22.01.2013 Views

theoretical simulation of static and dynamic behavior

theoretical simulation of static and dynamic behavior

theoretical simulation of static and dynamic behavior

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Scientific Bulletin <strong>of</strong> the<br />

Politehnica University <strong>of</strong> Timisoara<br />

Transactions on Mechanics Special issue<br />

ABSTRACT<br />

The 6 th International Conference on<br />

Hydraulic Machinery <strong>and</strong> Hydro<strong>dynamic</strong>s<br />

Timisoara, Romania, October 21 - 22, 2004<br />

THEORETICAL SIMULATION OF STATIC AND DYNAMIC<br />

BEHAVIOR OF ELECTRO-HYDRAULIC SERVO VALVES<br />

Victor BALASOIU, Pr<strong>of</strong>.*<br />

Mircea Octavian POPOVICIU, Pr<strong>of</strong>.<br />

Department <strong>of</strong> Hydraulic Machinery<br />

Department <strong>of</strong> Hydraulic Machinery<br />

“Politehnica” University <strong>of</strong> Timisoara<br />

“Politehnica” University <strong>of</strong> Timisoara<br />

Ilare BORDEASU, Assoc. Pr<strong>of</strong>.<br />

Department <strong>of</strong> Hydraulic Machinery<br />

“Politehnica” University <strong>of</strong> Timisoara<br />

*: Bv Mihai Viteazu 1, 300222, Timisoara, Romania, Tel.: (+40) 256 403681,<br />

Fax: (+40) 256 403700, (+) 256 4030682, Email: balasoiu@mec.utt.ro, vbalasoiu@online.ro<br />

The electro-hydraulic servo-valves (EHSV) as interface<br />

in automatic hydraulic systems are in essence<br />

hydroelectric directional control valves with cylindrical<br />

spool, with integral reaction. The output quantity<br />

(flow rate, pressure) is modified proportional with<br />

the control signal (voltage, current) together link<br />

(electrical, hydraulic or mechanical). Both the manner<br />

in which the reaction signal is produced <strong>and</strong> the<br />

position <strong>of</strong> the information circuit where it is applied,<br />

characterises the type but also <strong>static</strong> <strong>and</strong> <strong>dynamic</strong><br />

<strong>behavior</strong> <strong>of</strong> the servo valve. The servo valves currently<br />

used for automatic hydraulic systems are those with<br />

two stages able to develop great output hydraulic<br />

powers for small input electrical signals.<br />

In the paper, on the basis <strong>of</strong> electro-hydraulic<br />

analogy it is developed the mathematical model able<br />

to give <strong>theoretical</strong> analyses <strong>of</strong> the <strong>static</strong> <strong>and</strong> <strong>dynamic</strong><br />

<strong>behavior</strong> for the main stage, the valve with the cylindrical<br />

spool. After the definition <strong>of</strong> the basic equations<br />

<strong>of</strong> the aggregate spool-distributor for zero clearances<br />

<strong>and</strong> overlaps it was analyzed the directional spool<br />

valve with radial clearances <strong>and</strong> zero overlap. Finally<br />

the generalized equation <strong>of</strong> the adjustment characteristic<br />

for flow rate [QM = f(yS)∆pM=0], pressure<br />

[∆pM = f(yS)QM = 0] <strong>and</strong> load [QM = f(∆pMyS)] for<br />

transition <strong>and</strong> laminar flow, with non-dimensional was<br />

plotted both for linear <strong>and</strong> non linear zones, taking<br />

into account the annular clearance J <strong>and</strong> the overlap<br />

range Yoi ≠ 0. For the pressure valve taken into con-<br />

sideration there have been deter-mined <strong>and</strong> plotted the<br />

adjustment characteristics [ QMA, B = f ( ∆p<br />

MA,<br />

B , YS<br />

) ],<br />

for the flowing directions A <strong>and</strong> B, for which there<br />

have been emphasized the influence <strong>of</strong> the overlap<br />

range Yoi <strong>and</strong> the clearance J over the linearity degree<br />

<strong>and</strong> the magnitude <strong>of</strong> the adjusted flow.<br />

The model <strong>of</strong> the <strong>dynamic</strong> equilibrium <strong>of</strong> the spool<br />

