24.01.2013 Views

Rapid prototyping in tissue engineering: challenges and potential

Rapid prototyping in tissue engineering: challenges and potential

Rapid prototyping in tissue engineering: challenges and potential

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

<strong>Rapid</strong> <strong>prototyp<strong>in</strong>g</strong> <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g: <strong>challenges</strong> <strong>and</strong> <strong>potential</strong><br />

Wai-Yee Yeong 1 , Chee-Kai Chua 1 , Kah-Fai Leong 1 <strong>and</strong> Margam Ch<strong>and</strong>rasekaran 2<br />

1<br />

<strong>Rapid</strong> Prototyp<strong>in</strong>g Research Laboratory, Design Research Centre, School of Mechanical <strong>and</strong> Production Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Nanyang Technological University, S<strong>in</strong>gapore 639798<br />

2<br />

Form<strong>in</strong>g Technology Group, S<strong>in</strong>gapore Institute of Manufactur<strong>in</strong>g Technology, S<strong>in</strong>gapore 638075<br />

Tissue eng<strong>in</strong>eer<strong>in</strong>g aims to produce patient-specific<br />

biological substitutes <strong>in</strong> an attempt to circumvent the<br />

limitations of exist<strong>in</strong>g cl<strong>in</strong>ical treatments for damaged<br />

<strong>tissue</strong> or organs. The ma<strong>in</strong> regenerative <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

approach <strong>in</strong>volves transplantation of cells onto<br />

scaffolds. The scaffold attempts to mimic the function of<br />

the natural extracellular matrix, provid<strong>in</strong>g a temporary<br />

template for the growth of target <strong>tissue</strong>s. Scaffolds<br />

should have suitable architecture <strong>and</strong> strength to serve<br />

their <strong>in</strong>tended function. This paper presents a comprehensive<br />

review of the fabrication methods, <strong>in</strong>clud<strong>in</strong>g<br />

conventional, ma<strong>in</strong>ly manual, techniques <strong>and</strong> advanced<br />

process<strong>in</strong>g methods such as rapid <strong>prototyp<strong>in</strong>g</strong> (RP)<br />

techniques. The <strong>potential</strong> <strong>and</strong> <strong>challenges</strong> of scaffoldbased<br />

technology are discussed from the perspective of<br />

RP technology.<br />

Tissue eng<strong>in</strong>eer<strong>in</strong>g has ga<strong>in</strong>ed more attention <strong>in</strong> the past<br />

decade, ow<strong>in</strong>g to its success <strong>in</strong> enabl<strong>in</strong>g <strong>tissue</strong> regeneration<br />

for therapeutic purposes. It is an <strong>in</strong>terdiscipl<strong>in</strong>ary<br />

field which applies the pr<strong>in</strong>ciples of eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> life<br />

sciences to the development of biological substitutes that<br />

restore, ma<strong>in</strong>ta<strong>in</strong> or improve <strong>tissue</strong> function [1].<br />

Tissue eng<strong>in</strong>eer<strong>in</strong>g aims to produce patient-specific<br />

biological substitutes <strong>in</strong> an attempt to circumvent the<br />

limitations of exist<strong>in</strong>g cl<strong>in</strong>ical treatments for damaged<br />

<strong>tissue</strong> or organs. These limitations <strong>in</strong>clude shortage of<br />

donor organs, chronic rejection <strong>and</strong> cell morbidity. The<br />

ma<strong>in</strong> regenerative <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g approaches <strong>in</strong>clude<br />

<strong>in</strong>jection of cells alone, development of encapsulated<br />

systems <strong>and</strong> transplantation of cells onto scaffolds [2].<br />

The latter approach appears to be the dom<strong>in</strong>ant method<br />

used <strong>in</strong> research on <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g because it permits<br />

experimental manipulation at three levels to achieve<br />

optimal construct: the cells, the polymer scaffolds <strong>and</strong><br />

the construction method [3].<br />

The scaffold attempts to mimic the function of the natural<br />

extracellular matrix. The primary roles of scaffold are: (i) to<br />

serve as an adhesion substrate for the cell, facilitat<strong>in</strong>g the<br />

localization <strong>and</strong> delivery of cells when they are implanted;<br />

(ii) to provide temporary mechanical support to the newly<br />

grown <strong>tissue</strong> by def<strong>in</strong><strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a 3D structure<br />

<strong>and</strong> (iii) to guide the development of new <strong>tissue</strong>s with the<br />

appropriate function [4].<br />

Correspond<strong>in</strong>g author: Chee-Kai Chua (mckchua@ntu.edu.sg).<br />

Available onl<strong>in</strong>e 2 November 2004<br />

www.sciencedirect.com 0167-7799/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tibtech.2004.10.004<br />

A successful scaffold should possess the follow<strong>in</strong>g<br />

characteristics [5]: (i) a suitable macrostructure to<br />

promote cell proliferation <strong>and</strong> cell-specific matrix production;<br />

(ii) an open-pore geometry with a highly porous<br />

surface <strong>and</strong> microstructure that enables cell <strong>in</strong>growth;<br />

(iii) optimal pore size employed to encourage <strong>tissue</strong><br />

regeneration <strong>and</strong> to avoid pore occlusion; (iv) suitable<br />

surface morphology <strong>and</strong> physiochemical properties to<br />

encourage <strong>in</strong>tracellular signal<strong>in</strong>g <strong>and</strong> recruitment of<br />

cells <strong>and</strong> (v) be<strong>in</strong>g made from a material with a predictable<br />

rate of degradation, with a nontoxic degraded material.<br />

Scaffolds can be produced <strong>in</strong> a variety of ways, us<strong>in</strong>g<br />

conventional techniques or advanced process<strong>in</strong>g methods.<br />

Conventional scaffold fabrication methods<br />

Conventional methods for manufactur<strong>in</strong>g scaffolds<br />

<strong>in</strong>clude solvent cast<strong>in</strong>g <strong>and</strong> particulate leach<strong>in</strong>g [6], gas<br />

foam<strong>in</strong>g [7], fiber meshes <strong>and</strong> fiber bond<strong>in</strong>g [8], phase<br />

separation [9], melt mold<strong>in</strong>g [10], emulsion freeze dry<strong>in</strong>g<br />

[11], solution cast<strong>in</strong>g <strong>and</strong> freeze dry<strong>in</strong>g [12]. However,<br />

there are <strong>in</strong>herent limitations <strong>in</strong> these process<strong>in</strong>g<br />

methods, which offer little capability precisely to control<br />

pore size, pore geometry, pore <strong>in</strong>terconnectivity, spatial<br />

distribution of pores <strong>and</strong> construction of <strong>in</strong>ternal channels<br />

with<strong>in</strong> the scaffold (Figure 1).<br />

Figure 1. Scaffold produced us<strong>in</strong>g conventional freeze-dry<strong>in</strong>g method. The pores<br />

formed are <strong>in</strong>terconnected but <strong>in</strong>homogeneous ow<strong>in</strong>g to the r<strong>and</strong>om freez<strong>in</strong>g<br />

k<strong>in</strong>etics. The architecture of the pores can be adjusted by controll<strong>in</strong>g the freez<strong>in</strong>g<br />

k<strong>in</strong>etics of the solution. A dense layer of ‘sk<strong>in</strong>’ is formed at the open surface, which<br />

greatly affects the diffusion efficiency of the scaffold.


644<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

Consequently, researchers try to modify the conventional<br />

techniques to overcome these <strong>in</strong>herent process<br />

limitations. Kim <strong>and</strong> Mooney [13] produced polyglycolic<br />

acid (PGA) fibers bonded with poly-L-lactide (PLLA) to<br />

enhance the mechanical strength <strong>and</strong> the degradation<br />

rate of the unbonded PGA fiber meshes. As a variant to the<br />

freeze-dry<strong>in</strong>g process, Ho et al. [14] prepared scaffolds<br />

us<strong>in</strong>g a freeze-extraction method, which was relatively<br />

more time- <strong>and</strong> energy efficient. Murphy et al. [15]<br />

enhanced pore <strong>in</strong>terconnectivity by fus<strong>in</strong>g the porogen<br />

together to form a template, <strong>in</strong>stead of us<strong>in</strong>g unbounded<br />

particles <strong>in</strong> so1vent cast<strong>in</strong>g/particulate leach<strong>in</strong>g process.<br />

The result showed that holes were formed <strong>in</strong> pore walls,<br />

guarantee<strong>in</strong>g pore <strong>in</strong>terconnectivity. Chen <strong>and</strong> Ma [16]<br />

created nanofibrous PLLA scaffolds which <strong>in</strong>corporated<br />

<strong>in</strong>terconnected spherical macropores. The macropores<br />

were voids left by paraff<strong>in</strong> spheres, which were thermally<br />

bonded before the cast<strong>in</strong>g of the polymer solution. In place<br />

of paraff<strong>in</strong> spheres, Gross <strong>and</strong> Rodríguez-Lorenzo [17]<br />

used a s<strong>in</strong>tered salt template to produce PLLA-re<strong>in</strong>forced<br />

apatite scaffolds.<br />

Notwithst<strong>and</strong><strong>in</strong>g the improvements that have been<br />

atta<strong>in</strong>ed, the control over scaffold architecture us<strong>in</strong>g these<br />

conventional techniques is highly process dependent<br />

rather than design dependent. As a result, RP is seen to<br />

be a viable alternative for achiev<strong>in</strong>g extensive <strong>and</strong><br />

detailed control over scaffold architecture [18,19].<br />

Advanced scaffold-fabrication methods<br />

RP is a common name for a group of techniques that can<br />

generate a physical model directly from computer-aided<br />

design data. It is an additive process <strong>in</strong> which each part is<br />

constructed <strong>in</strong> a layer-by-layer manner. Table 1 presents<br />

<strong>and</strong> compares the RP techniques that can be used to<br />

fabricate scaffolds directly or <strong>in</strong>directly.<br />

Direct RP fabrication method<br />

RP systems such as fused deposition model<strong>in</strong>g (FDM), 3D<br />

pr<strong>in</strong>t<strong>in</strong>ge (3-DP) <strong>and</strong> selective laser s<strong>in</strong>ter<strong>in</strong>g (SLS) have<br />

been shown to be feasible for produc<strong>in</strong>g porous structures<br />

for use <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. In this review, the <strong>tissue</strong><br />

scaffold fabrication techniques are categorized by virtue of<br />

their mode of assembly <strong>in</strong>to one of two processes: the melt–<br />

dissolution deposition technique <strong>and</strong> the particle bond<strong>in</strong>g<br />

technique.<br />

Melt–dissolution deposition technique<br />

In a typical melt–dissolution deposition system, each layer<br />

is created by extrusion of a str<strong>and</strong> of material through an<br />

orifice while it moves across the plane of the layer crosssection.<br />

The material cools, solidify<strong>in</strong>g itself <strong>and</strong> fix<strong>in</strong>g to<br />

the previous layer [20]. Successive layer formation, one<br />

atop another, forms a complex 3D solid object.<br />

Porosity <strong>in</strong> the horizontal XY plane is created by<br />

controll<strong>in</strong>g the spac<strong>in</strong>g between adjacent filaments<br />

