<br />

= + 2 s + 3 s + 4<br />

-3t 13g( t)<br />

= -3e<br />

+ 3cos(<br />

2t)<br />

+<br />

F(<br />

s)<br />

= e<br />

-s<br />

G(<br />

s)<br />

f ( t)<br />

= g(<br />

t −1)<br />

u(<br />

t −1)<br />

1 1)<br />

2sin(<br />

2t)<br />

-3(t-<br />

f ( t)<br />

= [ - 3e<br />

+<br />

3cos(<br />

2(<br />

t − 1))<br />

+ 2sin(<br />

2(<br />

t − 1))<br />

] u(<br />

t − 1)<br />

13


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 36.<br />

Obtain <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong>s <strong>of</strong> <strong>the</strong> following functions:<br />

1<br />

(a) X () s = 2<br />

s s + 2<br />

(b) ()<br />

( ) 2<br />

1<br />

Y s =<br />

s s + 1<br />

(c) Z () s =<br />

s s + 1 s<br />

( )( s + 3)<br />

1<br />

2 ( )( + 6s<br />

+ 10)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 36.<br />

(a)<br />

1 A B C D<br />

= + + +<br />

( s + 2)(<br />

s + 3)<br />

s s s + 2 s 3<br />

X( s)<br />

= 2 2<br />

s<br />

+<br />

B = 1 6,<br />

C = 1 4 , D = -1<br />

9<br />

1 =<br />

A ( s<br />

+ 5s<br />

+ 6s)<br />

+ B(<br />

s<br />

+ 5s<br />

+ 6)<br />

+ C(<br />

s<br />

2 + 3s<br />

) + D(<br />

s<br />

3 2<br />

2<br />

3<br />

3 +<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s : 0 = A + C + D<br />

2 s : 0 = 5A<br />

+ B + 3C<br />

+ 2D<br />

= 3A<br />

+ B + C<br />

1 s : 0 = 6A<br />

+ 5B<br />

0 s : 1 = 6B<br />

⎯⎯→<br />

B = 1 6<br />

A = - 5 6 B =<br />

- 5<br />

36<br />

- 5 36 1 6 1 4 1 9<br />

X( s)<br />

= + 2 + −<br />

s s s + 2 s + 3<br />

x(<br />

t)<br />

- 5 1<br />

= u(<br />

t)<br />

+<br />

t +<br />

36 6<br />

1<br />

e<br />

4<br />

1<br />

−<br />

9<br />

-2t -3t<br />

e<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

2s<br />

2<br />

)


Y(<br />

s)<br />

=<br />

1<br />

A<br />

= +<br />

(b) 2 2<br />

s ( s + 1)<br />

s s + 1 ( s + 1)<br />

(c)<br />

A = 1,<br />

C = -1<br />

1 =<br />

A ( s<br />

+ 2s<br />

+ 1)<br />

+ B(<br />

s<br />

B<br />

+<br />

+ s)<br />

2 2 +<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

C<br />

Cs<br />

Equ<strong>at</strong>ing coefficients :<br />

2 s : 0 = A + B ⎯⎯→<br />

B = -A<br />

1 s : 0 = 2A<br />

+ B + C = A + C ⎯⎯→<br />

C = -A<br />

0 s : 1 = A,<br />

B = -1, C = -1<br />

Y(<br />

s)<br />

y(<br />

t)<br />

1 1 1<br />

= − −<br />

s s + 1 ( s + 1<br />

= u( t)<br />

− e − t<br />

-t -t e<br />

2 )<br />

A B Cs + D<br />

Z( s)<br />

= + + 2 s s + 1 s + 6s<br />

+ 10<br />

A = 1 10,<br />

B = -1<br />

5<br />

1 =<br />

A ( s<br />

+ 7s<br />

+ 16s<br />

+ 10)<br />

+ B(<br />

s<br />

+ 6s<br />

+ 10s)<br />

+ C(<br />

s<br />

2 + s ) + D(<br />

s<br />

3 2<br />

3 2<br />

3<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s: 0 = A + B + C<br />

2 s : 0 = 7A<br />

+ 6B<br />

+ C + D = 6A<br />

+ 5B<br />

+ D<br />

1 s: 0 = 16A<br />

+ 10B<br />

+ D = 10A<br />

+ 5B<br />

⎯⎯→<br />

B = -2A<br />

0 s : 1 = 10A<br />

⎯⎯→<br />

A = 1 10<br />

A = 1 10,<br />

B = -2A = -1<br />

5,<br />

C = A = 1 10 ,<br />

1 2 s + 4<br />

10 Z(<br />

s)<br />

= − + 2 s s + 1 s + 6s<br />

+ 10<br />

1 2 s + 3 1<br />

Z(<br />

s)<br />

= − + +<br />

s s + 1 ( s + 3)<br />

+ 1 ( s + 3)<br />

10 2 2 +<br />

-t -3t<br />

-3t<br />

z ( t)<br />

= 0.<br />

1[<br />

1 −<br />

2e<br />

+ e cos( t)<br />

+ e sin( t)<br />

] u(<br />

t)<br />

1<br />

s)<br />

D = 4A<br />

=<br />

4<br />

10


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 37.<br />

<strong>Find</strong> <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong>:<br />

(a) H () s =<br />

(b) G () s =<br />

s<br />

s<br />

+<br />

4<br />

2<br />

( s + )<br />

s<br />

2<br />

+ 4s<br />

+ 5<br />

2 ( s + 3)(<br />

s + 2s<br />

+ 2)<br />

−4s<br />

e<br />

(c) F()<br />

s =<br />

s + 2<br />

(d) D () s = 2<br />

s + 1<br />

s<br />

10 2<br />

( )( s + 4)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 37.<br />

(a)<br />

s+ 4 A B<br />

H() s = = +<br />

ss ( + 2) s s+<br />

2<br />

s+4 =A(s+2) + Bs<br />

Equ<strong>at</strong>ing coefficients,<br />

s: 1 = A + B<br />

constant: 4= 2 A A =2, B=1-A = -1<br />

2 1<br />

H() s = −<br />

s s+<br />

2<br />

−2t −2t<br />

ht () = 2 ut () − e ut () = (2 −<br />

e ) ut ()<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


Gs<br />

A Bs+ C<br />

= +<br />

s+ 3 s + 2s+ 2<br />

(b) ()<br />

2<br />

2 2<br />

s s Bs C s A s s<br />

+ 4 + 5 = ( + )( + 3) + ( + 2 + 2)<br />

Equ<strong>at</strong>ing coefficients,<br />

s 2 : 1= B + A (1)<br />

s: 4 = 3B + C + 2A (2)<br />

Constant: 5 =3C + 2A (3)<br />

Solving (1) to (3) gives<br />

2 3 7<br />

A= , B= , C =<br />

5 5 5<br />

0.4 0.6s+ <strong>1.</strong>4 0.4 0.6( s+<br />

1) + 0.8<br />

Gs () = + = +<br />

2 2<br />

s+ 3 s + 2s+ 2 s+ 3 ( s+<br />

1) + 1<br />

−3t −t −t<br />

gt ( ) = 0.4e + 0.6e cost+ 0.8e sin t<br />

(c)<br />

f t e u t<br />

−2( t−4)<br />

() = ( − 4)<br />

10s<br />

As+ B Cs+ D<br />

Ds () = = +<br />

( s + 1)( s + 4) s + 1 s + 4<br />

(d) 2 2 2 2<br />

s s As B s Cs D<br />

Equ<strong>at</strong>ing coefficients,<br />

s 3 : 0 = A + C<br />

s 2 : 0 = B + D<br />

s: 10 = 4A + C<br />

constant: 0 = 4B+D<br />

Solving <strong>the</strong>se leads to<br />

A = -10/3, B = 0, C = -10/3, D = 0<br />

10 s/ 3 10 s/<br />

3<br />

Ds () == − 2 2<br />

s + 1 s + 4<br />

10 10<br />

dt () = cost− cos2t<br />

3 3<br />

2 2<br />

10 = ( + 4)( + ) + ( + 1)( + )<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 38.<br />