valve is defined starting with the computation <strong>of</strong> forces<br />

acting on the spool. Introducing the concept <strong>of</strong> interaction<br />

between the aggregate components nozzle-spooldistributor<br />

it was defined the mathematical model for<br />

the directional spool valve as a whole.<br />

After defining the transfer function, both analyze<br />

<strong>and</strong> syntheses <strong>of</strong> performances were possible for the<br />

considered servo valve, in terms <strong>of</strong> time or frequency.<br />

The frequency characteristics <strong>and</strong> the transfer function<br />

hodograph were plotted, putting into evidence the overlap<br />

degree Yoi, the input pressure at constant control<br />

electric current ∆ic or the control electric current for<br />

different constant input pressure. The analyze <strong>of</strong> the<br />

<strong>dynamic</strong> <strong>behavior</strong> in time had in view the computation<br />

<strong>of</strong> the response at a unitary step input by determining<br />

the <strong>behavior</strong> <strong>of</strong> the output magnitude <strong>and</strong> the position<br />

<strong>of</strong> the cylindrical spool YS(t). The variations <strong>of</strong> the<br />

output magnitude represent the solution <strong>of</strong> the linear<br />

differential equation that is describing the running <strong>of</strong><br />

the servo valve by an III degree transfer function,<br />

which was obtained in the present work.<br />

In the framework <strong>of</strong> the paper was worked out a<br />

unitary mathematical model for the servo-valve with<br />

two stage having pressure reaction permitting the study<br />

<strong>of</strong> the influence <strong>of</strong> geometrical <strong>and</strong> functional parameters<br />

upon the <strong>behavior</strong> <strong>of</strong> <strong>static</strong> <strong>and</strong> transient regimes.<br />

KEYWORDS<br />

Electro-hydraulic servo valves, spool-distributor,<br />

adjustment characteristics transfer function, mathematical<br />

model<br />

303


1. INTRODUCTION<br />

Electro hydraulic servo valves (EHSV) in current<br />

use for the automatic hydraulic systems are those with<br />

two stages able to develop great hydraulic power, for<br />

small input electric signals. Running with constant<br />

pressure, regardless <strong>of</strong> the constructive solution, they<br />

have a functional dependence between the flow <strong>and</strong><br />

the applied comm<strong>and</strong> current Q = f(∆iC), ensuring both<br />

a good stability <strong>and</strong> linearity. With the view to establish<br />

the <strong>dynamic</strong> <strong>and</strong> <strong>static</strong> characteristics, which are determined<br />

by a great number <strong>of</strong> physical, geometrical,<br />

electrical <strong>and</strong> mechanical parameters, there are taken<br />

into account the fundamental laws <strong>of</strong> mechanics <strong>and</strong><br />