(Figure 2). The vertical Z gap is formed by deposit<strong>in</strong>g the<br />

subsequent layer of filaments at an angle with respect to<br />

the previous layer. Repetitive pattern draw<strong>in</strong>g will<br />

produce a porous structure ready to be used as a scaffold.<br />

A representative system us<strong>in</strong>g melt–dissolution<br />

www.sciencedirect.com<br />

deposition is FDM. This method sp<strong>in</strong>s off several new<br />

systems that operate under similar pr<strong>in</strong>ciples.<br />

FDM: In this method, a filament of a suitable material<br />

is fed <strong>and</strong> melted <strong>in</strong>side a heated liquefier before be<strong>in</strong>g<br />

extruded through a nozzle. The system operates <strong>in</strong> a<br />

temperature-controlled environment to ma<strong>in</strong>ta<strong>in</strong> sufficient<br />

fusion energy between each layer.<br />

Researchers have demonstrated the feasibility of<br />

utiliz<strong>in</strong>g FDM to fabricate a functional scaffold directly.<br />

Ze<strong>in</strong> et al. [21] fabricated polycaprolactone (PCL) scaffolds<br />

with a honeycomb structure <strong>and</strong> a channel size of 160–<br />

770 mm. Samar et al. [22] have successfully produced a<br />

polymer-ceramic composite scaffold made of polypropylene-tricalcium<br />

phosphate (PP-TCP). The scaffolds were<br />

reported to have a pore size of 160 mm <strong>and</strong> a mechanical<br />

strength of 12.7 MPa, which is comparable to the tensile<br />

strength of natural cancellous bone, which has a value of<br />

7.4MPa [23]. In a recent study, human mesenchymal<br />

progenitor cells were seeded on PCL <strong>and</strong> PCL-hydroxyapatite<br />

(HA) scaffolds fabricated by FDM [24]. Proliferation<br />

of cells toward <strong>and</strong> onto the scaffold surfaces was detected.<br />

Drawbacks of the FDM technique <strong>in</strong>clude the need for<br />

<strong>in</strong>put material of a specific diametric size <strong>and</strong> material<br />

properties to feed through the rollers <strong>and</strong> nozzle. Any<br />

changes <strong>in</strong> the properties of the material require effort to<br />

recalibrate the sett<strong>in</strong>g of the feed<strong>in</strong>g parameters. As a<br />

result, FDM has a narrow process<strong>in</strong>g w<strong>in</strong>dow. The<br />

resolution of FDM is relatively low, at 250 mm. In FDM,<br />

a limited range of material s can be used, with almost<br />

complete exclusion of natural polymers, as the material<br />

used must be made <strong>in</strong>to filaments <strong>and</strong> melted <strong>in</strong>to a semiliquid<br />

phase before extrusion. The operat<strong>in</strong>g temperature<br />

of the system is too high to <strong>in</strong>corporate biomolecules <strong>in</strong>to<br />

the scaffold, hence limit<strong>in</strong>g the biomimetic aspects of the<br />

scaffold produced. Moreover, the material deposited<br />

solidifies <strong>in</strong>to dense filaments, block<strong>in</strong>g the formation of<br />

microporosity. Microporosity is an important factor <strong>in</strong><br />

encourag<strong>in</strong>g neovascularization <strong>and</strong> cell attachment [25].<br />

Modifications of FDM to circumvent these limitations<br />

have encouraged the emergence of several new techniques.<br />

These <strong>in</strong>clude techniques that elim<strong>in</strong>ate the<br />

requirement of precursor filaments or a system with<br />

reduced operat<strong>in</strong>g temperatures. Some variants of the<br />

FDM process <strong>in</strong>clude the 3D fiber-deposition technique<br />

[26], precision extrud<strong>in</strong>g deposition (PED) [27] <strong>and</strong> precise<br />

extrusion manufactur<strong>in</strong>g (PEM) [28].<br />

3D fiber-deposition technique: In this method, the<br />

feedstock material is <strong>in</strong> a pellet or granule form that can<br />

be poured <strong>in</strong>to the heated liquefier directly. Poly(ethylene<br />

glycol)-terephthalate-poly(butylenes terephthalate)<br />

(PEGT–PBT) block copolymer scaffolds have been<br />

fabricated for articulate <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g applications<br />

[26]. Material flow is regulated by apply<strong>in</strong>g<br />

pressure to the syr<strong>in</strong>ge.<br />

PED: The extruder <strong>in</strong> this system is equipped with a<br />

built-<strong>in</strong> heat<strong>in</strong>g unit to melt the feedstock material, hence<br />

elim<strong>in</strong>at<strong>in</strong>g the need to produce precursor filaments. PCL<br />

scaffolds with a pore size of 250 mm were fabricated [27].<br />

PEM: PLLA scaffolds with controllable porous<br />

architectures from 200 to 500 mm <strong>in</strong> size have been<br />

produced [28].


Table 1. Comparison of different rapid <strong>prototyp<strong>in</strong>g</strong> (RP) technologies applied <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

RP system Resolution (mm) Material Strength Weakness Refs<br />

Melt–dissolution deposition technique<br />

Fused deposition model<strong>in</strong>g 250 PCL a , PP-TCP,<br />

PCL-HA, PCL-<br />

TCP<br />

The melt process is generally undesirable from the<br />

perspective of scaffold bioactivity because of the elevated<br />

temperatures <strong>in</strong>volved. This limitation drives researchers<br />

to replace the melt<strong>in</strong>g process with that of dissolution of<br />

materials. Systems developed <strong>in</strong>clude low-temperature<br />

deposition manufactur<strong>in</strong>g (LDM) [29], mult<strong>in</strong>ozzle<br />

Good mechanical strength;<br />

versatile <strong>in</strong> lay-down pattern<br />

design<br />

High temperature; need to<br />

produce filament material;<br />

narrow process<strong>in</strong>g w<strong>in</strong>dow;<br />

rigid filament<br />

High temperature;<br />

rigid filament<br />

3D fiber-deposition technique 250 PEGT-PBT Input material <strong>in</strong> pellet form;<br />

preparation time is reduced<br />

[26]<br />

Precision extrud<strong>in</strong>g depo- 250 PCL Input material <strong>in</strong> pellet form High temperature;<br />

[27]<br />

sition<br />

rigid filament<br />

Precise extrusion<br />

200–500 PLLA-TCP Input material <strong>in</strong> pellet form High temperature;<br />

[28]<br />

manufactur<strong>in</strong>g<br />

rigid filament<br />

Low-temperature deposition 400 PLLA-TCP Can <strong>in</strong>corporate biomolecule Solvent is used;<br />

[29]<br />

manufactur<strong>in</strong>g<br />

requires freeze dry<strong>in</strong>g<br />

Multi-nozzle deposition 400 PLLA-TCP Enhanced range of materials Solvent is used;<br />

[30]<br />

manufactur<strong>in</strong>g<br />

can be used; can <strong>in</strong>corporate<br />

biomolecule<br />

requires freeze dry<strong>in</strong>g<br />

Pressure-assisted<br />

10–600 PCL, PLLA Enhanced range of materials Small nozzle <strong>in</strong>hibits<br />

[31]<br />

microsyr<strong>in</strong>ge<br />

can be used; can <strong>in</strong>corporate <strong>in</strong>corporation of particle;<br />

biomolecule; very f<strong>in</strong>e resol- narrow range of pr<strong>in</strong>table<br />

ution can be achieved<br />

viscosities; solvent is used<br />

Robocast<strong>in</strong>g 100–1000 Organic <strong>in</strong>k Enhanced range of materials Precise control of <strong>in</strong>k properties [34]<br />

can be used<br />

is crucial<br />

3D bioplotter 250 Hydrogel Enhanced range of materials Low mechanical strength; [35]<br />

can be used; can <strong>in</strong>corporate smooth surface; low accuracy;<br />

biomolecule<br />

slow process<strong>in</strong>g; precise control<br />

of properties of material<br />

<strong>and</strong> medium; calibration for<br />

new material<br />

<strong>Rapid</strong> <strong>prototyp<strong>in</strong>g</strong> robotic 400–1000 Chitosanchito- Enhanced range of materials Precise control properties of [36]<br />

dispens<strong>in</strong>g system<br />

san-HA<br />

can be used; can <strong>in</strong>corporate material <strong>and</strong> medium; requires<br />

