24.01.2013 Views

Rapid prototyping in tissue engineering: challenges and potential

Rapid prototyping in tissue engineering: challenges and potential

Rapid prototyping in tissue engineering: challenges and potential

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

650<br />

algorithm can be <strong>in</strong>terfaced with various RP technologies,<br />

to achieve automated production of scaffolds.<br />

Because RP processes offer complete user control <strong>in</strong><br />

terms of the structural features of the scaffold, it is<br />

therefore possible to characterize the scaffold us<strong>in</strong>g an<br />

automated algorithm. A computer-aided characterization<br />

approach can be applied to predict the effective mechanical<br />

properties of scaffolds <strong>and</strong> also to <strong>in</strong>vestigate the effect<br />

of design <strong>and</strong> process parameters on the structural<br />

properties of the scaffolds. Fang et al. [73] characterized<br />

the effective mechanical properties of porous PCL scaffolds<br />

manufactured by PED us<strong>in</strong>g a computational algorithm<br />

for f<strong>in</strong>ite element implementation <strong>and</strong> numerical solution<br />

of asymptotic homogenization theory.<br />

The ease of scaffold fabrication us<strong>in</strong>g RP provides a<br />

straightforward way to study the cell–matrix <strong>in</strong>teraction.<br />

The effects of material rigidity, surface topography <strong>and</strong><br />

roughness, pore size <strong>and</strong> architecture can be <strong>in</strong>vestigated<br />

<strong>in</strong>dependently to ga<strong>in</strong> more <strong>in</strong>sight <strong>in</strong>to cell behavior.<br />

Recent studies have displayed a new school of thought,<br />

us<strong>in</strong>g the concept of layered manufactur<strong>in</strong>g techniques to<br />

produce an organ directly. These new technologies <strong>in</strong>clude<br />

organ pr<strong>in</strong>t<strong>in</strong>g [74–76], laser pr<strong>in</strong>t<strong>in</strong>g of cells [77],<br />

photopattern<strong>in</strong>g of hydrogel [78] <strong>and</strong> microfluidics technology<br />

[79].<br />

Organ pr<strong>in</strong>t<strong>in</strong>g: Bol<strong>and</strong> et al. [76] developed a cell<br />

pr<strong>in</strong>ter to implement the technology. The device is capable<br />

of pr<strong>in</strong>t<strong>in</strong>g s<strong>in</strong>gle cells, cell aggregates <strong>and</strong> the supportive<br />

thermoreversible gel that serves as ‘pr<strong>in</strong>t<strong>in</strong>g paper’. These<br />

authors demonstrated the feasibility of this technique by<br />

pr<strong>in</strong>t<strong>in</strong>g a tubular collagen gel with bov<strong>in</strong>e aortal<br />

endothelial cells.<br />

Laser pr<strong>in</strong>t<strong>in</strong>g of cells: A laser-based pr<strong>in</strong>ter, termed<br />

matrix-assisted pulsed laser evaporation direct write<br />

(MAPLE DW), was used to deposit micron-scale patterns<br />

of pluripotent embryonic carc<strong>in</strong>oma cells onto th<strong>in</strong> layers<br />

of hydrogel [77]. A cell viability of 95% was reported.<br />

Photopattern<strong>in</strong>g of hydrogels: Valerie <strong>and</strong> Sangeeta<br />

[78] adapted photolithographic techniques from the silicon<br />

chip <strong>in</strong>dustry. The process starts with fill<strong>in</strong>g a Teflon base<br />

with a th<strong>in</strong> layer of polymer solution loaded with cells. UV<br />

light is shone through a patterned template atop the th<strong>in</strong><br />

film, cur<strong>in</strong>g the exposed polymer that sets with cells<br />

<strong>in</strong>side. Complex 3D structures, conta<strong>in</strong><strong>in</strong>g regions of<br />

different cells, can be built by us<strong>in</strong>g different templates<br />

<strong>and</strong> add<strong>in</strong>g layers atop each other.<br />

Microfluidics technology: Tan <strong>and</strong> Desai [79]<br />

reported a layer-by-layer microfluidic method to build a<br />

3D heterogeneous multiplayer <strong>tissue</strong>-like structure <strong>in</strong>side<br />

microchannels. This approach extends the 2D cell pattern<strong>in</strong>g<br />

technique <strong>in</strong>to the vertical axis, <strong>in</strong>volv<strong>in</strong>g immobilization<br />

of a cell–matrix assembly, cell–matrix<br />

contraction <strong>and</strong> pressure-driven microfluidic delivery<br />

processes.<br />

Conclusion<br />

The emergence of various different approaches <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g, rang<strong>in</strong>g from a scaffold-based approach to<br />

scaffold-free layer-by-layer manufactur<strong>in</strong>g technique, has<br />

highlighted the fact that the field of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g is<br />

still grow<strong>in</strong>g. Look<strong>in</strong>g towards the future, RP technologies<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

hold great <strong>potential</strong> <strong>in</strong> the context of scaffold fabrication.<br />

This technology enables the <strong>tissue</strong> eng<strong>in</strong>eer to have full<br />

control over the design, fabrication <strong>and</strong> model<strong>in</strong>g of the<br />

scaffold be<strong>in</strong>g constructed, provid<strong>in</strong>g a systematic learn<strong>in</strong>g<br />

channel for <strong>in</strong>vestigat<strong>in</strong>g cell–matrix <strong>in</strong>teractions.<br />