<strong>Find</strong> f(t) given th<strong>at</strong>:<br />

2<br />

s + 4s<br />

(a) F () s = 2<br />

s + 10s<br />

+ 26<br />

2<br />

5s + 7s<br />

+ 29<br />

(b) F () s = 2<br />

s s + 4s<br />

+ 29<br />

( )<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 38.<br />

(a)<br />

(b)<br />

2<br />

2<br />

s + 4s<br />

s + 10s<br />

+ 26 − 6s<br />

− 26<br />

F( s)<br />

= 2 = 2<br />

s + 10s<br />

+ 26 s + 10s<br />

+ 26<br />

6s<br />

+ 26<br />

F( s)<br />

= 1−<br />

2 s + 10s<br />

+ 26<br />

6(<br />

s + 5)<br />

4<br />

F(<br />

s)<br />

= 1−<br />

2 2 + 2 2<br />

( s + 5)<br />

+ 1 ( s + 5)<br />

+ 1<br />

-t -t<br />

f ( t)<br />

= δ ( t)<br />

− 6e<br />

cos( 5t)<br />

+ 4e<br />

sin( 5t)<br />

5s<br />

( s)<br />

=<br />

s ( s<br />

2<br />

+ 7s<br />

+ 29 A<br />

= +<br />

+ 4s<br />

+ 29)<br />

s s<br />

F 2<br />

2<br />

5s<br />

+ 7s<br />

+ 29 = A ( s<br />

Bs + C<br />

+ 4s<br />

+ 29<br />

+ 4s<br />

+ 29)<br />

+ Bs<br />

2 2<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

0 s : 29 = 29A<br />

⎯⎯→<br />

A = 1<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

Cs<br />

1 s: 7 = 4A<br />

+ C ⎯⎯→<br />

C = 7 − 4A<br />

= 3<br />

2 s : 5 = A + B ⎯⎯→<br />

B = 5 − A = 4<br />

A = 1,<br />

B = 4 , C = 3<br />

F(<br />

s)<br />

1<br />

= +<br />

s s<br />

4s<br />

+<br />

+ 3<br />

+<br />

1<br />

= +<br />

4(<br />

s<br />

+<br />

2)<br />

+<br />

2 2 2<br />

2 2<br />

4s<br />

29 s ( s 2)<br />

5 ( s 2)<br />

5<br />

-2t -2t<br />

f ( t)<br />

= u(<br />

t)<br />

+<br />

4e<br />

cos( 5t)<br />

− e sin( 5t)<br />

+<br />

−<br />

+<br />

5<br />

+


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 39.<br />

*Determine f(t) if:<br />

(a) F () s =<br />

(b) F () s =<br />

2s<br />

3<br />

+ 4s<br />

+ 1<br />

2<br />

2<br />

( s + 2s<br />

+ 17)(<br />

s + 4s<br />

+ 20)<br />

s<br />

2<br />

+ 4<br />

2 2 ( s + 9)(<br />

s + 6s<br />

+ 3)<br />

* An asterisk indic<strong>at</strong>es a challenging problem.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 39.<br />

(a)<br />

( s)<br />

=<br />

( s<br />

2<br />

3 2s<br />

+ 4s<br />

+ 2s<br />

+ 17)(<br />

s<br />

2<br />

+ 1<br />

=<br />

+ 4s<br />

+ 20)<br />

s<br />

As + B<br />

+<br />

+ 2s<br />

+ 17 s<br />

F 2<br />

2<br />

2<br />

2<br />

2<br />

3 2<br />

2<br />

s + 4s<br />

+ 1 = A(<br />

s + 4s<br />

+ 20s)<br />

+ B(<br />

s + 4s<br />

3 2<br />

2<br />

+ C(<br />

s + 2s<br />

+ 17s)<br />

+ D(<br />

s + 2s<br />

+ 17)<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s: 2 = A + C<br />

3 +<br />

2 s : 4 = 4A<br />

+ B + 2C<br />

+ D<br />

1<br />

s: 0 = 20A<br />

+ 4B<br />

+ 17C<br />

+ 2D<br />

0 s : 1 = 20B<br />

+ 17D<br />

Cs + D<br />

+ 4s<br />

+ 20<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

20)<br />

Solving <strong>the</strong>se equ<strong>at</strong>ions (M<strong>at</strong>lab works well with 4 unknowns),<br />

A = -<strong>1.</strong>6 , B = -17.8 , C = 3.<br />

6 , D = 21<br />

-<strong>1.</strong>6s<br />

−17.8<br />

3.<br />

6s<br />

+ 21<br />

F( s)<br />

= 2 + 2<br />

s + 2s<br />

+ 17 s + 4s<br />

+ 20<br />

(-<strong>1.</strong>6)(s + 1) (-4.05) ( 4)<br />

F(<br />

s)<br />

=<br />

2 + 2 2<br />

( s + 1)<br />

+ 4 ( s + 1)<br />

+ 4<br />

+<br />

(3.6)(s + 2)<br />

+ +<br />

+<br />

(3.45) ( 4)<br />

+ +<br />

2 2 2<br />

2 2<br />

( s 2)<br />

4 ( s 2)<br />

4<br />

-t -t<br />

-2t<br />

-2t<br />

f ( t)<br />

= - <strong>1.</strong><br />

6e<br />

cos( 4t)<br />

−<br />

4.<br />

05e<br />

sin( 4t)<br />

+ 3.<br />

6e<br />

cos( 4t)<br />

+ 3.<br />

45e<br />

sin( 4t)