Particle bond<strong>in</strong>g techniques<br />

biomolecule<br />

freeze dry<strong>in</strong>g<br />

3-dimensional pr<strong>in</strong>t<strong>in</strong>ge 200 PLGA, starch- Microposity <strong>in</strong>duced <strong>in</strong> the Material must be <strong>in</strong> powder [41]<br />

based polymer scaffold; enhanced range of form; limited mechanical<br />

materials can be used; water strength; Powdery surface<br />

used as b<strong>in</strong>der; no support f<strong>in</strong>ish; trapped powder issue;<br />

structure needed; fast<br />

process<strong>in</strong>g<br />

might require postprocess<strong>in</strong>g<br />

TheriForme 300 PLLA Microposity <strong>in</strong>duced <strong>in</strong> the Material must be <strong>in</strong> powder [45]<br />

scaffold; enhanced range of form; powdery surface f<strong>in</strong>ish;<br />

materials can be used; nonorganic<br />

b<strong>in</strong>der is possible; no<br />

support structure is needed;<br />

fast process<strong>in</strong>g<br />

trapped powder<br />

Selective laser s<strong>in</strong>ter<strong>in</strong>g 500 PEEK-HA, PCL Microposity <strong>in</strong>duced <strong>in</strong> the Material must be <strong>in</strong> powder [47]<br />

scaffold enhanced range of form; high temperature;<br />

materials can be used;<br />

powdery surface f<strong>in</strong>ish;<br />

Indirect RP fabrication method<br />

no support structure needed;<br />

fast process<strong>in</strong>g<br />

trapped powder<br />

Melt deposition 250 Thermoplastic Enhanced range of materials Multisteps <strong>in</strong>volved [48]<br />

polymer<br />

can be used; control of external<br />

<strong>and</strong> <strong>in</strong>ternal morphology<br />

Droplet deposition 180 Wax Enhanced range of materials<br />

can be used; control of external<br />

<strong>and</strong> <strong>in</strong>ternal morphology<br />

Multisteps <strong>in</strong>volved [49]<br />

Photo-polymerization 366 Res<strong>in</strong> Enhanced range of materials<br />

can be used; control of external<br />

<strong>and</strong> <strong>in</strong>ternal morphology<br />

Multisteps <strong>in</strong>volved [50]<br />

a<br />

Abbreviations: HA, hydroxyapatite; PCL, polycaprolactone; PEEK-HA, polyetheretherketone-hydroxyapatite; PEGT-PBT, poly(ethylene glycol)-terephthalate-poly(butylenes<br />

terephthalate; PLLA, poly-L-lactide; PP-TCP, polypropylene-tricalcium phosphate.<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004 645<br />

[21]<br />

deposition manufactur<strong>in</strong>g (MDM) [30], pressure-assisted<br />

microsyr<strong>in</strong>ges (PAM) [31] <strong>and</strong> robocast<strong>in</strong>g [32].<br />

LDM: The scaffold-build<strong>in</strong>g cycle is performed <strong>in</strong> a lowtemperature<br />

environment under 08C [29]. A PLLA–TCP<br />

pipe scaffold has been produced.<br />

MDM: This is an improved version of LDM, with the


646<br />

Figure 2. structure produced us<strong>in</strong>g fused deposition model<strong>in</strong>g. Uniformly<br />

<strong>in</strong>terconnected square channels are obta<strong>in</strong>ed with a pattern sett<strong>in</strong>g of 08 or 908.<br />

The scaffold structure is highly regular <strong>and</strong> reproducible. The portion of the<br />

filament that spans across two support<strong>in</strong>g po<strong>in</strong>ts is subjected to gravity-<strong>in</strong>duced<br />

deformation dur<strong>in</strong>g the solidification phase. Therefore, the sett<strong>in</strong>g of the mach<strong>in</strong>e<br />

parameters, as well as the material properties, must be precisely controlled to<br />

ensure m<strong>in</strong>imum filament deflection. Filaments are aligned orthogonally, with<br />

grooves at the <strong>in</strong>tersection po<strong>in</strong>t between consecutive layers. Cells on the scaffold<br />

must span across these grooves to cellularize the entire structure.<br />

advantage of be<strong>in</strong>g able to use a greater range of<br />

materials. The enhancement is achieved by <strong>in</strong>corporat<strong>in</strong>g<br />

more jett<strong>in</strong>g nozzles <strong>in</strong>to the system [29]. Support<br />

structures can be built us<strong>in</strong>g water, which is nontoxic<br />

<strong>and</strong> easy to remove. In the work by Zhuo et al. [30],<br />

biomolecules <strong>in</strong> the form of bone morphogenic prote<strong>in</strong><br />

were embedded <strong>in</strong> the bulk material <strong>and</strong> then released<br />

slowly as the scaffold degraded.<br />

PAM: A microsyr<strong>in</strong>ge is used to expel the dissolved<br />

polymer under low <strong>and</strong> constant pressure to form the<br />

desired pattern. The resolution of this method is on a<br />

cellular scale, which is remarkably high compared with<br />

the techniques described previously. Vozzi et al. [31]<br />

developed PCL <strong>and</strong> PLLA scaffolds with l<strong>in</strong>e width of<br />

20 mm. It has been demonstrated that the performance of<br />

this method is comparable to that of soft lithography [33].<br />

However, capillaries with a very small diameter require<br />

careful h<strong>and</strong>l<strong>in</strong>g to avoid any tip breakage. Higher<br />

pressure is also needed to expel the material from a<br />

small orifice.<br />

Robocast<strong>in</strong>g: This patented system is able to lay down<br />

a highly concentrated, pseudoplastic-like colloidal suspension<br />

[32]. Therriault et al. [34] fabricated a 3D microvascular<br />

network by robocast<strong>in</strong>g fugitive organic <strong>in</strong>k,<br />

followed by scaffold <strong>in</strong>filtration with epoxy res<strong>in</strong> <strong>and</strong><br />

further postprocess<strong>in</strong>g.<br />

In general, the scaffolds fabricated us<strong>in</strong>g the melt or<br />

solution deposition techniques described are usually<br />

meant to serve as hard-<strong>tissue</strong> scaffolds. L<strong>and</strong>ers <strong>and</strong><br />

Mülhaupt [35] have developed an aqueous system, the 3D<br />

bioplotter, to meet the dem<strong>and</strong> for fabrication of hydrogel<br />

scaffolds useful <strong>in</strong> soft-<strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Hydrogels are<br />

becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly popular as a material for <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g because of their high water content <strong>and</strong> the<br />

fact that they have similar mechanical properties to those<br />

of many soft <strong>tissue</strong>s <strong>in</strong> the human body. Ang et al. [36]<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

adopted a similar concept to develop a robotic dispenser,<br />

the rapid <strong>prototyp<strong>in</strong>g</strong> robotic dispens<strong>in</strong>g system(RPBOD),<br />

for the fabrication of a chitosan scaffold.<br />

3D bioplotter: The key feature of this method is the<br />

3D dispens<strong>in</strong>g of liquids <strong>and</strong> pastes <strong>in</strong>to a liquid medium<br />

with matched density. The plott<strong>in</strong>g material leaves the<br />

nozzle <strong>and</strong> solidifies <strong>in</strong> the plott<strong>in</strong>g medium after bond<strong>in</strong>g<br />

to the previous layer. The liquid medium compensates for<br />

gravity <strong>and</strong> hence no support structure is needed.<br />

Hydrogel scaffolds with well-def<strong>in</strong>ed <strong>in</strong>ternal pore<br />

structure were prepared by L<strong>and</strong>ers et al. [37]. The<br />

hydrogel scaffolds had <strong>in</strong>terconnected pores, 200–400 mm<br />

<strong>in</strong> diameter. However, the hydrogel presented a smooth<br />

surface, which might be nonadherent to cells [38]. Therefore,<br />

further surface coat<strong>in</strong>g was required to render the<br />

surface favorable for cell-adhesion. Fibroblasts seeded on<br />

the scaffolds showed almost complete coverage of cells.<br />

However, the scaffolds had limited resolution <strong>and</strong> mechanical<br />

strength. Material rigidity was shown to <strong>in</strong>fluence<br />

cell spread<strong>in</strong>g <strong>and</strong> migration speed, as demonstrated by<br />

Wong et al. [39]. Cells displayed a preference for stiffer<br />

regions, <strong>and</strong> tended to migrate faster on surfaces with<br />

lower compliance.<br />

RPBOD: This system, developed by Ang et al. [36],<br />

consists of a computer-guided desktop robot <strong>and</strong> a onecomponent<br />

pneumatic dispenser. Material <strong>in</strong> liquid form<br />

was dispensed <strong>in</strong>to a dispens<strong>in</strong>g medium through a small<br />

Teflon-l<strong>in</strong>ed nozzle. Chitosan scaffolds with pore size of<br />

400–1000 mm were produced <strong>in</strong> the prelim<strong>in</strong>ary study.<br />

Particle-bond<strong>in</strong>g techniques<br />

In particle-bond<strong>in</strong>g techniques, particles are selectively<br />

bonded <strong>in</strong> a th<strong>in</strong> layer of powder material. The th<strong>in</strong> 2D<br />

layers are bonded one upon another to form a complex 3D<br />

solid object. Dur<strong>in</strong>g fabrication, the object is supported by<br />

<strong>and</strong> embedded <strong>in</strong> unprocessed powder. Therefore, this<br />

technique enables the fabrication of through channels <strong>and</strong><br />

overhang<strong>in</strong>g features. After completion of all layers, the<br />

object is removed from the bed of unbonded powder [20].<br />

The powder utilized can be a pure powder or surfacecoated<br />

powder, depend<strong>in</strong>g on the application of the scaffold.<br />

It is possible to use a s<strong>in</strong>gle one-component powder or a<br />

mixture of different powders, blended together.<br />

These techniques are capable of produc<strong>in</strong>g a porous<br />

structure with controllable macroporosity as well as<br />

microporosity. The microporosity arises from the space<br />

between the <strong>in</strong>dividual granules of powder. These techniques<br />

offer control over pore architecture by manipulat<strong>in</strong>g<br />

the region of bond<strong>in</strong>g. However, the pore size is limited<br />

by the powder size of the stock material. Larger pores can<br />

be generated by mix<strong>in</strong>g porogen <strong>in</strong>to the powder bed<br />

before the bond<strong>in</strong>g process.<br />

The powder-based materials provide a rough surface to<br />

the scaffold. It has been suggested that topographical cues<br />

might have a significant effect upon cellular behavior [40].<br />

As a cell attaches to the scaffold, stretch receptors are<br />

activated. Receptors on the scaffold surface might be<br />

subjected to vary<strong>in</strong>g degrees of deformation, lead<strong>in</strong>g to<br />

activation of cell signal transduction pathways. Therefore,<br />

scaffolds fabricated via a particle-bond<strong>in</strong>g technique


might be more advantageous <strong>in</strong> the context of cell<br />

attachment.<br />

Typical systems <strong>in</strong> this category <strong>in</strong>clude 3-DP [41],<br />

TheriForme [42] <strong>and</strong> SLS [43].<br />

3DP: In this process, a stream of adhesive droplets is<br />

expelled through an <strong>in</strong>kjet pr<strong>in</strong>thead, selectively bond<strong>in</strong>g<br />

a th<strong>in</strong> layer of powder particles to form a solid shape [20].<br />