hydraulics, completed with the automatic system theory.<br />

2. THEORETICAL ANALYSES OF THE<br />

DISTRIBUTION STAGE WITH LINEAR<br />

CYLINDRICAL SPOOL VALVE<br />

Appealing to the model introduced by W Backe [5]<br />

the stage spool valve-distributor body can be reduced<br />

to a scheme tip A + A, as is shown in Fig.1. For a<br />

permanent motion the continuity equation becomes:<br />

2.<br />

∆pi,<br />

e<br />

Q = αD.<br />

π.<br />

DS.<br />

(1)<br />

ρ<br />

304<br />

Utilizing the modified flow equation both for the<br />

α D = f ( ∆p,<br />

ν,<br />

Re , <strong>and</strong> the transition<br />

laminar ( )<br />

Q10<br />

= K Dj<br />

Q20<br />

= K Dj<br />

Q30<br />

= K Dj<br />

Q40<br />

= K Dj<br />

Qio<br />

i=1,<br />

2,3,<br />

4<br />

⎡<br />

( Y +<br />

2<br />

+<br />

2 ⎢<br />

S Y01)<br />

J<br />

⎢<br />

⎢⎣<br />

⎡<br />

( Y −<br />

2<br />

+<br />

2 ⎢<br />

S Y02<br />

) J<br />

⎢<br />

⎢⎣<br />

⎡<br />

( Y −<br />

2<br />

+<br />

2 ⎢<br />

S Y03)<br />

J<br />

⎢<br />

⎢⎣<br />

⎡<br />

( Y +<br />

2<br />

+<br />

2 ⎢<br />

S Y04<br />

) J<br />

⎢<br />

⎢⎣<br />

( Y + Y )<br />

S<br />

( Y − Y )<br />

S<br />

( Y − Y )<br />

S<br />

K<br />

2<br />

T<br />

2<br />

+<br />

2<br />

01 J<br />

( Y + Y )<br />

S<br />

K<br />

2<br />

T<br />

2<br />

+<br />

2<br />

01 J<br />

K<br />

2<br />

T<br />

2<br />

+<br />

2<br />

03 J<br />

K<br />

2<br />

T<br />

2<br />

+<br />

2<br />

04 J<br />

+<br />

+<br />

+<br />

+<br />

α D ,(Re=100…2500), introduced<br />

by H. Weule <strong>and</strong> H. J. Feigel [1], the equation (1)<br />

written for the directional control valve became:<br />

motion ( = f ( ∆p)<br />

( p − p )<br />

MA<br />

( p − p )<br />

03<br />

( p − p )<br />

MB<br />

( p − p )<br />

03<br />

Fig.1.<br />

Q = KD<br />

⎡<br />

2<br />

Yj<br />

+ 1⎢<br />

⎢<br />

⎣<br />

2<br />

K K<br />

⎤<br />

t t − ⎥<br />

2 2<br />

J j + 1 Yj<br />

+ 1⎥<br />

⎦<br />

(2)<br />

04<br />

MA<br />

03<br />

MB<br />

−<br />

−<br />

−<br />

−<br />

⎤<br />

KT<br />

⎥<br />

⎥<br />

( Y +<br />

2<br />

+<br />

2<br />

S Y01)<br />

J ⎥⎦<br />

⎤<br />

KT<br />

⎥<br />

⎥<br />

( Y −<br />

2<br />

+<br />

2<br />

S Y02<br />

) J ⎥⎦<br />

⎤<br />

KT<br />

⎥<br />

⎥<br />

( Y −<br />

2<br />

+<br />

2<br />

S Y03)<br />

J ⎥⎦<br />

⎤<br />

KT<br />

⎥<br />

⎥<br />

( Y +<br />

2<br />

+<br />

2<br />

S Y04<br />

) J ⎥⎦<br />

non zero overlaps linear zone non linear zone (4)<br />

Y < Y < Y<br />

Y S YSN<br />

YS <<br />

−YSN<br />

(3)