(b)<br />

( s)<br />

=<br />

( s<br />

2 s + 4 As + B Cs + D<br />

2 = 2 +<br />

+ 9)(<br />

s + 6s<br />

+ 3)<br />

s + 9 s + 6s<br />

+ 3<br />

F 2<br />

2<br />

s<br />

+ 4 = A ( s<br />

+ 6s<br />

+ 3s)<br />

+ B(<br />

s<br />

+ 6s<br />

+ 3)<br />

+ C(<br />

s<br />

+ 9s)<br />

+ D(<br />

s<br />

2 3 2<br />

2<br />

3<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s: 0 = A + C ⎯⎯→<br />

C = -A<br />

2 s : 1 = 6A<br />

+ B + D<br />

1<br />

s: 0 = 3A<br />

+ 6B<br />

+ 9C<br />

= 6B<br />

+ 6C<br />

⎯⎯→<br />

B = -C = A<br />

0 s : 4 = 3B<br />

+ 9D<br />

Solving <strong>the</strong>se equ<strong>at</strong>ions,<br />

A = 1 12,<br />

B = 1 12 , C = -1<br />

12 , D = 5 12<br />

s + 1 - s + 5<br />

F(<br />

s)<br />

= 2 +<br />

s + 9 s + 6s<br />

+ 3<br />

12 2<br />

- 6 36 -12<br />

s 6s<br />

3 0<br />

2<br />

2 ±<br />

+ + = ⎯⎯→<br />

=<br />

Let<br />

- s + 5 E<br />

G( s)<br />

= 2 = +<br />

s + 6s<br />

+ 3 s + 0.<br />

551 s +<br />

- s + 5<br />

s + 5.<br />

449<br />

- s + 5<br />

s + 0.<br />

551<br />

E = s = -0.551<br />

F = s = -5.449<br />

G(<br />

s)<br />

=<br />

<strong>1.</strong><br />

133<br />

= - 2.133<br />

<strong>1.</strong><br />

133 2.<br />

133<br />

= −<br />

s + 0.<br />

551 s + 5.<br />

449<br />

-0.551, - 5.449<br />

F<br />

5.<br />

449<br />

s 1 3 <strong>1.</strong><br />

133 2.<br />

133<br />

F(<br />

s)<br />

= 2 2 + ⋅ 2 + −<br />

s + 3 3 s + 3 s + 0.<br />

551 s + 5.<br />

449<br />

12 2<br />

f ( t)<br />

= 0. 08333cos(<br />

3t)<br />

+<br />

0.<br />

02778sin(<br />

3t)<br />

+ 0.<br />

0944e<br />

− 0.<br />

1778<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

9)<br />

-0.551t -5.449t e


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 40.<br />

Show th<strong>at</strong><br />

L<br />

−1<br />

⎡<br />

⎢<br />

⎣<br />

2 ( s + 2)(<br />

s + 2s<br />

+ 5)<br />

−t<br />

2t<br />

[ 2e<br />

cos(<br />

2t<br />

+ 45°<br />

) + 3e<br />

] u()<br />

t<br />

2<br />

4s + 7s<br />

+ 13 ⎤<br />

−<br />

⎥ =<br />

⎦<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 40.<br />

Let<br />

H(<br />

s)<br />

4s<br />

=<br />

2<br />

⎡<br />

⎢<br />

⎢⎣<br />

( s<br />

2<br />

4s<br />

+ 7s<br />

+ 13 ⎤ A Bs + C<br />

⎥ = +<br />

2<br />

2)(<br />

s 2s<br />

5)<br />

s 2 2<br />

+ + + ⎥⎦<br />

+ s + 2s<br />

+ 5<br />

+ 7s<br />

+ 13 =<br />

A(<br />

s<br />

Equ<strong>at</strong>ing coefficients gives:<br />

s : 4 A B<br />

2<br />

= +<br />

2<br />

+<br />

2s<br />

+ 5)<br />

+<br />

B(<br />

s<br />

2<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

+<br />

2s)<br />

s : 7 = 2A<br />

+ 2B<br />

+ C ⎯⎯→<br />

C = −1<br />

+<br />

C(<br />

s<br />

constant : 13 = 5A<br />

+ 2C<br />

⎯⎯→<br />

5A<br />

= <strong>15</strong> or A = 3, B = 1<br />

Hence,<br />

h(<br />

t)<br />

=<br />

where<br />

Thus,<br />

H(<br />

s)<br />

3e<br />

−2t<br />

3<br />

= +<br />

s + 2 s<br />

+ e<br />

−t<br />

2<br />

cos 2t<br />

s −1<br />

3<br />

= +<br />

+ 2s<br />

+ 5 s + 2<br />

− e<br />

−t<br />

sin 2t<br />

=<br />

3e<br />

( s<br />

−2t<br />

( s<br />

+ 1)<br />

− 2<br />

+ 1)<br />

+ e<br />

2<br />

−t<br />

+ 2<br />

2<br />

+<br />

( A cos<br />

2)<br />

α<br />

cos 2t<br />

A cosα<br />

= 1,<br />

Asin<br />

α = 1 ⎯⎯→<br />

A = 2,<br />

α =<br />

h(<br />

t)<br />

=<br />

−t<br />

o −2t<br />

[ 2e<br />

cos( 2t<br />

+ 45 ) + 3e<br />

] u(<br />

t)<br />

−<br />

A sin<br />

o<br />

45<br />

αsin<br />

2t)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 4<strong>1.</strong><br />

* Let x(t) and y(t) be as shown in Fig. <strong>15</strong>.36. <strong>Find</strong> z ( t)<br />

x(<br />

t)<br />

* y(<br />

t)<br />

Figure <strong>15</strong>.36<br />

For Prob. <strong>15</strong>.4<strong>1.</strong><br />

* An asterisk indic<strong>at</strong>es a challenging problem.<br />

= .<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 4<strong>1.</strong><br />

We fold x(t) and slide on y(t). For t


For 2 < t < 6, <strong>the</strong> two functions overlap, as shown below.<br />

2<br />

∫ ∫<br />

0 0<br />

t<br />

t<br />

4<br />

-4<br />

y( λ )<br />

zt ( ) = (2)(4) dλ+ (2)( − 4) dλ = 16 −8t<br />

For 6


For 8< t


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 42.<br />

Suppose th<strong>at</strong> f () t = u()<br />

t − u(<br />

t − 2)<br />

. Determine ( t)<br />

f ( t)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 42.<br />

For 0


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 43.<br />

<strong>Find</strong> y () t x()<br />

t * h()<br />

t<br />

Figure <strong>15</strong>.37<br />

For Prob. <strong>15</strong>.43.<br />

= for each paired x(t) and h(t) in Fig. <strong>15</strong>.37.<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 43.<br />

(a) For 0 < t < 1,<br />

x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (a).<br />

2<br />

t λ<br />

y(<br />

t)<br />

= x(<br />

t)<br />

∗ h(<br />

t)<br />

= ∫ ( 1)(<br />

λ)<br />

dλ<br />

=<br />

0<br />

2<br />

2<br />

t t<br />

0 =<br />

2<br />

x(t - λ)<br />

For 1 < t < 2 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (b).<br />

2<br />

1<br />

t λ -1<br />

1 t 2<br />

y(<br />

t)<br />

= ∫ ( 1)(<br />

λ)<br />

dλ<br />

+ ∫ ( 1)(<br />

1)<br />

dλ<br />

= t 1 + λ 1 = t + 2t<br />

t−1<br />

1<br />

−<br />

2 2<br />

For t > 2 , <strong>the</strong>re is a complete overlap so th<strong>at</strong><br />

y(<br />

t)<br />

Therefore,<br />

y(<br />

t)<br />

1<br />

t-1 0 t 1 λ<br />

∫<br />

t<br />

t<br />

= ( 1)(<br />

1)<br />

dλ<br />

= λ t−<br />

t−1<br />

⎧<br />

⎪<br />

- ( t<br />

= ⎨<br />

⎪<br />

⎪<br />

⎩<br />

2<br />

(a)<br />

t<br />

2<br />

2)<br />

+<br />

1,<br />

0,<br />

2,<br />

2t<br />

= t − ( t −1)<br />

= 1<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

1<br />

− 1,<br />

h(λ)<br />

0 < t < 1<br />

1 < t < 2<br />

t > 2<br />

1<br />

o<strong>the</strong>rwise<br />

0<br />

t-1 1 t λ<br />

(b)<br />

−1


(b) For t > 0 , <strong>the</strong> two functions overlap as shown in Fig. (c).<br />

t<br />

-λ -λ<br />

y(<br />

t)<br />

= x(<br />

t)<br />

∗ h(<br />

t)<br />

= ∫ ( 1)<br />

2e<br />

dλ<br />

= -2e<br />

Therefore,<br />

-t y( t)<br />

= 2( 1 − e ), t > 0<br />

0<br />

(c) For - 1 < t < 0 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (d).<br />

2<br />

t+<br />

1 λ<br />

y ( t)<br />

= x(<br />

t)<br />

∗ h(<br />

t)<br />

= ∫ ( 1)(<br />

λ)<br />

dλ<br />

=<br />

0<br />

2<br />

1 t+<br />

1<br />

2<br />

0 = ( t + 1)<br />

2<br />

For 0 < t < 1,<br />

x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (e).<br />

y ( t)<br />

y(<br />

t)<br />

x(t - λ)<br />

=<br />

∫<br />

1<br />

0<br />

2 λ<br />

2<br />

x(t-λ)<br />

2<br />

1<br />

( 1)(<br />

λ)<br />

dλ<br />

+<br />

∫<br />

t+<br />

1<br />

1<br />

2 ⎛ λ ⎞<br />

+ ⎜2λ<br />

− ⎟<br />

⎝ 2 ⎠<br />

( 1)(<br />

2<br />

1<br />

t+<br />

1<br />

= 0<br />

1<br />

1<br />

− λ)<br />

dλ<br />

-1<br />

= t<br />

2<br />

+ t +<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

(c)<br />

2<br />

t<br />

0<br />

h(λ) = 2e -λ<br />

0 t λ<br />

1<br />

t-1 -1 t 0 t+1 1 2<br />

λ<br />

1<br />

2<br />

-1 t-1 0 t 1 t+1 2 λ<br />

(e)<br />

(d)<br />

h(λ)