The resolution achieved is w300 mm. Kim et al. [44]<br />

employed 3DP us<strong>in</strong>g a particulate leach<strong>in</strong>g technique to<br />

create porous scaffolds us<strong>in</strong>g polylactic-co-glycolic acid<br />

(PLGA) mix with salt particles <strong>and</strong> a suitable organic<br />

solvent. Pores formed were of the scale 45–150 mm with<br />

60% porosity. In vitro cell culture with hepatocytes showed<br />

<strong>in</strong>growth of these cells <strong>in</strong>to the pore space.<br />

In an effort to render the system more biocompatible,<br />

Lam et al. [43] have formulated a blend of starch-based<br />

polymer powders that can be bonded together us<strong>in</strong>g<br />

distilled water. The group also tried to enhance the<br />

mechanical property of the scaffold produced by <strong>in</strong>filtrat<strong>in</strong>g<br />

the structure with PLLA <strong>and</strong> PCL copolymer solution.<br />

TheriForm: This system is similar to 3DP, <strong>in</strong> that a<br />

pr<strong>in</strong>thead assembly deposits b<strong>in</strong>der droplets onto selected<br />

regions of the powder, swell<strong>in</strong>g <strong>and</strong> dissolv<strong>in</strong>g the polymer<br />

powder <strong>in</strong> the pr<strong>in</strong>ted regions. Zelt<strong>in</strong>ger et al. [45]<br />

performed a study on a TheriForm-built PLLA scaffold<br />

with different pore sizes us<strong>in</strong>g can<strong>in</strong>e dermal fibroblasts<br />

(DmFb), vascular smooth muscle cells (VSMC) <strong>and</strong><br />

microvascular epithelial cells (MVEC). They found that<br />

DmFb is <strong>in</strong>different to pore size, whereas MVEC <strong>and</strong><br />

VSMC favored a pore size of 90 mm <strong>and</strong> 107 mm, respectively,<br />

suggest<strong>in</strong>g the existence of an optimal pore size for<br />

different cell types.<br />

SLS: This technique uses a deflected laser beam<br />

selectively to scan over the powder surface follow<strong>in</strong>g the<br />

cross-sectional profiles carried by the slice data. The<br />

<strong>in</strong>teraction of the laser beam with the powder elevates the<br />

powder temperature to reach the glass-transition<br />

temperature, caus<strong>in</strong>g surfaces <strong>in</strong> contact to deform<br />

<strong>and</strong> fuse together [20]. Thisisthepreferredfabrication<br />

process for produc<strong>in</strong>g complex porous ceramic matrices<br />

suitable for implantation <strong>in</strong> a bone defect, as demonstrated<br />

by Vail et al. [46].<br />

The authors’ group has successfully s<strong>in</strong>tered polyetheretherketone-hydroxyapatite<br />

(PEEK-HA) powder blends<br />

on a commercial SLS mach<strong>in</strong>e [47]. In the research,<br />

different weight percentage compositions of physically<br />

mixed PEEK-HA powder blends were s<strong>in</strong>tered by vary<strong>in</strong>g<br />

the laser power <strong>and</strong> temperature sett<strong>in</strong>gs (Figure 3).<br />

Indirect RP fabrication methods<br />

RP systems can also be utilized to produce a sacrificial<br />

mould to fabricate <strong>tissue</strong>-eng<strong>in</strong>eer<strong>in</strong>g scaffolds. These<br />

multistep methods usually <strong>in</strong>volve cast<strong>in</strong>g of material <strong>in</strong><br />

a mould <strong>and</strong> then remov<strong>in</strong>g or sacrific<strong>in</strong>g the mould to<br />

obta<strong>in</strong> the f<strong>in</strong>al scaffold. Such techniques enable the user<br />

to control both the external <strong>and</strong> the <strong>in</strong>ternal morphology of<br />

the f<strong>in</strong>al construct. In addition, <strong>in</strong>direct methods also<br />

require less raw scaffold material while <strong>in</strong>creas<strong>in</strong>g the<br />

range of materials that can be used <strong>and</strong> mak<strong>in</strong>g it possible<br />

to use composite blends that might require conflict<strong>in</strong>g<br />

process<strong>in</strong>g parameters. The orig<strong>in</strong>al properties of the<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004 647<br />

Figure 3. Micrographs of 90% polyetheretherketone by weight <strong>and</strong> 10% hydroxyapatite<br />

by weight s<strong>in</strong>tered us<strong>in</strong>g selective laser s<strong>in</strong>ter<strong>in</strong>g. The bond<strong>in</strong>g between<br />

granules of particles is clearly observed, <strong>in</strong>dicat<strong>in</strong>g the formation of microporosity<br />

with<strong>in</strong> the structure. The surface topography of the powder is irregular <strong>and</strong> rough.<br />

biomaterial are well conserved because no heat<strong>in</strong>g process<br />

is imposed on the scaffold material. Common RP techniques<br />

employed <strong>in</strong>clude melt deposition [48], droplet<br />

deposition [49] <strong>and</strong> photopolymerization [50].<br />

Melt deposition techniques<br />

The operat<strong>in</strong>g pr<strong>in</strong>ciple of these techniques, of which FDM<br />

is an example, is presented above.<br />

FDM: Bose et al. [48] produced alum<strong>in</strong>a <strong>and</strong> b-TCP<br />

ceramic scaffolds with pore sizes <strong>in</strong> the range of 300–500 mm<br />

<strong>and</strong> porosity of 25–45%. The moulds were made us<strong>in</strong>g a<br />

st<strong>and</strong>ard thermoplastic polymer. Their research aimed to<br />

<strong>in</strong>vestigate the effect of pore size <strong>and</strong> porosity on the<br />

mechanical <strong>and</strong> biological responses.<br />

Droplet deposition technique<br />

This technique is based on <strong>in</strong>kjet pr<strong>in</strong>t<strong>in</strong>g technology. A<br />

stream of molten thermoplastic droplets is deposited on a<br />

work<strong>in</strong>g surface. Thermal energy <strong>in</strong> the deposited droplet<br />

causes local melt<strong>in</strong>g on the previous layer <strong>and</strong> solidifies as<br />

one piece.<br />

Droplet deposition is a complex <strong>in</strong>teraction of droplet<br />

spread<strong>in</strong>g upon impact, settl<strong>in</strong>g as a result of viscous <strong>and</strong><br />

surface-tension forces, <strong>and</strong> a solidification process. A<br />

representative system is the ModelMakerIIe (MMII) [20].<br />

MMII: This mach<strong>in</strong>e uses a s<strong>in</strong>gle jet each for a plastic<br />

build<strong>in</strong>g material <strong>and</strong> a wax-like support material, which<br />

are held <strong>in</strong> a melted liquid state <strong>in</strong> reservoirs. The pr<strong>in</strong>ter<br />

head ejects droplets of the materials as they are moved <strong>in</strong><br />

X-Y fashion. After an entire layer of the object has<br />

hardened, a mill<strong>in</strong>g head is passed over the layer to<br />

ensure that a uniform thickness has been achieved.<br />

Taboas et al. [51] produced PLLA scaffolds with micro<strong>and</strong><br />

macroporosity for bone <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g, <strong>in</strong> this case<br />

specifically trabecular bone. The global pores (500 mm<br />

wide channels) were computationally designed, whereas<br />

the local pores (50–100 mm wide voids) were formed by the<br />

porogen. PLA–PGA discrete composites were made us<strong>in</strong>g<br />

melt process<strong>in</strong>g.


648<br />

MMII is selected by researchers to fabricate calcium<br />

phosphate scaffolds because the build<strong>in</strong>g material has a<br />

very low coefficient of thermal expansion. There will be<br />

m<strong>in</strong>imal risk of fracture due to coefficient of thermal<br />

expansion mismatch with the ceramic dur<strong>in</strong>g pyrolysis.<br />

Limpanuphap <strong>and</strong> Derby [52] fabricated TCP scaffolds<br />

with controlled <strong>in</strong>ternal porosity us<strong>in</strong>g a suspension of<br />

TCP <strong>in</strong> an acrylate b<strong>in</strong>der. A similar route was used to<br />

produce a polymer–TCP scaffold, which is believed to show<br />

more <strong>potential</strong> for cell adhesion. Wilson et al. [53]<br />

fabricated HA scaffolds with a def<strong>in</strong>ed macroarchitecture.<br />

Channels achieved are w350–400 mm wide. These authors<br />

suggested that the <strong>in</strong>herent surface texture obta<strong>in</strong>ed from<br />

an MMII-built mould <strong>in</strong>creased the surface area of the<br />

scaffold <strong>and</strong> led to a higher degree of calcium <strong>and</strong> phosphate<br />

release, which is advantageous to bone formation.<br />

Sachlos et al. [54] have successfully produced collagen<br />

scaffolds with predef<strong>in</strong>ed <strong>and</strong> reproducible <strong>in</strong>ternal channels.<br />

The smallest channel width achieved was reported to<br />

be as low as 135 mm. In a variation to Sachlos’ work, the<br />

authors have produced chitosan-collagen scaffolds. MMII<br />

moulds with <strong>in</strong>tricate channels were built to conta<strong>in</strong> a<br />

chitosan–collagen solution. The resultant gel-like scaffold<br />

was capable of atta<strong>in</strong><strong>in</strong>g the designed morphology<br />

(Figure 4). These channels can serve as flow channels<br />

when coupled with a customized bioreactor, achiev<strong>in</strong>g<br />

more efficient perfusion of the culture medium.<br />

Photopolymerization techniques<br />

For photopolymerization techniques, optical energy is<br />

applied to irradiate the th<strong>in</strong> layer at the surface of a<br />

liquid photopolymer res<strong>in</strong>. The irradiation areas of<br />

res<strong>in</strong> react chemically <strong>and</strong> transform <strong>in</strong>to a solid<br />

phase. A well-known photopolymerization technique is<br />

stereolithography (SLA) [20].<br />

SLA: A UV laser traces out the first layer of photocurable<br />

res<strong>in</strong>, solidify<strong>in</strong>g the model’s cross-section while<br />

leav<strong>in</strong>g the rema<strong>in</strong><strong>in</strong>g areas <strong>in</strong> liquid form. The elevator<br />

then drops by a sufficient amount to cover the solid<br />

polymer with another layer of liquid res<strong>in</strong>. A sweeper<br />

recoats the solidified layer with liquid res<strong>in</strong> <strong>and</strong> the laser<br />

traces the second layer atop the first.<br />

Chu et al. [50] have produced HA-based porous implants<br />

us<strong>in</strong>g SLA-built epoxy moulds. A thermal curable HA–<br />

acrylate suspension was cast <strong>in</strong>to the mould to obta<strong>in</strong> a<br />

scaffold with <strong>in</strong>terconnected channels. The resolution of<br />

channel width achieved was as low as 366 mm.<br />

In another study, <strong>in</strong>vestigators carried out an <strong>in</strong> vivo<br />

study us<strong>in</strong>g two different architecture designs, orthogonal<br />