305<br />

Q10<br />

( ) ( )<br />

( ) ( ) ⎥ ⎥⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

2<br />

2<br />

01<br />

S<br />

T<br />

04<br />

MA<br />

04<br />

MA<br />

2<br />

2<br />

01<br />

S<br />

2<br />

T<br />

2<br />

2<br />

01<br />

Y<br />

S<br />

DJ<br />

2<br />

2<br />

01<br />

S<br />

T<br />

04<br />

MA<br />

04<br />

MA<br />

2<br />

2<br />

01<br />

S<br />

2<br />

T<br />

2<br />

2<br />

01<br />

Y<br />

S<br />

DJ<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

)<br />

Y<br />

(<br />

K<br />

-<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

)<br />

Y<br />

(<br />

K<br />

0<br />

Q20<br />

( ) ( )<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

−<br />

−<br />

−<br />

+<br />

+<br />

−<br />

+<br />

−<br />

J<br />

K<br />

-<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

K<br />

J<br />

.<br />

K<br />

-<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

T<br />

MA<br />

03<br />

MA<br />

T<br />

T<br />

03<br />

MA<br />

T<br />

03<br />

2<br />

2<br />

DJ<br />

2<br />

2<br />

02<br />

S<br />

MA<br />

03<br />

2<br />

2<br />

02<br />

S<br />

2<br />

2<br />

2<br />

02<br />

S<br />

DJ<br />

Q30<br />

( )<br />

( ) ( ) ⎥ ⎥⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

−<br />

2<br />

2<br />

03<br />

S<br />

2<br />

2<br />

03<br />

S<br />

2<br />

2<br />

2<br />

03<br />

S<br />

DJ<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

Y<br />

Y<br />

K<br />

T<br />

MB<br />

03<br />

MB<br />

03<br />

T<br />

–<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

+<br />

J<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

K<br />

K<br />

T<br />

2<br />

2<br />

T<br />

DJ MB<br />

03<br />

MB<br />

03<br />

Q40<br />

( ) ( )<br />

( ) ( ) ⎥ ⎥⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

2<br />

2<br />

04<br />

S<br />

MB<br />

2<br />

2<br />

04<br />

S<br />

2<br />

2<br />

2<br />

04<br />

S<br />

DJ<br />

2<br />

2<br />

04<br />

S<br />

MB<br />

2<br />

2<br />

04<br />

S<br />

2<br />

2<br />

2<br />

04<br />

S<br />

DJ<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

-<br />

J<br />

Y<br />

Y<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

p<br />

p<br />

J<br />

Y<br />

Y<br />

K<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

0<br />

T<br />

04<br />

04<br />

MB<br />

T<br />

T<br />

04<br />

04<br />

MB<br />

T<br />

(5)<br />

( )<br />

( )<br />

SN<br />

0i<br />

2<br />

2<br />

01<br />

S<br />

T<br />

MA<br />

03<br />

MA<br />

03<br />

2<br />

2<br />

01<br />

S<br />

2<br />

T<br />

2<br />

01<br />

J<br />

T<br />

MA<br />

03<br />

MA<br />

03<br />

2<br />

2<br />

T<br />

2<br />

SN<br />

03<br />

MN<br />

MA<br />

Y<br />

Y<br />

Y<br />

pentru<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

.<br />

.<br />

p<br />

p<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

p<br />

Y<br />

Y<br />

J<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

.<br />

p<br />

p<br />

J<br />

K<br />

1<br />

Y<br />

p<br />

1<br />

Q<br />

Q<br />

<<br />

<<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

+<br />

+<br />

−<br />

−<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

+<br />

+<br />

+<br />

=<br />

( )<br />

( )<br />

SN<br />

0i<br />

2<br />

2<br />

04<br />

S<br />

T<br />

2<br />

2<br />

04<br />

S<br />

2<br />

T<br />

2<br />

03<br />

2<br />

04<br />

J<br />

T<br />

2<br />

2<br />

T<br />

2<br />

SN<br />

03<br />

MN<br />

MB<br />

Y<br />

Y<br />

Y<br />

pentru<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

.<br />

p<br />

p<br />

J<br />

)<br />

Y<br />

Y<br />

(<br />

K<br />

)<br />

1<br />

Y<br />

(<br />

p<br />

Y<br />

Y<br />

J<br />

K<br />

)<br />

p<br />

p<br />

(<br />

sign<br />

.<br />

p<br />

p<br />

J<br />

K<br />

1<br />

Y<br />

p<br />

1<br />

Q<br />

Q<br />

MB<br />

03<br />

MB<br />

03<br />

SN<br />

04<br />

MB<br />

04<br />

MB<br />

<<br />

<<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

+<br />

+<br />

−<br />

−<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

+<br />

+<br />

+<br />

+<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

+<br />

+<br />

=<br />

were:<br />

•<br />

ρ<br />

2<br />

)<br />

J<br />

D<br />

(<br />

π<br />

.<br />

C<br />

K S<br />

D<br />

+<br />

= -is a geometric constant, •<br />

ρ<br />

ν<br />

=<br />

2<br />

a<br />

.<br />

4<br />

.<br />

C<br />

K<br />

2<br />

T<br />

- is the coefficient for laminar flow.


The relation (2) valid for laminar <strong>and</strong> transition flow<br />

will be used for the <strong>theoretical</strong> analysis <strong>of</strong> the distribution<br />