For 1 < t < 2 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (f).<br />

1<br />

2<br />

y ( t)<br />

= ∫ ( 1)(<br />

λ)<br />

dλ<br />

+ ∫ ( 1)(<br />

2 − λ)<br />

dλ<br />

t−1<br />

1<br />

2<br />

2<br />

λ ⎛ λ ⎞ -1<br />

1<br />

1<br />

2 2<br />

y(<br />

t)<br />

= ⎜ t 1 2 ⎟<br />

− + λ − 1 = t + t +<br />

2 ⎝ 2 ⎠ 2 2<br />

For 2 < t < 3 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (g).<br />

Therefore,<br />

2<br />

2<br />

⎛ λ ⎞ 9 2<br />

y ( t)<br />

= ∫ ( 1)(<br />

2 − λ)<br />

dλ<br />

= ⎜2λ<br />

− ⎟<br />

t 1<br />

t 1 = − 3t<br />

+<br />

−<br />

−<br />

⎝ 2 ⎠ 2<br />

y(<br />

t)<br />

1<br />

1<br />

0<br />

0<br />

⎧ ( t<br />

⎪<br />

- ( t<br />

= ⎨ 2<br />

⎪(<br />

t<br />

⎪<br />

⎩<br />

2<br />

2<br />

2)<br />

2)<br />

2)<br />

t-1 1 t 2 t+1 λ<br />

+ t + 1<br />

−<br />

+ t + 1<br />

3t<br />

0,<br />

+ 9<br />

< t < 0<br />

0 < t < 2<br />

2 < t < 3<br />

o<strong>the</strong>rwise<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

2,<br />

(f)<br />

1 t-1 2 t t+1 λ<br />

2,<br />

2,<br />

(g)<br />

- 1<br />

1<br />

2<br />

t<br />

2


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 44.<br />

Obtain <strong>the</strong> convolution <strong>of</strong> <strong>the</strong> pairs <strong>of</strong> signals in Fig. <strong>15</strong>.38.<br />

Figure <strong>15</strong>.38<br />

For Prob. <strong>15</strong>.44.<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 44.<br />

(a) For 0 < t < 1,<br />

x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (a).<br />

t<br />

y(<br />

t)<br />

= x(<br />

t)<br />

∗ h(<br />

t)<br />

= ∫ ( 1)(<br />

1)<br />

dλ<br />

= t<br />

0<br />

For 1 < t < 2 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (b).<br />

y(<br />

t)<br />

∫<br />

1<br />

1<br />

= ( 1)(<br />

1)<br />

dλ<br />

+ ( -1)(<br />

1)<br />

dλ<br />

= λ t−<br />

t−1<br />

∫<br />

1<br />

t<br />

= 3 −<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

1<br />

− λ<br />

For 2 < t < 3 , x( t − λ)<br />

and h( λ ) overlap as shown in Fig. (c).<br />

1<br />

0<br />

-1<br />

y(<br />

t)<br />

Therefore,<br />

x(t - λ) 1<br />

h(λ)<br />

y(<br />

t)<br />

∫<br />

2<br />

2<br />

= ( 1)(<br />

-1)<br />

dλ<br />

= -λ<br />

t−<br />

t−1<br />

t-1 0 t 1 2 λ<br />

-1<br />

⎧ t,<br />

⎪<br />

3 −<br />

= ⎨<br />

⎪ t −<br />

⎪<br />

⎩ 0,<br />

2t,<br />

3,<br />

(a)<br />

t-1 1 t 2 λ<br />

(b)<br />

1<br />

0 < t < 1<br />

1 < t < 2<br />

2 < t < 3<br />

o<strong>the</strong>rwise<br />

= t − 3<br />

1<br />

0<br />

-1<br />

t<br />

1<br />

(c)<br />

2t<br />

1 t-1 2 t λ


(b) For t < 2 , <strong>the</strong>re is no overlap. For 2 < t < 3 , f1( t − λ)<br />

and<br />

as shown in Fig. (d).<br />

( )<br />

y ( t)<br />

= f ( t)<br />

∗ f<br />

t<br />

( t)<br />

= ∫ ( 1)(<br />

t − λ)<br />

dλ<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

⎧ ( t<br />

⎪<br />

Therefore, y(<br />

t)<br />

= ⎨<br />

⎪-<br />

( t<br />

⎪<br />

⎩<br />

1<br />

2<br />

2<br />

2<br />

2<br />

f1(t - λ) f2(λ)<br />

1<br />

1<br />

1<br />

t-1<br />

2 t 3 4 5<br />

(d)<br />

2 t-1 3 t 4 5<br />

(e)<br />

2<br />

2<br />

⎛ λ ⎞ t t<br />

= ⎜<br />

⎜λt<br />

− 2 = − 2t<br />

+ 2<br />

2 ⎟<br />

⎝ ⎠ 2<br />

For 3 < t < 5 , f1( t − λ)<br />

and ( )<br />

2<br />

t<br />

⎛ λ ⎞ 1 t<br />

y(<br />

t)<br />

= ∫ ( 1)(<br />

t − λ)<br />

dλ<br />

= ⎜λt<br />

− ⎟<br />

t 1<br />

t 1 =<br />

−<br />

−<br />

⎝ 2 ⎠ 2<br />

For 5 < t < 6 , <strong>the</strong> functions overlap as shown in Fig. (f).<br />

2<br />

5<br />

⎛ λ ⎞ 5 -1<br />

2<br />

y( t)<br />

= ∫ ( 1)(<br />

t − λ)<br />

dλ<br />

=<br />

1 = + 5 −12<br />

1<br />

⎜ λt<br />

−<br />

2 ⎟ t − t t<br />

t −<br />

⎝ ⎠ 2<br />

f 2 λ overlap as shown in Fig. (e).<br />

2 3 4 t-1 5<br />

2)<br />

2)<br />

− 12,<br />

5 < t < 6<br />

f 2 λ overlap,<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

−<br />

1 2,<br />

+<br />

0,<br />

(f)<br />

2t<br />

5t<br />

+<br />

2,<br />

2 < t < 3<br />

3 < t < 5<br />

o<strong>the</strong>rwise<br />

λ<br />

λ<br />

t<br />

λ


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 45.<br />

2t<br />

Given h()<br />

t 4e u(<br />

t)<br />

−<br />

2t<br />

= and x()<br />

t ( t)<br />

2e u(<br />

t)<br />

−<br />

= δ − , find y ( t)<br />

x(<br />

t)<br />

* h(<br />

t)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 45.<br />

= .<br />

−2t −2t<br />

yt () = ht ()* xt () = ⎡<br />

⎣4 e ut () ⎤<br />

⎦* ⎡<br />

⎣δ() t −2<br />

e ut () ⎤<br />

⎦<br />

t<br />

−2t −2t −2t −2t −2t<br />

o<br />

= 4 e u( t)* δ ( t) − 4 e u( t)*2 e u( t) = 4 e u( t) −8e ∫ e dλ<br />

= e u t − te u t<br />

−2t −2t<br />

4 ( ) 8 ( )<br />

<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 46.<br />

Given <strong>the</strong> following functions<br />

−2t<br />

() t = 2 () t , y() t = 4u()<br />

t , z(<br />

t)<br />

e u(<br />

t)<br />

x δ<br />

evalu<strong>at</strong>e <strong>the</strong> following convolution oper<strong>at</strong>ions.<br />