Figure 4. Scaffold (right) produced us<strong>in</strong>g ModelMakerIIe-built mould (left). The<br />

scaffold is able to reproduce the predeterm<strong>in</strong>ed morphology of the mould. The<br />

channels ensure high diffusion efficiency across the scaffold.<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

<strong>and</strong> radial channels [55]. The prelim<strong>in</strong>ary results showed<br />

that controll<strong>in</strong>g the overall geometry of the regenerated<br />

bone <strong>tissue</strong> was possible through the <strong>in</strong>ternal architectural<br />

design of the scaffolds.<br />

Challenges of RP <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

In spite of the <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest of <strong>tissue</strong> eng<strong>in</strong>eers <strong>in</strong> the<br />

use of RP, there are several <strong>challenges</strong> that need to be<br />

addressed, namely the limited range of materials, the<br />

optimal scaffold design, the bioactivity of the scaffold, as<br />

well as the issues of cell seed<strong>in</strong>g <strong>and</strong> vascularization. Each<br />

of the issues will be discussed <strong>in</strong> detail.<br />

Range of materials<br />

Material processability: RP techniques are very<br />

specialized technologies <strong>in</strong> terms of material processability.<br />

Each technique requires a specific form of <strong>in</strong>put<br />

material such as filament, powder, solid pellet or solution.<br />

Therefore, it must be ensured that the choice of materials<br />

for the scaffold is compatible with the selected RP process<br />

<strong>and</strong> that it can be efficiently produced <strong>in</strong> the form<br />

required. Other considerations dur<strong>in</strong>g the selection of<br />

materials <strong>in</strong>clude the degradation profile <strong>and</strong> the mechanical<br />

strength of the scaffold.<br />

Degradation rate: In an ideal case, the scaffold should<br />

be remodeled <strong>and</strong> resorbed by grow<strong>in</strong>g cells <strong>and</strong> gradually<br />

replaced by the newly formed extracellular matrix <strong>and</strong><br />

differentiated cells. A desirable feature would be synchronization<br />

of the polymer degradation rate with the rate of<br />

<strong>tissue</strong> <strong>in</strong>growth. Therefore, the degradation properties of a<br />

scaffold are of crucial importance for the success of the<br />

scaffold-based approach.<br />

The degradation–absorption mechanism is the result of<br />

many <strong>in</strong>terrelated factors, <strong>in</strong>clud<strong>in</strong>g the hydrophilicity of<br />

the polymer backbone, degree of crystall<strong>in</strong>ity, presence<br />

of catalysts, volume of porosity <strong>and</strong> the surface area.<br />

Balanc<strong>in</strong>g each of these factors will enable an implant to<br />

degrade slowly <strong>and</strong> transfer stress at an appropriate rate<br />

to the surround<strong>in</strong>g <strong>tissue</strong>s as they heal. This is one of the<br />

major <strong>challenges</strong> fac<strong>in</strong>g <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g research today.<br />

Degradation product: Even though degradation<br />

products of biodegradable polymers are known to be<br />

largely non-cytotoxic, little <strong>in</strong>formation is available<br />

regard<strong>in</strong>g the degradation rate-dependent acidic byproduct<br />

effect of the scaffold. Sunga et al. [56] found that fast<br />

degradation of the polymer negatively affects cell viability<br />

<strong>and</strong> migration <strong>in</strong>to the scaffold, both <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo.<br />

This can be expla<strong>in</strong>ed by the rapid local acidification due<br />

to polymer degradation. Therefore, a more systematic<br />

<strong>in</strong>vestigative approach is needed to classify the material<br />

degradation profile.<br />

Mechanical strength of scaffolds: Cells are able to<br />

detect with high sensitivity the mechanical properties of<br />

the adhesion substrate, <strong>and</strong> to regulate <strong>in</strong>tegr<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

<strong>and</strong> the assembly of focal adhesion plaques <strong>and</strong> the<br />

cytoskeleton accord<strong>in</strong>gly [57]. If the adhesion substrate<br />

is too rigid <strong>and</strong> nondeformable, the cells are not able to<br />

reorganize <strong>and</strong> recruit the receptors <strong>in</strong>to focal adhesion<br />

plaques, which is a prerequisite for the delivery of signals,<br />

ensur<strong>in</strong>g the viability of anchorage-dependent cells.<br />

Similarly, if the material is too compliant, it does not


enable the anchorage of cells, ow<strong>in</strong>g to the <strong>in</strong>ability to<br />

resist the tractional forces generated by the assembl<strong>in</strong>g<br />

cytoskeleton.<br />

Scaffold architecture design<br />

Pore size: The diverse nature of <strong>tissue</strong>s requires<br />

different optimal pore size for different types of <strong>tissue</strong>.<br />

Despite numerous proof-of-concept studies exhibit<strong>in</strong>g the<br />

existence of an optimal range of pore size for different cell<br />

types [58–60], little is known about specific optimal pore<br />

sizes for particular types of cell. Therefore, the pore size<br />

selected is governed by general empirical guidel<strong>in</strong>es.<br />

Scaffold morphology: RP-fabricated scaffolds generally<br />

present many edges <strong>and</strong> grooves. The effect of these<br />

discont<strong>in</strong>uities <strong>in</strong> topography might affect the adhesion<br />

<strong>and</strong> migration of cells, as shown by Y<strong>in</strong>’s work. Y<strong>in</strong> et al.<br />

[61] grew cardiac cells on microgrooved elastic scaffolds to<br />

<strong>in</strong>vestigate the topography-driven changes <strong>in</strong> cardiac<br />

electromechanics. The grooves are 50 mm <strong>in</strong> depth <strong>and</strong><br />

120 mm <strong>in</strong> width. These authors demonstrated a direct<br />

<strong>in</strong>fluence of the microstructure on cardiac function <strong>and</strong><br />

susceptibility to arrhythmias via calcium-dependent<br />

mechanisms.<br />

Surface topography: The surface roughness of the<br />

scaffold is important <strong>in</strong> cell–matrix <strong>in</strong>teractions. The<br />

rough powder surface produced from powder-based RP<br />

techniques might enhance cell adhesion. However, if the<br />

surface is too rough, the cells adher<strong>in</strong>g to these materials<br />

might not be able to develop dist<strong>in</strong>ct focal adhesion<br />

plaques or bridge the irregularities. Moreover, the sharpness<br />

of the surface could damage the cell physically. In<br />

certa<strong>in</strong> RP systems, such as FDM <strong>and</strong> bioplotter, the<br />

smooth surface of solidified materials cannot ensure firm<br />

cell adhesion <strong>and</strong> therefore require further surface<br />

modification or coat<strong>in</strong>g.<br />

Bioactivity of RP-fabricated scaffolds<br />

The <strong>in</strong>teraction of cells with the scaffold is governed by<br />

both structural <strong>and</strong> chemical signal<strong>in</strong>g molecules that<br />

have a decisive role for cell adhesion <strong>and</strong> the further<br />

behavior of cells after <strong>in</strong>itial contact [62].<br />

The extent of <strong>in</strong>itial cell adhesion decides the number,<br />

size, shape <strong>and</strong> distribution of focal adhesion plaques<br />

formed on the cell membrane, which subsequently<br />

describes the size <strong>and</strong> shape of the cell-spread<strong>in</strong>g area.<br />

The extent of spread<strong>in</strong>g is crucial for further migratory,<br />

proliferation <strong>and</strong> differentiation behavior of anchoragedependent<br />

cells.<br />

Current strategies to control the proliferation <strong>and</strong> other<br />

behaviors of cells on advanced biospecific materials<br />

<strong>in</strong>volve pattern<strong>in</strong>g the material surfaces with adhesive<br />

molecules or by <strong>in</strong>corporat<strong>in</strong>g a controlled release of<br />

biomolecules, such as natural growth factors, hormones,<br />

enzymes or synthetic cell cycle regulators.<br />

Some RP systems that have excluded high-temperature<br />

operation, such as MDM <strong>and</strong> bioplotter, offer the opportunity<br />

of <strong>in</strong>corporat<strong>in</strong>g the biomolecule dur<strong>in</strong>g the build<strong>in</strong>g<br />

cycle. However, further <strong>in</strong>formation, such as the type<br />

of biomolecule, the optimal concentration <strong>and</strong> spatial<br />

control of these biomolecules, is needed to produce the<br />

most favorable scaffold.<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004 649<br />

Cell seed<strong>in</strong>g <strong>and</strong> vascularization<br />

One significant challenge <strong>in</strong> the scaffold-based approach<br />

<strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g is to distribute a high density of cells<br />

efficiently <strong>and</strong> uniformly throughout the scaffold volume.<br />

The only Food <strong>and</strong> Drug Adm<strong>in</strong>istration-approved cell<br />

seed<strong>in</strong>g process <strong>in</strong>volves the use of a Petri dish. However,<br />

this method has been shown to fail to deliver cells deep<br />

<strong>in</strong>side the scaffold with uniform distribution [63–65].<br />

Therefore, the cellularization of a 3D scaffold is closely<br />

related to the advances of bioreactor technologies.<br />

Bioreactors are generally def<strong>in</strong>ed as devices <strong>in</strong> which<br />

biological <strong>and</strong>/or biochemical processes develop under<br />

closely monitored <strong>and</strong> tightly controlled operat<strong>in</strong>g conditions<br />

[66]. Types of bioreactor <strong>in</strong>clude the sp<strong>in</strong>ner flask,<br />

perfusion cartridge <strong>and</strong> rotary cell culture system [67].<br />

Each of the systems utilizes different physical pr<strong>in</strong>ciples<br />