stages.<br />

The directional control valve with negative overlap<br />

constructively differ from the ideal distributor by the<br />

fact that all four throttle openings are unsealed for<br />

YS = 0. For a spool valve stroke YS (depending on the<br />

value YS±Y0i) there is realized a throttle opening for<br />

which the flow capacities given by (1) become:<br />

Appealing to the computing model introduced by<br />

F. Klinger [11] <strong>and</strong> utilizing for the reference flow<br />

capacity the value 2 2<br />

Q MN = K DJ YSN<br />

+ J p the 03<br />

relation (4 ), valid in the sections Q10, Q20, Q30, Q40,<br />

is obtained. For the directional control valve with<br />

negative overlap <strong>and</strong> annular clearance using (3, 4)<br />

the relation (5) will be obtained. Similar relations can<br />

be obtained also for zones YS ≥ YSN<br />

, YS<br />

≤ −YSN<br />

,<br />

− Y < Y < Y . The complex function (5) represent<br />

0i<br />

S 0i<br />

the generalized equation <strong>of</strong> the adjustment characteristic<br />

for the flow capacity QMA;QMB = f (∆pMAB,<br />

YS)∆p=ct with the pressure ∆pMAB = f(YS) <strong>and</strong> for the<br />

load QMA;QMB = f (∆pMAB, YS)∆p=0, in laminar <strong>and</strong><br />

transition flow.<br />

In Fig. 2 are given the adjustment characteristics<br />

QMA; QMB = f (∆pMAB, YS)∆p=ct <strong>and</strong> QMA;QMB =<br />

= f (∆pMAB, YS)∆p=0 for the flow passing in directions<br />

A <strong>and</strong> B. The relations (5) emphasize the work <strong>of</strong> the<br />

ensemble spool valve in three distinct domains:<br />

negative or positive overlap zone Y S < Y0i<br />

, linear<br />

zone Y 0i<br />

< YS<br />

< YSN<br />

<strong>and</strong> saturation zone Y S > YSN<br />

.<br />

The flow that passes through the distributor is<br />

affected by the overlap degree Y0i (Y0i = 1, 2, 3, 4)<br />

Fig. 2a, 2b, 2c. The selection <strong>of</strong> the overlap degree<br />

Y0i <strong>and</strong> the size <strong>of</strong> the annular clearance J are <strong>of</strong><br />

great importance for numerous working characteristics<br />

<strong>of</strong> the system such as: consumption, precision,<br />

stability <strong>and</strong> elasticity.<br />

306<br />

Fig .2.a.<br />

Fig. 2.b.<br />

Fig. 2.c<br />

The relations (3, 4, 5) put into evidence the influence<br />

different overlap degrees (Y0i ≠ 0) <strong>of</strong> the throttle orifices<br />

(Y01 ≠ Y02 ≠ Y03 ≠ Y04) which appear <strong>of</strong>ten<br />

in practice because technological it is impossible to<br />

obtain a perfect symmetry <strong>of</strong> the throttle edges. Simultaneously<br />

these relations allow analyzing the influence<br />

upon the adjustment characteristics <strong>of</strong> variations<br />

(Y0i) <strong>of</strong> the four throttle edges.<br />

3.THE DYNAMIC ECHILIBRIUM MODEL OF<br />

THE SPOOL VALVE<br />

During the work <strong>of</strong> distribution <strong>and</strong> adjustment<br />

elements, upon the spool valve operates a series <strong>of</strong><br />

forces, their nature <strong>and</strong> magnitude determining the<br />

running performances. The resultant <strong>of</strong> the acting<br />

forces can be expressed as an algebraic sum:<br />

Fpa + Ffrl<br />

+ Ffrv<br />

+ Fear<br />

+ Fg<br />

+ Fh<br />

± Fin<br />

= 0 (6)<br />

which establishes the spool valve <strong>dynamic</strong>s <strong>and</strong> finally<br />

the EHSV <strong>dynamic</strong>s. These forces are:<br />

2<br />

d Y<br />

- F [ ] S<br />

isv = mS<br />

+ Kms(<br />

ma1<br />

+ ma2<br />

) – inertia (7)<br />

2<br />

dt<br />

force;<br />

Fear = Kear(<br />

YS<br />

+ Yoa<br />

) − pressur forces ; (8)<br />

D<br />

dY<br />

F π.<br />

ρ.<br />

S . n . L . C . sign(<br />

Y ) S<br />

frv = −<br />

&<br />

m m fr S<br />

(9)<br />

J<br />

dt<br />

– viscous forces


In [1] there are given similar relations also for the<br />

friction force, generated by non-balanced lateral forces.<br />

The weight Fg is negligible in comparison with other<br />

forces. The moving law <strong>of</strong> the spool valve is given by<br />

the <strong>dynamic</strong> equilibrium <strong>of</strong> the acting forces. For the<br />