(a) x () t * y()<br />

t<br />

(b) x () t * z()<br />

t<br />

(c) y () t * z()<br />

t<br />

y t * y t + z t<br />

(d) () [ () () ]<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 46.<br />

0<br />

= ,<br />

(a) x()* t yt () = 2 δ ()*4 t ut () = 8 ut ()<br />

−2t −2t<br />

(b) x()* t z() t = 2 δ ()* t e u() t = 2 e u() t<br />

t<br />

−2λ<br />

2 2 4 t<br />

− t − λ e<br />

−2t<br />

(c ) yt ( )* zt ( ) = 4 ut ( )* e ut ( ) = 4∫ e dλ= = 2(1 −e)<br />

−2<br />

0<br />

0<br />

−2t−2λ (d) yt ()*[ yt () + zt ()] = 4 ut ()*[4 ut () + e ut ()] = 4 ∫ [4 u( λ) + e u( λ)] dλ<br />

t<br />

−2λ<br />

−2λet−2t = 4 ∫<br />

[4 + e ] dλ= 4[4 t+ ] = 16t− 2e + 2<br />

−2<br />

0<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

0


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 47.<br />

A system has <strong>the</strong> transfer function<br />

H<br />

() s<br />

=<br />

s<br />

( s + 1 )( s + 2)<br />

(a) <strong>Find</strong> <strong>the</strong> impulse response <strong>of</strong> <strong>the</strong> system.<br />

(b) Determine <strong>the</strong> output y(t), given th<strong>at</strong> <strong>the</strong> input is x ( t)<br />

= u(<br />

t)<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 47.<br />

s A B<br />

(a) H() s = = +<br />

( s+ 1)( s+ 2) s+ 1 s+<br />

2<br />

s=A(s+2) + B(s+1)<br />

We equ<strong>at</strong>e <strong>the</strong> coefficients.<br />

s: 1= A+B<br />

constant: 0 =2A +B<br />

Solving <strong>the</strong>se, A = -1, B= 2.<br />

−1<br />

2<br />

H() s = +<br />

s+ 1 s+<br />

2<br />

−t −2t<br />

ht () = ( − e + 2 e ) ut ()<br />

Y() s s 1<br />

(b) H() s = ⎯⎯→ Y() s = H() s X() s =<br />

X () s ( s+ 1)( s+ 2) s<br />

1 C D<br />

Y() s = = +<br />

( s+ 1)( s+ 2) s+ 1 s+<br />

2<br />

C=1 and D=-1 so th<strong>at</strong><br />

1 1<br />

Y() s = −<br />

s+ 1 s+<br />

2<br />

yt = e −<br />

e ut<br />

−t −2t<br />

() ( ) ()<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 48.<br />

<strong>Find</strong> f(t) using convolution given th<strong>at</strong>:<br />

(a) F () s =<br />

(b) F<br />

() s =<br />

4<br />

( ) 2<br />

2<br />

s + 2s<br />

+ 5<br />

2s 2<br />

+<br />

( s + 1)(<br />

s 4)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, Solution 48.<br />

2<br />

2<br />

(a) Let G(<br />

s)<br />

= 2 = 2 2<br />

s + 2s<br />

+ 5 ( s + 1)<br />

+ 2<br />

-t g(<br />

t)<br />

= e sin( 2t)<br />

F ( s)<br />

=<br />

f ( t)<br />

f ( t)<br />

G(<br />

s)<br />

G(<br />

s)<br />

t<br />

[ G(<br />

s)<br />

G(<br />

s)<br />

] = g(<br />

λ)<br />

g(<br />

t − λ)<br />

λ<br />

-1<br />

= L ∫ d<br />

t<br />

-λ -(<br />

t−λ)<br />

= ∫ e sin( 2λ)<br />

e sin( 2(<br />

t − λ))<br />

dλ<br />

0<br />

0<br />

1<br />

sin( A)<br />

sin( B)<br />

= [ cos( A − B)<br />

− cos( A + B)<br />

]<br />

2<br />

1 t<br />

-t -λ<br />

f ( t)<br />

= e ∫ e [ cos( 2t)<br />

− cos( 2(<br />

t − 2λ))<br />

] dλ<br />

2 0<br />

-t<br />

-t<br />

e<br />

t e t<br />

-2λ<br />

-2λ<br />

f ( t)<br />

= cos( 2t)<br />

∫ e dλ<br />

− ∫ e cos( 2t<br />

− 4λ)<br />

dλ<br />

2<br />

0 2 0<br />

-t<br />

-2λ<br />

-t<br />

e e e t<br />

t<br />

-2λ<br />

f ( t)<br />

= cos( 2t)<br />

⋅ − ∫ [ λ +<br />

λ ]<br />

0 e cos( 2t)<br />

cos( 4 ) sin( 2t)<br />

sin( 4 ) dλ<br />

2 - 2 2 0<br />

-t<br />

1<br />

e<br />

t<br />

-t<br />

-2t<br />

-2λ<br />

f ( t)<br />

= e cos( 2t)<br />

( -e<br />

+ 1)<br />

− cos( 2t)<br />

∫ e cos( 4λ)<br />

dλ<br />

4<br />

2<br />

0<br />

-t e<br />

t<br />

-2λ<br />

− sin( 2t)<br />

∫ e sin( 4λ)<br />

dλ<br />

2<br />

0<br />

1 -t -2t<br />

f ( t)<br />

= e cos( 2t)<br />

( 1−<br />

e )<br />

4<br />

-t<br />

-2λ<br />

e ⎡ e<br />

⎤ t<br />

− cos( 2t)<br />

( - 2cos(4 ) 4sin(<br />

4 ) ) 0<br />

2<br />

⎢<br />

λ − λ<br />

⎣ 4 + 16<br />

⎥<br />

⎦<br />

-t<br />

-2λ<br />

e ⎡ e<br />

− sin( 2t)<br />

2<br />

⎢<br />

⎣ 4 + 16<br />

t<br />

( - 2sin(4λ)<br />

+ 4cos(<br />

4λ)<br />

)<br />

-t<br />

-3t<br />

-t<br />

-3t<br />

e e<br />

e e<br />

f ( t)<br />

= cos( 2t)<br />

− cos( 2t)<br />

− cos( 2t)<br />

+ cos( 2t)<br />

cos( 4t)<br />

2 4 20 20<br />

-3t<br />

e<br />

+<br />

10<br />

cos( 2t)<br />

sin( 4t)<br />

+<br />

-t<br />

e<br />

sin( 2t)<br />

10<br />

-t<br />

-t<br />

e<br />

e<br />

+<br />

sin( 2t)<br />

sin( 4t)<br />

− sin( 2t)<br />

cos( 4t)<br />

20<br />

10<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

⎤<br />

⎥<br />

⎦<br />

0


(b) Let<br />

x(<br />

t)<br />

F ( s)<br />

=<br />

f ( t)<br />

= L<br />

f ( t)<br />

X(<br />

s)<br />

2<br />

= ,<br />

s + 1<br />

Y(<br />

s)<br />

s<br />

=<br />

s + 4<br />

-t = 2e<br />

u(<br />

t)<br />

, y ( t)<br />

= cos( 2t)<br />

u(<br />

t)<br />

X(<br />

s)<br />

Y(<br />

s)<br />

[ ] ∫ ∞<br />

-1<br />

X(<br />

s)<br />

Y(<br />

s)<br />

= y(<br />

λ)<br />

x(<br />

t − λ)<br />

0<br />

t<br />

0<br />

-(t−λ)<br />

cos( 2λ)<br />

⋅ 2e<br />

d<br />

( ) t<br />

- t e ⋅<br />

λ e<br />

cos( 2λ)<br />

+ 2sin(<br />

2 ) 0<br />

= ∫ λ<br />

f ( t)<br />

= 2<br />

1+<br />

4<br />

λ<br />

2 -t f ( t)<br />

= e<br />

5<br />

t e cos( 2t)<br />

+ 2sin(<br />

2t)<br />

−1<br />

2 4 2 -t<br />

f ( t)<br />

= cos( 2t)<br />

+<br />

sin( 2t)<br />

− e<br />

5 5 5<br />

[ ( ) ]<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 49.<br />

* Use <strong>the</strong> convolution integral to find:<br />

<strong>at</strong><br />

(a) t * e u()<br />

t<br />

cos t * cos t u t<br />

(b) () () ()<br />

* An asterisk indic<strong>at</strong>es a challenging problem.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 49.<br />