<strong>and</strong> might necessitate specific design considerations <strong>in</strong><br />

terms of scaffold shape <strong>and</strong> strength.<br />

RP systems present great flexibility <strong>in</strong> scaffold design<br />

<strong>and</strong> development. RP-fabricated scaffolds can be designed<br />

to have <strong>in</strong>terconnected flow channels to fit <strong>in</strong>to the<br />

operation of the bioreactor, as displayed by the work of<br />

Sakai et al. [68].<br />

Sufficient vascularization of the scaffold, to ma<strong>in</strong>ta<strong>in</strong><br />

adequate perfusion, is a primary consideration <strong>in</strong> the<br />

eng<strong>in</strong>eer<strong>in</strong>g of large <strong>tissue</strong> constructs. <strong>Rapid</strong> <strong>and</strong> high<br />

levels of vascularization of the cell-seeded scaffold are<br />

essential to meet the challenge. One possible approach to<br />

achieve vascularization is by <strong>in</strong>corporat<strong>in</strong>g a growth<br />

factor <strong>in</strong>to the scaffold. Several angiogenic factors, such<br />

as vascular endothelial growth factor, fibroblast growth<br />

factor, epidermal growth factor, platelet-derived growth<br />

factors <strong>and</strong> transform<strong>in</strong>g growth factors, have been<br />

identified, <strong>and</strong> these promote the formation of new<br />

vascular beds from endothelial cells present with<strong>in</strong> <strong>tissue</strong>s<br />

[69]. Sheridan et al. [70] considered that the localization<br />

<strong>and</strong> controlled release of these factors from a matrix might<br />

br<strong>in</strong>g about enhanced vascularization of eng<strong>in</strong>eered<br />

<strong>tissue</strong>s.<br />

An alternative approach to enhance the rate of<br />

vascularization is to transplant endothelial cells onto the<br />

scaffold [71]. Experimental studies with rats have confirmed<br />

that the vascularization of matrices is accelerated<br />

with endothelial cell transplantation. The bioactivity of<br />

the scaffold has a crucial role <strong>in</strong> this approach.<br />

The RP fabrication method offers the flexibility <strong>and</strong><br />

capability to couple the design <strong>and</strong> development of a<br />

bioactive scaffold with the advances of cell-seed<strong>in</strong>g<br />

technologies, to enhance the success of scaffold-based<br />

<strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

New development: automation <strong>and</strong> direct organ<br />

fabrication<br />

Automated design, development <strong>and</strong> characterization:<br />

RP has the <strong>potential</strong> of automat<strong>in</strong>g the design <strong>and</strong><br />

fabrication of patient-specific scaffolds. In the work of<br />

Cheah et al. [72], computer-aided design (CAD) data<br />

manipulation techniques were utilized to develop a<br />

program algorithm that can be used to design scaffold<br />

<strong>in</strong>ternal architectures from a selection of open-celled<br />

polyhedral shapes. The automated scaffold assembly


650<br />

algorithm can be <strong>in</strong>terfaced with various RP technologies,<br />

to achieve automated production of scaffolds.<br />

Because RP processes offer complete user control <strong>in</strong><br />

terms of the structural features of the scaffold, it is<br />

therefore possible to characterize the scaffold us<strong>in</strong>g an<br />

automated algorithm. A computer-aided characterization<br />

approach can be applied to predict the effective mechanical<br />

properties of scaffolds <strong>and</strong> also to <strong>in</strong>vestigate the effect<br />

of design <strong>and</strong> process parameters on the structural<br />

properties of the scaffolds. Fang et al. [73] characterized<br />

the effective mechanical properties of porous PCL scaffolds<br />

manufactured by PED us<strong>in</strong>g a computational algorithm<br />

for f<strong>in</strong>ite element implementation <strong>and</strong> numerical solution<br />

of asymptotic homogenization theory.<br />

The ease of scaffold fabrication us<strong>in</strong>g RP provides a<br />

straightforward way to study the cell–matrix <strong>in</strong>teraction.<br />

The effects of material rigidity, surface topography <strong>and</strong><br />

roughness, pore size <strong>and</strong> architecture can be <strong>in</strong>vestigated<br />

<strong>in</strong>dependently to ga<strong>in</strong> more <strong>in</strong>sight <strong>in</strong>to cell behavior.<br />

Recent studies have displayed a new school of thought,<br />

us<strong>in</strong>g the concept of layered manufactur<strong>in</strong>g techniques to<br />

produce an organ directly. These new technologies <strong>in</strong>clude<br />

organ pr<strong>in</strong>t<strong>in</strong>g [74–76], laser pr<strong>in</strong>t<strong>in</strong>g of cells [77],<br />

photopattern<strong>in</strong>g of hydrogel [78] <strong>and</strong> microfluidics technology<br />

[79].<br />

Organ pr<strong>in</strong>t<strong>in</strong>g: Bol<strong>and</strong> et al. [76] developed a cell<br />

pr<strong>in</strong>ter to implement the technology. The device is capable<br />

of pr<strong>in</strong>t<strong>in</strong>g s<strong>in</strong>gle cells, cell aggregates <strong>and</strong> the supportive<br />

thermoreversible gel that serves as ‘pr<strong>in</strong>t<strong>in</strong>g paper’. These<br />

authors demonstrated the feasibility of this technique by<br />

pr<strong>in</strong>t<strong>in</strong>g a tubular collagen gel with bov<strong>in</strong>e aortal<br />

endothelial cells.<br />

Laser pr<strong>in</strong>t<strong>in</strong>g of cells: A laser-based pr<strong>in</strong>ter, termed<br />

matrix-assisted pulsed laser evaporation direct write<br />

(MAPLE DW), was used to deposit micron-scale patterns<br />

of pluripotent embryonic carc<strong>in</strong>oma cells onto th<strong>in</strong> layers<br />

of hydrogel [77]. A cell viability of 95% was reported.<br />

Photopattern<strong>in</strong>g of hydrogels: Valerie <strong>and</strong> Sangeeta<br />

[78] adapted photolithographic techniques from the silicon<br />

chip <strong>in</strong>dustry. The process starts with fill<strong>in</strong>g a Teflon base<br />

with a th<strong>in</strong> layer of polymer solution loaded with cells. UV<br />

light is shone through a patterned template atop the th<strong>in</strong><br />

film, cur<strong>in</strong>g the exposed polymer that sets with cells<br />

<strong>in</strong>side. Complex 3D structures, conta<strong>in</strong><strong>in</strong>g regions of<br />

different cells, can be built by us<strong>in</strong>g different templates<br />

<strong>and</strong> add<strong>in</strong>g layers atop each other.<br />

Microfluidics technology: Tan <strong>and</strong> Desai [79]<br />

reported a layer-by-layer microfluidic method to build a<br />

3D heterogeneous multiplayer <strong>tissue</strong>-like structure <strong>in</strong>side<br />

microchannels. This approach extends the 2D cell pattern<strong>in</strong>g<br />

technique <strong>in</strong>to the vertical axis, <strong>in</strong>volv<strong>in</strong>g immobilization<br />

of a cell–matrix assembly, cell–matrix<br />

contraction <strong>and</strong> pressure-driven microfluidic delivery<br />

processes.<br />

Conclusion<br />

The emergence of various different approaches <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g, rang<strong>in</strong>g from a scaffold-based approach to<br />

scaffold-free layer-by-layer manufactur<strong>in</strong>g technique, has<br />

highlighted the fact that the field of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g is<br />

still grow<strong>in</strong>g. Look<strong>in</strong>g towards the future, RP technologies<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

hold great <strong>potential</strong> <strong>in</strong> the context of scaffold fabrication.<br />

This technology enables the <strong>tissue</strong> eng<strong>in</strong>eer to have full<br />

control over the design, fabrication <strong>and</strong> model<strong>in</strong>g of the<br />

scaffold be<strong>in</strong>g constructed, provid<strong>in</strong>g a systematic learn<strong>in</strong>g<br />

channel for <strong>in</strong>vestigat<strong>in</strong>g cell–matrix <strong>in</strong>teractions.<br />

Additionally, <strong>in</strong>direct RP methods, coupled with conventional<br />

pore-form<strong>in</strong>g techniques, further exp<strong>and</strong> the range<br />

of materials that can be used <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

Inspired by the additive nature of layered manufactur<strong>in</strong>g,<br />

the layer-by-layer fabrication method underl<strong>in</strong>es the<br />

future development of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Further development<br />

<strong>and</strong> advances <strong>in</strong> RP <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g require<br />

the design of new materials, optimal scaffold design <strong>and</strong><br />

the <strong>in</strong>put of enhanced knowledge of cell physiology,<br />

<strong>in</strong>clud<strong>in</strong>g optimal cell seed<strong>in</strong>g <strong>and</strong> vascularization, so as<br />

to enable the <strong>tissue</strong> eng<strong>in</strong>eer to lay down more specific<br />

design requirements. Nevertheless, RP is a promis<strong>in</strong>g<br />

c<strong>and</strong>idate, serv<strong>in</strong>g as a methodical <strong>in</strong>terface between<br />

<strong>tissue</strong> <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

References<br />

1 Langer, R. <strong>and</strong> Vacanti, J. (1993) Tissue eng<strong>in</strong>eer<strong>in</strong>g. Science 260,<br />

920–926<br />

2 Sonal, L. et al. (2001) Tissue eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> its <strong>potential</strong> impact on<br />

surgery. World J. Surg. 25, 1458–1466<br />

3 Jennifer, J.M. et al. (1998) Transplantation of cells <strong>in</strong> matrices for<br />

<strong>tissue</strong> regeneration. Adv. Drug Deliv. Rev. 33, 165–182<br />

4 Kim, B.S. et al. (2001) Development of biocompatible synthetic<br />

extracellular matrices for <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Trends Biotechnol. 16,<br />

224–230<br />

5 Leong, K.F. et al. (2003) Solid freeform fabrication of three-dimensional<br />

scaffolds for eng<strong>in</strong>eer<strong>in</strong>g replacement <strong>tissue</strong>s <strong>and</strong> organs.<br />