distributor with non-null overlap <strong>and</strong> annular clearance<br />

the moving law <strong>of</strong> the spool valve is:<br />

{ K + K [ p − p − p − p ] }<br />

2<br />

d YS<br />

MS<br />

=<br />

2 frv HDY 03 MB MA 04<br />

dt<br />

. sign(<br />

Y&<br />

). Y&<br />

S S + [ KHS(<br />

p03<br />

− ∆pMAVB<br />

− p04)<br />

+ Kear<br />

] . YS<br />

−<br />

2<br />

πDS<br />

− ∆pcab.<br />

(10)<br />

4<br />

The relation (10) was used for modeling mathematically<br />

the EHSV. Using together the equilibrium<br />

equation, [1; 5] between the stage nozzle-flap <strong>and</strong> the<br />

spool valve (Fig. 3).<br />

VC<br />

d(<br />

∆pcab)<br />

K ∆X − KQp.<br />

∆pcab<br />

= Sp.<br />

Y&<br />

S + . (11)<br />

QX<br />

2E<br />

dt<br />

<strong>and</strong> the simplified <strong>dynamic</strong> equilibrium equation <strong>of</strong><br />

the spool valve:<br />

S . ∆p<br />

= M . Y&<br />

& + K . Y&<br />

+ K . Y (12)<br />

p<br />

cab<br />

S<br />

S<br />

it was obtained the III order transfer function [1;5] for<br />

the ensemble spool valve- distributor body, in complete<br />

form:<br />

KQX<br />

S<br />

H<br />

P<br />

SV3(<br />

S)<br />

=<br />

VC.<br />

M<br />

⎡<br />

S 3 KQP.<br />

MS<br />

VC.<br />

K ⎤<br />

QP<br />

S + ⎢ + ⎥S<br />

2<br />

+<br />

2E.<br />

SP<br />

⎢ S<br />

2<br />

2<br />

P<br />

2E.<br />

S ⎥<br />

⎣<br />

P ⎦<br />

⎡ Kf<br />

. KQP<br />

VC.<br />

K<br />

⎤<br />

S<br />

KS.<br />

K<br />

⎢<br />

QP<br />

1 + + ⎥S<br />

+<br />

⎢ S<br />

2<br />

2 2<br />

P<br />

2.<br />

E.<br />

S ⎥<br />

⎣<br />

p ⎦<br />

S<br />

P<br />

(13)<br />

Simplifying these equation it was obtained:<br />

YS<br />

( S)<br />

K<br />

H<br />

5<br />

SV3(<br />

S)<br />

= =<br />

=<br />

∆X(<br />

S)<br />

3 3 3<br />

K1.<br />

S + K2.<br />

S + K3.<br />

S + K4<br />

(14)<br />

1<br />

= KYS<br />

3 2<br />

S + Q2.<br />

S + Q1.<br />

S + Q0<br />

which can be written in normalized form, taking into<br />

account the experimental conditions:<br />

Y ( S)<br />

1<br />

H ( S)<br />

Sn<br />

SV3n<br />

= =<br />

(15)<br />

A . X ( S)<br />

3 2<br />

0 ∆ n A1.<br />

S + A2.<br />

S + A3.<br />

S + 1<br />

The equation (15) allows determining the <strong>theoretical</strong><br />

frequency characteristics in a plotting system comparable<br />

with the experimental results.<br />

f<br />

S<br />

u<br />

S<br />

S<br />

3.1. THE EHSV ANALYSIS THROUGH<br />

FREQUENCY<br />

The frequency analysis is characterized by plotting<br />

the transfer function in the imaginary plan <strong>and</strong> by the<br />

functions that can be obtained at frequency variations<br />

(ω = 0 ⇒ ∞ ) for an input signal iC(t) = i0sinωt.<br />

Taking into account the transfer function equation<br />