(b)<br />

(a) t*e αt u(t) =<br />

t<br />

aλ<br />

t<br />

aλ<br />

t<br />

<strong>at</strong><br />

aλ<br />

e e<br />

t <strong>at</strong> 1 e<br />

e ( t − λ)<br />

dλ<br />

= t − ( aλ<br />

−1)<br />

= ( e −1)<br />

− −<br />

0 a 2<br />

a<br />

2 2<br />

0<br />

a<br />

0<br />

a a<br />

∫<br />

t t<br />

∫ ∫<br />

0 0<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

( <strong>at</strong><br />

−1)<br />

cos t*cos tu( t) = cos λ cos( t− λ) dλ = {costcosλcos λ+ sin tsinλcos λ} dλ<br />

t t<br />

⎡ 1 ⎤ ⎡1 sin2λ t cosλ<br />

t⎤<br />

= ⎢cos t∫ [1+ cos 2 λ] dλ+ sin t cos λd( cos λ) cos t[ λ ] sin t<br />

2 ∫ − ⎥ = ⎢ + − ⎥<br />

⎢2 2 0 2 0⎥<br />

⎣ 0 0<br />

⎦ ⎣ ⎦<br />

= 0.5cos(t)(t+0.5sin(2t)) – 0.5sin(t)(cos(t) – 1).


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 50.<br />

Use <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> to solve <strong>the</strong> differential equ<strong>at</strong>ion<br />

2<br />

d v<br />

dt<br />

() t dv()<br />

t<br />

2<br />

+ 2<br />

dt<br />

+ 10v()<br />

t = 3 cos 2t<br />

subject to ( 0) = 1,<br />

dv(<br />

0)<br />

/ dt = −2<br />

v .<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 50.<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term.<br />

3s<br />

2 [ s V(<br />

s)<br />

− s v(<br />

0)<br />

− v′<br />

( 0)<br />

] + 2[<br />

s V(<br />

s)<br />

− v(<br />

0)<br />

] + 10V(<br />

s)<br />

= 2 s + 4<br />

3s<br />

2 s V(<br />

s)<br />

− s + 2 + 2s<br />

V(<br />

s)<br />

− 2 + 10V(<br />

s)<br />

= 2 s + 4<br />

3<br />

3s<br />

s + 7s<br />

2<br />

( s + 2s<br />

+ 10)<br />

V(<br />

s)<br />

= s + 2 = 2 s + 4 s + 4<br />

3 s + 7s<br />

As + B Cs + D<br />

V( s)<br />

= 2 2 = 2 + 2<br />

( s + 4)(<br />

s + 2s<br />

+ 10)<br />

s + 4 s + 2s<br />

+ 10<br />

s<br />

+ 7s<br />

= A ( s<br />

+ 2s<br />

+ 10s)<br />

+ B(<br />

s<br />

+ 2s<br />

+ 10)<br />

+ C(<br />

s<br />

+ 4s)<br />

+ D(<br />

s<br />

3 3 2<br />

2<br />

3<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

3 s : 1 = A + C ⎯⎯→<br />

C = 1−<br />

A<br />

2 s : 0 = 2A<br />

+ B + D<br />

1<br />

s : 7 = 10A<br />

+ 2B<br />

+ 4C<br />

= 6A<br />

+ 2B<br />

+ 4<br />

0 s : 0 = 10B<br />

+ 4D<br />

⎯⎯→<br />

D = -2.5B<br />

Solving <strong>the</strong>se equ<strong>at</strong>ions yields<br />

9<br />

12<br />

A = , B = ,<br />

26 26<br />

17<br />

C = ,<br />

26<br />

1 ⎡9s<br />

+ 12 17s<br />

− 30 ⎤<br />

V( s)<br />

= ⎢⎣ 2 + 2<br />

26 s + 4 s + 2s<br />

+ 10⎥⎦<br />

1 ⎡ 9s<br />

2 s + 1<br />

V ( s)<br />

⎢ + 6 ⋅ 2 + 17 ⋅ 2<br />

26 ⎣s<br />

+ 4 s + 4 ( s + 1)<br />

+ 3<br />

- 30<br />

D =<br />

26<br />

47<br />

− 2 ( s + 1)<br />

+<br />

= 2 2<br />

2 3<br />

9 6 17<br />

47<br />

-t<br />

-t<br />

v ( t)<br />

= cos( 2t)<br />

+<br />

sin( 2t)<br />

+ e cos( 3t)<br />

− e sin( 3t)<br />

26 26 26<br />

78<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

⎤<br />

⎥<br />

⎦<br />

4)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 5<strong>1.</strong><br />

Given th<strong>at</strong> v ( 0 ) = 2 and ( 0 ) / dt = 4<br />

d −t<br />

2<br />

v dv<br />

+ 5 + 6v<br />

= 10e<br />

2<br />

dt dt<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 5<strong>1.</strong><br />

u<br />

dv , solve<br />

() t<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> differential equ<strong>at</strong>ion yields<br />

2<br />

[ s V(<br />

s)<br />

sv(<br />

0)<br />

v'(<br />

0)<br />

] 5[<br />

sV(<br />

s)<br />

v(<br />

0)]<br />

]<br />

2<br />

− − + −<br />

10<br />

6V(<br />

s)<br />

10<br />

=<br />

s + 1<br />

or ( s + 5s<br />

+ 6)<br />

V(<br />

s)<br />

− 2s<br />

− 4 −10<br />

= ⎯⎯→<br />

V(<br />

s)<br />

=<br />

s + 1<br />

( s + 1)(<br />

s + 2)(<br />

s + 3)<br />

A B C<br />

Let V( s)<br />

= + + , A = 5,<br />

B = 0,<br />

C = −3<br />

s + 1 s + 2 s + 3<br />

Hence,<br />

v(<br />

t)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

+<br />

−t −3t<br />

=<br />

( 5e<br />

− 3e<br />

) u(<br />

t)<br />

2s<br />

2<br />

+ 16s<br />

+ 24


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 52.<br />

Use <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> to find i(t) for t > 0 if<br />

2<br />

d i di<br />

+ 3 + 2i<br />

+ δ () t = 0 ,<br />

2<br />

dt dt<br />

i ( 0 ) = 0 , i ' ( 0)<br />

= 3<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 52.<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term.<br />

[ s I(<br />

s)<br />

si(<br />

0)<br />

i ( 0)<br />

] 3[<br />

s I(<br />

s)<br />

i(<br />

0)<br />

] 2I(<br />

s)<br />

1 0<br />

2 − − + − + + =<br />

( s 3s<br />

2)<br />

I(<br />

s)<br />

s 3 3 1 0<br />

2 + + − − − + =<br />

I(<br />

s)<br />

=<br />

( s<br />

+<br />

s + 5<br />

1)(<br />

s<br />

+<br />

′<br />

2)<br />

A = 4,<br />

B = -3<br />

I(<br />

s)<br />

4 3<br />

= −<br />

s + 1 s + 2<br />

A B<br />

= +<br />

s + 1 s + 2<br />

-t -2t<br />

i ( t)<br />

= ( 4e<br />

−<br />

3e<br />

) u(<br />

t)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 53.<br />

* Use <strong>Laplace</strong> <strong>transform</strong>s to solve for x(t) in<br />

x<br />

λ −t<br />

() t = cos t + e x(<br />

λ)<br />

dλ<br />

∫<br />

t<br />

0<br />

* An asterisk indic<strong>at</strong>es a challenging problem.<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 53.<br />