Biomaterials 24, 2363–2378<br />

6 Mikos, A.G. et al. (1994) Preparation <strong>and</strong> characterization of poly<br />

(L-lactic acid) foam. Polymer 35, 1068–1077<br />

7 Mooney, D.J. et al. (1996) Novel approach to fabricate porous sponge of<br />

poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.<br />

Biomaterials 17, 1417–1422<br />

8 Freed, L.E. et al. (1994) Biodegradable polymer scaffolds for <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Biotechnology (N. Y.) 12, 689–693<br />

9 Lo, H. et al. (1995) Fabrication of controlled release biodegradable<br />

foams by phase separation. Tissue Eng. 1, 15–28<br />

10 Thomson, J.I. et al. (1995) Fabrication of biodegradable polymer<br />

scaffolds to eng<strong>in</strong>eer<strong>in</strong>g trabecular bone. J. Biomater. Sci. Polym. Ed.<br />

7, 23–28<br />

11 Whang, K. et al. (1995) A novel method to fabricate bioabsorbable<br />

scaffolds. Polym. 36, 837<br />

12 Hsu, Y.Y. et al. (1997) Effect of polymer foam morphology <strong>and</strong> density<br />

on k<strong>in</strong>etics of <strong>in</strong> vitro controlled release of ionized from compressed<br />

foam matrices. J. Biomed Mater Sci 35, 107–116<br />

13 Kim, B.S. <strong>and</strong> Mooney, D.J. (1998) Eng<strong>in</strong>eer<strong>in</strong>g smooth muscle <strong>tissue</strong><br />

with a predef<strong>in</strong>ed structure. J. Biomed. Mater. Res. 41, 322–332<br />

14 Ho, M.H. et al. (2004) Preparation of porous scaffolds by us<strong>in</strong>g freezeextraction<br />

<strong>and</strong> freeze-gelation methods. Biomaterials 25, 129–138<br />

15 Murphy, W.L. et al. (2002) Salt fusion: an approach to improve pore<br />

<strong>in</strong>terconnectivity with<strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g scaffold. Tissue Eng. 8,<br />

43–52<br />

16 Chen, V.J. <strong>and</strong> Ma, P.X. (2004) Nano-fibrous poly(L-lactic acid)<br />

scaffolds with <strong>in</strong>terconnected spherical macropores. Biomaterials 25,<br />

2065–2073<br />

17 Gross, K.A. <strong>and</strong> Rodríguez-Lorenzo, L.M. (2004) Biodegradable<br />

composite scaffolds with an <strong>in</strong>terconnected spherical network for<br />

bone <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Biomaterials 25, 4955–4962<br />

18 Yang, S. et al. (2001) The design of scaffolds for use <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Part I. Traditional factors. Tissue Eng. 7, 679–689<br />

19 Yang, S. et al. (2002) The design of scaffolds for use <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Part II. <strong>Rapid</strong> <strong>prototyp<strong>in</strong>g</strong> techniques. Tissue Eng. 8,<br />

1–11


20 Chua, C.K. et al. (2003) <strong>Rapid</strong> Prototyp<strong>in</strong>g Pr<strong>in</strong>ciples <strong>and</strong> Applications,<br />

World Scientific<br />

21 Ze<strong>in</strong>, I. et al. (2002) Fused deposition model<strong>in</strong>g of novel scaffold<br />

architectures for <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g applications. Biomaterials 23,<br />

1169–1185<br />

22 Samar, J.K. et al. (2003) Development of controlled porosity polymerceramic<br />

composite scaffolds via fused deposition model<strong>in</strong>g. Mater Sci<br />

Eng C23, 611–620<br />

23 Ramakrishma, S. et al. (2001) Biomedical applications of polymercomposite<br />

materials: a review. Compos. Sci. Technol. 61, 1189–1224<br />

24 Endres, M. et al. (2003) Osteogenic <strong>in</strong>duction of human bone marrowderived<br />

mesenchymal progenitor cells <strong>in</strong> novel synthetic polymerhydrogel<br />

matrices. Tissue Eng. 9, 689–702<br />

25 Tienen, T.G.V. et al. (2002) Tissue <strong>in</strong>growth <strong>and</strong> degradation of two<br />

biodegradable porous polymers with different porosities <strong>and</strong> pore size.<br />

Biomaterials 23, 1731–1738<br />

26 Woodfield, T.B.G. et al. (2004) Design of porous scaffolds for cartilage<br />

<strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g us<strong>in</strong>g a three-dimensional fiber-deposition technique.<br />

Biomaterials 25, 4149–4161<br />

27 Wang, F. et al. (2004) Precision extrud<strong>in</strong>g deposition <strong>and</strong> characterization<br />

of cellular poly-3-Caprolactone <strong>tissue</strong> scaffolds. <strong>Rapid</strong> Prototyp<strong>in</strong>g<br />

J 10, 42–49<br />

28 Zhuo, X. et al. (2001) Fabrication of porous poly(L-lactic acid) scaffolds<br />

for born <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g via precise extrusion. Scripta Mater. 45,<br />

773–779<br />

29 Zhuo, X. et al. (2002) Fabrication of porous scaffolds for bone <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g via low-temperature deposition. Scripta Mater. 46,<br />

771–776<br />

30 Zhuo, X. et al. (2003) Layered manufactur<strong>in</strong>g of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

scaffolds via multi-nozzle deposition. Mater. Lett. 57, 2623–2628<br />

31 Vozzi, G. et al. (2002) Microsyr<strong>in</strong>ge-based deposition of two-dimensional<br />

<strong>and</strong> three-dimensional polymer scaffolds with a well-def<strong>in</strong>ed<br />

geometry for application to <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Tissue Eng. 8,<br />

1089–1098<br />

32 Cesarano, J. <strong>and</strong> Calvert, P. (2000) Freeform<strong>in</strong>g objects with lowb<strong>in</strong>der<br />

slurry. US Patent 6,027,326<br />

33 Vozzi, G. et al. (2003) Fabrication of PLGA scaffolds us<strong>in</strong>g soft<br />

lithography <strong>and</strong> microsyr<strong>in</strong>ge deposition. Biomaterials 24, 2533–2540<br />

34 Therriault, D. et al. (2003) Chaotic mix<strong>in</strong>g <strong>in</strong> three-dimensional<br />

microvascular networks fabricated by direct-write assembly. Nat.<br />

Mater. 2, 265–271<br />

35 L<strong>and</strong>ers, R. <strong>and</strong> Mülhaupt, R. (2000) Desktop manufactur<strong>in</strong>g of<br />

complex objects, prototypes <strong>and</strong> biomedical scaffolds by means of<br />

computer-assisted design comb<strong>in</strong>ed with computer-guided 3D plott<strong>in</strong>g<br />

of polymers <strong>and</strong> reactive oligomers. Macromol. Mater. Eng. 282, 17–21<br />

36 Ang, T.H. et al. (2002) Fabrication of 3D chitosan-hydroxyapatite<br />

scaffolds us<strong>in</strong>g a robotic dispens<strong>in</strong>g system. Mater. Sci. Eng. C 20,<br />

35–42<br />

37 L<strong>and</strong>ers, R. et al. (2002) Fabrication of soft <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

scaffolds by means of rapid <strong>prototyp<strong>in</strong>g</strong> techniques. J. Mater. Sci. 37,<br />

3107–3116<br />

38 L<strong>and</strong>ers, R. et al. (2002) <strong>Rapid</strong> <strong>prototyp<strong>in</strong>g</strong> of scaffolds derived from<br />

thermoreversible hydrogels <strong>and</strong> tailored for applications <strong>in</strong> <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Biomaterials 23, 4437–4447<br />

39 Wong, J.Y. et al. (2003) Directed movement of vascular smooth muscle<br />

cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913<br />

40 Flemm<strong>in</strong>g, R.G. et al. (1999) Effects of synthetic micro- <strong>and</strong> nanostructured<br />

surfaces on cell behavior. Biomaterials 20, 573–588<br />

41 Lam, C.X.F. et al. (2002) Scaffold development us<strong>in</strong>g 3D pr<strong>in</strong>t<strong>in</strong>g with<br />

a starch-based polymer. Mater. Sci. Eng. C 20, 49–56<br />

42 Griffith, L.G. <strong>and</strong> Naughton, G. (2002) Tissue eng<strong>in</strong>eer<strong>in</strong>g – current<br />

<strong>challenges</strong> <strong>and</strong> exp<strong>and</strong><strong>in</strong>g opportunities. Science 298, 1009–1014<br />

43 Calvert, J.W. <strong>and</strong> Weiss, L. (2001) Assembled scaffolds for threedimensional<br />

cell cultur<strong>in</strong>g <strong>and</strong> <strong>tissue</strong> regeneration. US Patent<br />

6,143,293<br />

44 Kim, S.S. et al. (1998) Survival <strong>and</strong> function of hepatocytes on a novel<br />

three-dimensional synthetic biodegradable polymeric scaffold with an<br />

<strong>in</strong>tr<strong>in</strong>sic network of channels. Ann. Surg. 228, 8–13<br />

45 Zelt<strong>in</strong>ger, J. et al. (2001) Effect of pore size <strong>and</strong> void fraction on cellular<br />

adhesion, proliferation <strong>and</strong> matrix deposition. Tissue Eng. 7, 557–572<br />

46 Vail, N.K. et al. (1999) Materials for biomedical applications. Mater.<br />

Des. 20, 123–132<br />

www.sciencedirect.com<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004 651<br />

47 Tan, K.H. et al. (2003) Scaffold development us<strong>in</strong>g selective laser<br />

s<strong>in</strong>ter<strong>in</strong>g of polyetheretherketone-hydroxyapatite biocomposite<br />

blends. Biomaterials 24, 3115–3123<br />

48 Bose, S. et al. (2003) Pore size <strong>and</strong> pore volume effects on alum<strong>in</strong>a <strong>and</strong><br />

TCP ceramic scaffolds. Mater. Sci. Eng. C 23, 479–486<br />

49 Sachlos, E. <strong>and</strong> Czernuska, J.T. (2003) Mak<strong>in</strong>g <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

scaffolds work. Review on the application of solid freeform fabrication<br />

technology to the production of <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g scaffolds. Eur Cell<br />

Mater 5, 29–40<br />

50 Chu, T.M.G. et al. (2001) Hydroxyapatite implants with designed<br />

<strong>in</strong>ternal architecture. J. Mater. Sci. Mater. Med. 12, 471–478<br />