for the ensemble directional control valve in complete<br />

<strong>and</strong> normalized form (13,14,15) the sinusoidal response<br />

is determined by substituting the complex operator<br />

S = jω:<br />

H<br />

SV3<br />

K<br />

( Jω<br />

) =<br />

5<br />

3 3 2 2<br />

(16)<br />

K . j ω + K . j ω + K . jω<br />

+ K<br />

1<br />

2<br />

Developing <strong>and</strong> separating the terms in (16) it result:<br />

2<br />

K ( K K )<br />

H Re( j ) JIm(<br />

j )<br />

5 4 − 3ω<br />

SV3(<br />

jω)<br />

= ω + ω =<br />

−<br />

2 2<br />

3 2<br />

( K4<br />

−K2ω<br />

) + ( K3ω−K1<br />

ω )<br />

3 2<br />

K ( K K )<br />

J 5 3ω−<br />

1ω<br />

−<br />

( 17)<br />

2 2<br />

3 2<br />

( K4<br />

−K2ω<br />

) + ( K3ω<br />

−K1ω<br />

)<br />

with the terms :<br />

H ( j ) 20.<br />

lg Re<br />

2<br />

( j ) Im<br />

2<br />

sv3<br />

ω = −<br />

ω + ( jω)<br />

dB<br />

0<br />

Im( jω)<br />

Φ<br />

SV<br />

( jω)<br />

= −arctg<br />

3<br />

Re( jω)<br />

3<br />

4<br />

(18)<br />

The <strong>theoretical</strong> model was verified with the geometric<br />

parameters <strong>of</strong> EHSV 2T-7.5 for the computation<br />

utilizing the program SIST-SERV.<br />

Fig. 3<br />

In fig. 4a, b there are represented the frequency<br />

characteristics <strong>and</strong> the transfer plan, putting into evidence<br />

the influence <strong>of</strong> the overlap degree Y01, the input<br />

pressure p03 = 5.5…10 MPa (Fig. 4a) <strong>and</strong> the influence<br />

307


308<br />

a.1.<br />

a.2.<br />

Fig.4.a<br />

b.1.<br />

b.2<br />

Fig. 4.b.<br />

<strong>of</strong> control current ∆iC = 5…15 mA for input pressures<br />

p03 = 5.5…10 MPa (Fig. 4b).<br />

For all analyzed cases there were obtained similar<br />

frequency characteristics. On the whole, the studied<br />

cases attest the presence <strong>of</strong> a dominant proper frequency<br />

in the domain<br />

3dB<br />

( 10...<br />

30 ) Hz<br />

∈ ω −<br />

,<br />

which correspond to a no periodic oscillation model<br />

<strong>and</strong> to a proper pulsation with great frequency<br />

ω r ∈(<br />

200...<br />

400 ) Hz ,<br />

which correspond to a damped oscillation model.<br />

Taking into account the inertia <strong>of</strong> the <strong>dynamic</strong><br />

system, EHSV can work in a frequency b<strong>and</strong> <strong>of</strong><br />

10… 30 Hz<br />

3.2. THE TIME ANALYSIS OF THE EHSV<br />

DYNAMIC BEHAVIOR<br />

This study has as objective to determine the variation<br />

in time <strong>of</strong> the system response YS(t) when it is excited<br />

with an input value i(t) <strong>of</strong> the type unitary step, unitary<br />

ramp or sinusoidal. This response is analyzed both for<br />

the adaptation period (transition stage) <strong>and</strong> for stationary<br />