Transform each term.<br />

We begin by noting th<strong>at</strong> <strong>the</strong> integral term can be rewritten as,<br />

t<br />

0<br />

∫<br />

−(<br />

t −λ)<br />

x ( λ)<br />

e dλ<br />

which is convolution and can be written as e –t *x(t).<br />

Now, <strong>transform</strong>ing each term produces,<br />

X(s) =<br />

X(<br />

s)<br />

s<br />

+<br />

2<br />

s + 1<br />

s + 1<br />

= =<br />

2<br />

s + 1 s<br />

1<br />

X(<br />

s)<br />

s + 1<br />

2<br />

s 1<br />

+<br />

2<br />

+ 1 s + 1<br />

If partial fraction expansion is used we obtain,<br />

⎛ s + 1−<br />

1⎞<br />

s<br />

→ ⎜ ⎟X(<br />

s)<br />

=<br />

⎝ s + 1 ⎠ 2<br />

s + 1<br />

x(t) = cos(t) + sin(t).<br />

x(t) = <strong>1.</strong>4141cos(t–45˚).<br />

This is <strong>the</strong> same answer and can be proven by using trigonometric identities.<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 54.<br />

Using <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong>, solve <strong>the</strong> following differential equ<strong>at</strong>ion for<br />

2<br />

d i di<br />

−2t<br />

+ 4 + 5i<br />

= 2e<br />

2<br />

dt<br />

dt<br />

i ′ .<br />

Subject to ( 0 ) = 0,<br />

i ( 0)<br />

= 2<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 54.<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term gives<br />

2<br />

2<br />

⎡<br />

⎣sIs ( ) −si(0) − i'(0) ⎤<br />

⎦ + 4 [ sIs ( ) − i(0) ] + 5 Is ( ) =<br />

s + 2<br />

2<br />

2<br />

⎡<br />

⎣sIs () −0− 2⎤ ⎦ + 4 [ sIs () − 0] + 5() Is =<br />

s + 2<br />

2 2 2s+ 6<br />

Is ()( s+ 4s+ 5) = + 2=<br />

s+ 2 s+<br />

2<br />

2s+ 6 A Bs+ C<br />

Is () = = +<br />

2 2<br />

( s+ 2)( s + 4s+ 5) s+ 2 s + 4s+ 5<br />

2 2<br />

2s+ 6 = A( s + 4s+ 5) + B( s + 2 s) + C( s+<br />

2)<br />

We equ<strong>at</strong>e <strong>the</strong> coefficients.<br />

s 2 : 0 = A+ B<br />

s: 2= 4A + 2B + C<br />

constant: 6 = 5A + 2C<br />

Solving <strong>the</strong>se gives<br />

A = 2, B= -2, C = -2<br />

2 2s+ 2 2 2( s+<br />

2) 2<br />

Is () = − = − +<br />

s+ s + s+ s+ s+ + s+<br />

+<br />

2 2 2<br />

2 4 5 2 ( 2) 1 ( 2) 1<br />

Taking <strong>the</strong> inverse <strong>Laplace</strong> <strong>transform</strong> leads to:<br />

( )<br />

it e e t e t ut e t tut<br />

−2t −2t −2t −2t<br />

() = 2 − 2 cos+ 2 sin () = 2 (1− cos+ sin ) ()<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 55.<br />

Solve for y(t) in <strong>the</strong> following differential equ<strong>at</strong>ion if <strong>the</strong> initial conditions are zero.<br />

3<br />

2<br />

d y d y dy −t<br />

+ 6 + 8 e cos 2t<br />

3<br />

2<br />

dt dt dt<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 55.<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term.<br />

3<br />

2<br />

2<br />

[ s Y(<br />

s)<br />

− s y(<br />

0)<br />

− s y′<br />

( 0)<br />

− y′<br />

′ ( 0)<br />

] + 6[<br />

s Y(<br />

s)<br />

− s y(<br />

0)<br />

− y′<br />

( 0)<br />

]<br />

+ 8[<br />

s Y(<br />

s)<br />

− y(<br />

0)<br />

] =<br />

s + 1<br />

2 2<br />

( s + 1)<br />

Setting <strong>the</strong> initial conditions to zero gives<br />

s + 1<br />

3 2 ( s + 6s<br />

+ 8s)<br />

Y(<br />

s)<br />

= 2 s + 2s<br />

+ 5<br />

( s + 1)<br />

( s)<br />

=<br />

s ( s + 2)(<br />

s + 4)(<br />

s<br />

+ 2<br />

A B C Ds + E<br />

= + + +<br />

+ 2s<br />

+ 5)<br />

s s + 2 s + 4 s + 2s<br />

5<br />

Y 2 2 +<br />

1<br />

A = ,<br />

40<br />

Y(<br />

s)<br />

Y(<br />

s)<br />

=<br />

=<br />

1<br />

40<br />

1<br />

40<br />

1<br />

⋅ +<br />

s<br />

1<br />

⋅ +<br />

s<br />

1<br />

B = ,<br />

20<br />

1<br />

20<br />

1<br />

20<br />

1<br />

⋅ −<br />

s + 2<br />

1<br />

⋅ −<br />

s + 2<br />

3<br />

104<br />

3<br />

104<br />

- 3<br />

C = ,<br />

104<br />

1<br />

⋅ −<br />

s + 4<br />

1<br />

⋅ −<br />

s + 4<br />

- 3<br />

D = ,<br />

65<br />

3s<br />

+ 7<br />

+ 1)<br />

2 2 + 2<br />

- 7<br />

E =<br />

65<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

1<br />

65<br />

1<br />

65<br />

⋅<br />

( s<br />

3(<br />

s + 1)<br />

⋅<br />

( s + 1)<br />

+<br />

−<br />

1<br />

⋅<br />

+<br />

4<br />

+<br />

2 2<br />

2 2<br />

2 65 ( s 1)<br />

2<br />

1 1 3 3<br />

2<br />

-2t<br />

-4t<br />

-t<br />

-t<br />

y ( t)<br />

= u(<br />

t)<br />

+<br />

e − e − e cos( 2t)<br />

− e sin( 2t)<br />

40 20 104 65<br />

65


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 56.<br />

Solve for v () t in <strong>the</strong> integrodifferential equ<strong>at</strong>ion<br />

dv<br />

t<br />

4 + 12∫<br />

v dt = 0<br />

−∞<br />

dt<br />

Given th<strong>at</strong> v ( 0 ) = 2 .<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 56.<br />

Taking <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term we get:<br />

12<br />

4 =<br />

s<br />

[ s V(<br />

s)<br />

− v(<br />

0)<br />

] + V(<br />

s)<br />

0<br />

⎡ 12⎤<br />

⎢⎣<br />

4 s + V(<br />

s)<br />

= 8<br />

s ⎥⎦<br />

8s<br />

2s<br />

( s)<br />

= 2 =<br />

4s<br />

+ 12 s + 3<br />

V 2<br />

v ( t)<br />

= 2<br />

cos(<br />

3t)<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 57.<br />

Solve <strong>the</strong> following integrodifferential equ<strong>at</strong>ion using <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> method:<br />