51 Taboas, J.M. et al. (2003) Indirect SFF fabrication of local <strong>and</strong> global<br />

porous, biomimetic <strong>and</strong> composite 3D polymer-ceramic scaffolds.<br />

Biomaterials 24, 181–194<br />

52 Limpanuphap, S. <strong>and</strong> Derby, B. (2002) Manufacture of biomaterials by<br />

a novel pr<strong>in</strong>t<strong>in</strong>g process. J. Mater. Sci. Mater. Med. 13, 1163–1166<br />

53 Wilson, C.E. et al. (2004) Design <strong>and</strong> fabrication of st<strong>and</strong>ardized<br />

hydroxyapatite scaffolds with a def<strong>in</strong>ed macro-architecture by rapid<br />

<strong>prototyp<strong>in</strong>g</strong> for bone-<strong>tissue</strong>-eng<strong>in</strong>eer<strong>in</strong>g research. J. Biomed. Mater.<br />

Res. 68A, 123–132<br />

54 Sachlos, E. et al. (2003) Novel collagen scaffolds with predef<strong>in</strong>ed<br />

<strong>in</strong>ternal morphology made by solid freeform fabrication. Biomaterials<br />

24, 1487–1497<br />

55 Chu, T.M.G. et al. (2002) Mechanical <strong>and</strong> <strong>in</strong> vivo performance of<br />

hydroxyapatite implants with controlled architectures. Biomaterials<br />

23, 1283–1293<br />

56 Sung, H. et al. (2004) The effect of scaffold degradation rate on threedimensional<br />

cell growth <strong>and</strong> angiogenesis. Biomaterials 25,<br />

5735–5742<br />

57 Wang, N. et al. (2001) Mechanical behavior <strong>in</strong> liv<strong>in</strong>g cells consistent<br />

with the tensegrity model. Proc. Natl. Acad. Sci. U. S. A. 98,<br />

7765–7770<br />

58 Ranucci, C.S. et al. (2000) Control of hepatocyte function on collagen<br />

foams: siz<strong>in</strong>g matrix pores for selective <strong>in</strong>duction of 2-D <strong>and</strong> 3-D<br />

morphogenesis. Biomaterials 21, 783–793<br />

59 Dalton, B.A. et al. (1999) Modulation of corneal epithelial stratification<br />

by polymer surface topography. J. Biomed. Mater. Res. 45,<br />

384–394<br />

60 Bignon, A. et al. (2003) Effect of micro- <strong>and</strong> macroporosity of bone<br />

substitutes on their mechanical properties <strong>and</strong> cellular response.<br />

J. Mater. Sci. Mater. Med. 14, 1089–1097<br />

61 Y<strong>in</strong>, L. et al. (2004) Scaffold topography alters <strong>in</strong>tracellular calcium<br />

dynamics <strong>in</strong> cultured cardiomyocyte networks. Am. J. Physiol. Heart<br />

Circ. Physiol. 287, H1276–H1285<br />

62 Bacakova, L. et al. (2004) Cell adhesion on artificial materials for<br />

<strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Physiol. Res. 53, S35–S45<br />

63 Li, Y. et al. (2001) Effects of filtration seed<strong>in</strong>g on cell density, spatial<br />

distribution, <strong>and</strong> proliferation <strong>in</strong> nonwoven fibrous matrices. Biotechnol.<br />

Prog. 17, 935–944<br />

64 Xiao, Y.L. et al. (1999) Static <strong>and</strong> dynamic fibroblast seed<strong>in</strong>g <strong>and</strong><br />

cultivation <strong>in</strong> porous PEO/PBT scaffolds. J. Mater. Sci. Mater. Med. 10,<br />

773–777<br />

65 Kim, B.S. et al. (1998) Optimiz<strong>in</strong>g seed<strong>in</strong>g <strong>and</strong> culture methods to<br />

eng<strong>in</strong>eer smooth muscle <strong>tissue</strong> on biodegradable polymer matrices.<br />

Biotechnol. Bioeng. 57, 46–54<br />

66 Mart<strong>in</strong>, I. et al. (2004) The role of bioreactors <strong>in</strong> <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

Trends Biotechnol. 22, 80–86<br />

67 Goldste<strong>in</strong>, A.S. et al. (2001) Effect of convection on osteoblastic cell<br />

growth <strong>and</strong> function <strong>in</strong> biodegradable polymer foam scaffolds.<br />

Biomaterials 22, 1279–1288<br />

68 Sakai, Y. et al. (2004) A novel poly-L-lactic acid scaffold that possesses<br />

a macroporous structure <strong>and</strong> a branch<strong>in</strong>g/jo<strong>in</strong><strong>in</strong>g three-dimensional<br />

flow channel network: its fabrication <strong>and</strong> application to perfusion<br />

culture of human hepatoma Hep G2 cells. Mater. Sci. Eng. C 24,<br />

379–386<br />

69 Bouhadir, K.H. <strong>and</strong> Mooney, D.J. (2001) Promot<strong>in</strong>g angiogenesis <strong>in</strong><br />

eng<strong>in</strong>eered <strong>tissue</strong>s. J. Drug Target. 9, 397–406<br />

70 Sheridan, M.H. et al. (2000) Bioabsorbable polymer scaffolds for <strong>tissue</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g capable of susta<strong>in</strong>ed growth factor delivery. J. Control.<br />

Release 64, 91–102<br />

71 Holder, W.D. et al. (1997) Increased vascularization <strong>and</strong> heterogeneity<br />

of vascular structures occurr<strong>in</strong>g <strong>in</strong> polyglycolide matrices conta<strong>in</strong><strong>in</strong>g<br />

aortic endothelial cells implanted <strong>in</strong> the rat. Tissue Eng. 3, 149–160


652<br />

Review TRENDS <strong>in</strong> Biotechnology Vol.22 No.12 December 2004<br />

72 Cheah, C.M. et al. (2004) Automatic algorithm for generat<strong>in</strong>g complex<br />

polyhedral scaffold structures for <strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Tissue Eng. 10,<br />

595–610<br />

73 Fang, Z. et al. Computer-aided characterization for effective mechanical<br />

properties of porous <strong>tissue</strong> scaffolds. Comput Aided Design Article<br />

(<strong>in</strong> press)<br />

74 Mironov, V. et al. (2003) Organ pr<strong>in</strong>t<strong>in</strong>g: computer-aided jet-based 3D<br />

<strong>tissue</strong> eng<strong>in</strong>eer<strong>in</strong>g. Trends Biotechnol. 21, 157–161<br />

75 Wilson, W.C. <strong>and</strong> Bol<strong>and</strong>, T. (2003) Cell <strong>and</strong> organ pr<strong>in</strong>t<strong>in</strong>g 1: prote<strong>in</strong><br />

<strong>and</strong> cell pr<strong>in</strong>ters. Anat. Rec. 272A, 491–496<br />

Endeavour<br />

the quarterly magaz<strong>in</strong>e for the history<br />

<strong>and</strong> philosophy of science<br />

You can access Endeavour onl<strong>in</strong>e via<br />

ScienceDirect, where you’ll f<strong>in</strong>d a<br />

collection of beautifully illustrated<br />

articles on the history of science, book<br />

reviews <strong>and</strong> editorial comment.<br />

Featur<strong>in</strong>g<br />

76 Bol<strong>and</strong>, T. et al. (2003) Cell <strong>and</strong> organ pr<strong>in</strong>t<strong>in</strong>g 2: fusion of cells<br />

aggregates <strong>in</strong> three-dimensional gels. Anat. Rec. 272A, 497–502<br />

77 R<strong>in</strong>geisen, R.B. et al. (2004) Laser pr<strong>in</strong>t<strong>in</strong>g of pluripotent embryonal<br />

carc<strong>in</strong>oma cells. Tissue Eng. 10, 483–491<br />

78 Valerie, A.L. <strong>and</strong> Sangeeta, N.B. (2002) Three-dimensional photopattern<strong>in</strong>g<br />

of hydrogels conta<strong>in</strong><strong>in</strong>g liv<strong>in</strong>g cells. Biomed Microdevices<br />

4, 257–266<br />

79 Tan, W. <strong>and</strong> Desai, T.A. (2004) Layer-by-layer microfluidics for<br />

biomemitic three-dimensional structures. Biomaterials 25,<br />

1355–1364<br />

Sverre Petterssen <strong>and</strong> the Contentious (<strong>and</strong> Momentous) Weather Forecasts for D-Day, 6 June 1944 by J.R. Flem<strong>in</strong>g<br />

Food of Paradise: Tahitian breadfruit <strong>and</strong> the Autocritique of European Consumption by P. White <strong>and</strong> E.C. Spary<br />

Two Approaches to Etiology: The Debate Over Smok<strong>in</strong>g <strong>and</strong> Lung Cancer <strong>in</strong> the 1950s by M. Parasc<strong>and</strong>ola<br />

Sicily, or sea of tranquility? Mapp<strong>in</strong>g <strong>and</strong> nam<strong>in</strong>g the moon by J. Vertesi<br />

The Prehistory of the Periodic Table by D. Rouvray<br />

Two portraits of Edmond Halley by P. Fara<br />

<strong>and</strong> com<strong>in</strong>g soon<br />

Fight<strong>in</strong>g the ‘microbe of sport<strong>in</strong>g mania’: Australian science <strong>and</strong> Antarctic exploration <strong>in</strong> the early twentieth century<br />

by P. Roberts<br />

Learn<strong>in</strong>g from Education to Communicate Science as a Good Story by A. Negrete <strong>and</strong> C. Lartigue<br />

The Traffic <strong>and</strong> Display of Body Parts <strong>in</strong> the Early-19th Century by S. Alberti <strong>and</strong> S. Chapl<strong>in</strong><br />

The Rise, Fall <strong>and</strong> Resurrection of Group Selection by M. Borrello<br />

Pomet’s great ‘‘Compleat History of Drugs’’ by S. Sherman<br />

Sherlock Holmes: scientific detective by L. Snyder<br />

The Future of Electricity <strong>in</strong> 1892 by G.J.N. Gooday<br />

The First Personal Computer by J. November<br />

Baloonmania: news <strong>in</strong> the air by M.G. Kim<br />

www.sciencedirect.com<br />

<strong>and</strong> much, much more . . .<br />

Locate Endeavour on ScienceDirect (http://www.sciencedirect.com)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!