Additionally, <strong>in</strong>direct RP methods, coupled with conventional<br />

pore-form<strong>in</strong>g techniques, further exp<strong>and</strong> the range<br />

of materials that can be used <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

Inspired by the additive nature of layered manufactur<strong>in</strong>g,<br />

the layer-by-layer fabrication method underl<strong>in</strong>es the<br />

future development of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Further development<br />

<strong>and</strong> advances <strong>in</strong> RP <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g require<br />

the design of new materials, optimal scaffold design <strong>and</strong><br />

the <strong>in</strong>put of enhanced knowledge of cell physiology,<br />

<strong>in</strong>clud<strong>in</strong>g optimal cell seed<strong>in</strong>g <strong>and</strong> vascularization, so as<br />

to enable the <strong>tissue</strong> eng<strong>in</strong>eer to lay down more specific<br />

design requirements. Nevertheless, RP is a promis<strong>in</strong>g<br />

c<strong>and</strong>idate, serv<strong>in</strong>g as a methodical <strong>in</strong>terface between<br />

<strong>tissue</strong> <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

References<br />

1 Langer, R. <strong>and</strong> Vacanti, J. (1993) Tissue eng<strong>in</strong>eer<strong>in</strong>g. Science 260,<br />

920–926<br />

2 Sonal, L. et al. (2001) Tissue eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> its <strong>potential</strong> impact on<br />

surgery. World J. Surg. 25, 1458–1466<br />

3 Jennifer, J.M. et al. (1998) Transplantation of cells <strong>in</strong> matrices for<br />

<strong>tissue</strong> regeneration. Adv. Drug Deliv. Rev. 33, 165–182<br />

4 Kim, B.S. et al. (2001) Development of biocompatible synthetic<br />

extracellular matrices for <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Trends Biotechnol. 16,<br />

224–230<br />

5 Leong, K.F. et al. (2003) Solid freeform fabrication of three-dimensional<br />

scaffolds for eng<strong>in</strong>eer<strong>in</strong>g replacement <strong>tissue</strong>s <strong>and</strong> organs.<br />

Biomaterials 24, 2363–2378<br />

6 Mikos, A.G. et al. (1994) Preparation <strong>and</strong> characterization of poly<br />

(L-lactic acid) foam. Polymer 35, 1068–1077<br />

7 Mooney, D.J. et al. (1996) Novel approach to fabricate porous sponge of<br />

poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.<br />

Biomaterials 17, 1417–1422<br />

8 Freed, L.E. et al. (1994) Biodegradable polymer scaffolds for <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Biotechnology (N. Y.) 12, 689–693<br />

9 Lo, H. et al. (1995) Fabrication of controlled release biodegradable<br />

foams by phase separation. Tissue Eng. 1, 15–28<br />

10 Thomson, J.I. et al. (1995) Fabrication of biodegradable polymer<br />

scaffolds to eng<strong>in</strong>eer<strong>in</strong>g trabecular bone. J. Biomater. Sci. Polym. Ed.<br />

7, 23–28<br />

11 Whang, K. et al. (1995) A novel method to fabricate bioabsorbable<br />

scaffolds. Polym. 36, 837<br />

12 Hsu, Y.Y. et al. (1997) Effect of polymer foam morphology <strong>and</strong> density<br />

on k<strong>in</strong>etics of <strong>in</strong> vitro controlled release of ionized from compressed<br />

foam matrices. J. Biomed Mater Sci 35, 107–116<br />

13 Kim, B.S. <strong>and</strong> Mooney, D.J. (1998) Eng<strong>in</strong>eer<strong>in</strong>g smooth muscle <strong>tissue</strong><br />

with a predef<strong>in</strong>ed structure. J. Biomed. Mater. Res. 41, 322–332<br />

14 Ho, M.H. et al. (2004) Preparation of porous scaffolds by us<strong>in</strong>g freezeextraction<br />

<strong>and</strong> freeze-gelation methods. Biomaterials 25, 129–138<br />

15 Murphy, W.L. et al. (2002) Salt fusion: an approach to improve pore<br />

<strong>in</strong>terconnectivity with<strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g scaffold. Tissue Eng. 8,<br />

43–52<br />

16 Chen, V.J. <strong>and</strong> Ma, P.X. (2004) Nano-fibrous poly(L-lactic acid)<br />

scaffolds with <strong>in</strong>terconnected spherical macropores. Biomaterials 25,<br />

2065–2073<br />

17 Gross, K.A. <strong>and</strong> Rodríguez-Lorenzo, L.M. (2004) Biodegradable<br />

composite scaffolds with an <strong>in</strong>terconnected spherical network for<br />

bone <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Biomaterials 25, 4955–4962<br />

18 Yang, S. et al. (2001) The design of scaffolds for use <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Part I. Traditional factors. Tissue Eng. 7, 679–689<br />

19 Yang, S. et al. (2002) The design of scaffolds for use <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Part II. <strong>Rapid</strong> <strong>prototyp<strong>in</strong>g</strong> techniques. Tissue Eng. 8,<br />

1–11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!