dy<br />

dt<br />

() t<br />

t<br />

+ ∫ y τ<br />

9 0<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 57.<br />

( τ ) d = cos 2t<br />

, y ( 0 ) = 1<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term.<br />

9 s<br />

s + Y(<br />

s)<br />

= 2 s s + 4<br />

[ Y(<br />

s)<br />

− y(<br />

0)<br />

]<br />

2<br />

2<br />

⎛ s + 9⎞<br />

s s + s + 4<br />

⎜ ⎟Y(<br />

s)<br />

= 1+<br />

2 = 2<br />

⎝ s ⎠ s + 4 s + 4<br />

3 2 s + s + 4s<br />

As + B Cs + D<br />

( s)<br />

= 2 2 = 2 +<br />

( s + 4)(<br />

s + 9)<br />

s + 4 s + 9<br />

Y 2<br />

s<br />

+ s<br />

+ 4s<br />

= A ( s<br />

+ 9s)<br />

+ B(<br />

s<br />

+ 9)<br />

+ C(<br />

s<br />

+ 4s)<br />

+ D(<br />

s<br />

3 2<br />

3<br />

2<br />

3<br />

2 +<br />

Equ<strong>at</strong>ing coefficients :<br />

0 s : 0 = 9B<br />

+ 4D<br />

1 s : 4 = 9A<br />

+ 4C<br />

2 s : 1 = B + D<br />

3 s : 1 = A + C<br />

Solving <strong>the</strong>se equ<strong>at</strong>ions gives<br />

A = 0 , B = - 4 5,<br />

C = 1,<br />

D = 9 5<br />

- 4 5 s + 9 5 - 4 5 s 9 5<br />

( s)<br />

= 2 + 2 = 2 + 2 +<br />

s + 4 s + 9 s + 4 s + 9 s + 9<br />

Y 2<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

4)<br />

y ( t)<br />

= - 0.4sin(<br />

2t)<br />

+<br />

cos( 3t)<br />

+ 0.<br />

6sin(<br />

3t)


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 58.<br />

Given th<strong>at</strong><br />

dv<br />

t<br />

+ 2v<br />

+ 5 v<br />

0<br />

dt ∫ λ<br />

with ( ) 1<br />

( λ ) d = 4u(<br />

t)<br />

v 0 = − , determine v () t for t > 0 .<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 58.<br />

We take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term.<br />

5 4<br />

[ sV( s) − v(0)] + 2 V( s) + V( s)<br />

=<br />

s s<br />

5 4<br />

[ sV () s + 1] + 2 V () s + V () s =<br />

s s<br />

⎯⎯→<br />

4−s<br />

V () s = 2<br />

s + 2s+ 5<br />

− ( s+ 1) + 5 − ( s+<br />

1) 5 2<br />

V() s = = +<br />

( s+ 1) + 2 ( s+ 1) + 2 2 ( s+<br />

1) + 2<br />

2 2 2 2 2 2<br />

−t −t<br />

vt () = ( − e cos2t+ 2.5esin2) tut ()<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 59.<br />

Solve <strong>the</strong> integrodifferential equ<strong>at</strong>ion<br />

dy<br />

4y<br />

+ 3<br />

t<br />

0<br />

−2t<br />

y dt = 6e<br />

dt<br />

+ ∫ , y ( 0) = −1<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 59.<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term <strong>of</strong> <strong>the</strong> integrodifferential equ<strong>at</strong>ion.<br />

[ s Y(<br />

s)<br />

− y(<br />

0)<br />

]<br />

+<br />

4Y(<br />

s)<br />

3<br />

+<br />

s<br />

Y(<br />

s)<br />

⎛ 6 ⎞<br />

( s + 4s<br />

+ 3)<br />

Y(<br />

s)<br />

= s⎜<br />

−1⎟<br />

⎝s<br />

+ 2 ⎠<br />

2<br />

6<br />

=<br />

s + 2<br />

s ( 4 − s)<br />

( 4 − s)<br />

s<br />

Y( s)<br />

=<br />

2 =<br />

( s + 2)(<br />

s + 4s<br />

+ 3)<br />

( s + 1)(<br />

s + 2)(<br />

s + 3)<br />

Y(<br />

s)<br />

A B C<br />

= + +<br />

s + 1 s + 2 s + 3<br />

A = –2.5, B = 12, C = -10.5<br />

Y(<br />

s)<br />

− 2.<br />

5 12 10.<br />

5<br />

= + −<br />

s + 1 s + 2 s + 3<br />

y ( t)<br />

= –2.5e –t + 12e –2t – 10.5e –3t<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.


<strong>Chapter</strong> <strong>15</strong>, <strong>Problem</strong> 60.<br />

Solve <strong>the</strong> following integrodifferential equ<strong>at</strong>ion<br />

dx<br />

t<br />

2 + 5x<br />

+ 3 x dt + 4 = sin 4t<br />

dt ∫ , x ( 0 ) = 1<br />

0<br />

<strong>Chapter</strong> <strong>15</strong>, Solution 60.<br />

Take <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> each term <strong>of</strong> <strong>the</strong> integrodifferential equ<strong>at</strong>ion.<br />

3 4 4<br />

2[ s X(<br />

s)<br />

− x(<br />

0)<br />

] + 5X(<br />

s)<br />

+ X(<br />

s)<br />

+ = 2 s s s + 16<br />

3 2<br />

4s<br />

2s<br />

− 4s<br />

+ 36s<br />

− 64<br />

2<br />

( 2s<br />

+ 5s<br />

+ 3)<br />

X(<br />

s)<br />

= 2s<br />

− 4 + 2 =<br />

2<br />

s + 16 s + 16<br />

2s<br />

( s)<br />

=<br />

( 2s<br />

2<br />

3 2<br />

− 4s<br />

+ 36s<br />

− 64 s − 2s<br />

+ 18s<br />

− 32<br />

2 =<br />

+ 5s<br />

+ 3)(<br />

s + 16)<br />

( s + 1)(<br />

s + <strong>1.</strong><br />

5)(<br />

s + 16)<br />

X<br />

3<br />

2<br />

2<br />

A B Cs + D<br />

X( s)<br />

= + + 2 s + 1 s + <strong>1.</strong><br />

5 s + 16<br />

A = ( s + 1)<br />

X(<br />

s)<br />

s = -1 = -6.235<br />

B = ( s + <strong>1.</strong><br />

5)<br />

X(<br />

s)<br />

s = -<strong>1.</strong>5 =<br />

When s = 0 ,<br />

- 32 B<br />

= A + +<br />

(<strong>1.</strong>5)(16) <strong>1.</strong><br />

5<br />

s<br />

D<br />

16<br />

7.<br />

329<br />

⎯⎯→<br />

D =<br />

0.<br />

2579<br />

2<br />

3 2<br />

3 2<br />

− 2s<br />

+ 18s<br />

− 32 = A(<br />

s + <strong>1.</strong><br />

5s<br />

+ 16s<br />

+ 24)<br />

+ B(<br />

s + s + 16s<br />

3 2<br />

2<br />

+ C(<br />

s + 2.<br />

5s<br />

+ <strong>1.</strong><br />

5s)<br />

+ D(<br />

s + 2.<br />

5s<br />

+ <strong>1.</strong><br />

5)<br />

3 +<br />

Equ<strong>at</strong>ing coefficients <strong>of</strong> <strong>the</strong> 3 s terms,<br />

1 = A + B + C ⎯⎯→<br />

C =<br />

-0.<br />

0935<br />

- 6.235 7.<br />

329 - 0.0935s + 0.2579<br />

X( s)<br />

= + +<br />

2 s + 1 s + <strong>1.</strong><br />

5 s + 16<br />

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part<br />

<strong>of</strong> this Manual may be displayed, reproduced or distributed in any form or by any means, without <strong>the</strong> prior<br />

written permission <strong>of</strong> <strong>the</strong> publisher, or used beyond <strong>the</strong> limited distribution to teachers and educ<strong>at</strong>ors<br />

permitted by McGraw-Hill for <strong>the</strong>ir individual course prepar<strong>at</strong>ion. If you are a student using this Manual,<br />

you are using it without permission.<br />

16)<br />

-t -<strong>1.</strong>5t<br />

x ( t)<br />

= - 6.235e<br />

+<br />

7.<br />

329e<br />

− 0.<br />

0935cos(<br />

4t)<br />

+ 0.<br />

0645sin(<br />

4t)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!