regime. The output value is obtained as the solution<br />

<strong>of</strong> the linear differential equation, which describes the<br />

work <strong>of</strong> EHSV by III or V order transfer functions (14,<br />

15). Applying the inverse Laplace transform to relation<br />

(14) the indicial response is obtained:<br />

−x<br />

t<br />

e 3<br />

YS<br />

( t)<br />

=<br />

+<br />

2<br />

β − 2.<br />

ξgβ<br />

+ 1<br />

+<br />

(19)<br />

−ξg.<br />

ωgt<br />

β.<br />

e<br />

⎡<br />

2 ⎤<br />

. sin<br />

⎢<br />

ωgt<br />

1−<br />

ξg<br />

− ψ<br />

2 2<br />

⎣<br />

⎥<br />

1−<br />

ξ β − ξ β +<br />

⎦<br />

g 2 g 1<br />

maintaining the notation given in [1]. The determination<br />

<strong>of</strong> the response YS(t) gives the time Tr that<br />

characterize the EHSV both in stationary <strong>and</strong> transient<br />

regimes. In Fig. 5a,b,c is plotted this response<br />

obtained for the EHSV 2T-7.5 with emphasize to<br />

both the influence <strong>of</strong> control current ∆iC for various<br />

input pressures (p03 = 5.5, 7.0, 10 MPa, Fig. 5a,b)<br />

<strong>and</strong> the input pressure for a constant control current<br />

∆iC = 10 mA (fig.5.c).<br />

As become clear from Fig.5b the response time is<br />

diminished with the increase <strong>of</strong> the input pressure<br />

p03 for the constant control current ∆iC = 10 mA, that<br />

means it is diminished with the opening <strong>of</strong> the spool<br />

valve for the same input pressure (Fig. 5a, b). For all<br />

studied cases the weight <strong>of</strong> the oscillatory component<br />

is <strong>of</strong> little importance. In consequence it can be<br />

stated that the response <strong>of</strong> EHSV 2T-7.5 at a unitary<br />

step signal can be approximated with a transfer<br />

function <strong>of</strong> II order, which is specific for a rapid<br />

<strong>dynamic</strong> process.


4. CONCLUSIONS<br />

Fig.5.a<br />

Fig.5.b<br />

Fig.5.c.<br />

Electro hydraulic servo valve is one <strong>of</strong> the most<br />

complex <strong>of</strong> the electro hydraulic driving systems,<br />

both from the constructive <strong>and</strong> working point <strong>of</strong><br />

view. Establishing a mathematical model, which can<br />

express satisfactory the <strong>static</strong> <strong>and</strong> <strong>dynamic</strong> properties<br />

is prime order necessity for the analyses <strong>and</strong> synthesis<br />

<strong>of</strong> servo valves. In the frame <strong>of</strong> the present mathematical<br />

model there were obtained the following results:<br />

• the adjustment characteristics for flow capacity,<br />

pressure <strong>and</strong> load were defined in a unitary form<br />

both for linear <strong>and</strong> nonlinear zones, the flow conditions<br />

through the control directional valve being<br />

laminar or transitional;<br />

• with the view to put in evidence the influence <strong>of</strong> the<br />

overlap degree on the stationary <strong>behavior</strong> <strong>of</strong> EHSV<br />

the mathematical model was applied for eight values<br />

<strong>of</strong> overlap between Y01 = ±(0….15)YSN;<br />

• the equation <strong>of</strong> the <strong>dynamic</strong> equilibrium on the<br />

spool valve was established;<br />

• assuming as a basis the stability criteria enunciated<br />

in the techniques <strong>of</strong> automatic stability systems<br />

analysis it was effectuated the EHSV study both in<br />

the frequency domain (faze amplitude-frequency<br />

characteristics) <strong>and</strong> by the response characteristic<br />

to a step signal;<br />

Synthesizing the main elements <strong>of</strong> the <strong>dynamic</strong><br />

analysis it results:<br />

• the dominant frequency ω-3dB = 10…40 Hz<br />

corresponding to the time constant values TA =<br />

= (0.0106… 0.0053 0 s, is significant to the<br />

<strong>behavior</strong> <strong>of</strong> a damp oscillatory hydraulic system<br />

(that means the system is stable in the analyzed<br />

variation range <strong>of</strong> control currents, processes,<br />

flow capacities <strong>and</strong> overlap degrees);<br />

• in the frequency domain ω-3dB = 10…30 Hz the<br />

EHSV <strong>behavior</strong> may be approximate with a linear<br />

system <strong>of</strong> first degree or at most <strong>of</strong> second degree;<br />

• the response time tr = 10…30 ms put into evidence<br />

the feature <strong>of</strong> a rapid system with a high degree <strong>of</strong><br />

stability.<br />

REFERENCES<br />

1. Balasoiu V., (1987), Cercetari teoretice si experimentale<br />

asupra sistemelor electrohidraulice tip<br />

servovalva-cilindru-sarcina pentru roboti industriali,<br />

Teza de doctorat, Institutrul Politehnic Traian<br />

Vuia Timisoara, 1987.<br />

2. Balasoiu V., Padureanu I., (2002) Actionari hidraulice,<br />

fundamente teoretice, aplicatii, Ed. Orizonturi<br />

Universitare, Timisoara, 2002.<br />

3. Balasoiu V., (2001) Echipamente hidraulice de<br />

actionare, Ed. Eurostampa, Timisoara, 2001.<br />

4. Balasoiu V., Popoviciu M., Bordeasu Il., (2004),<br />

Theoretical <strong>simulation</strong> <strong>of</strong> <strong>static</strong> <strong>and</strong> <strong>dynamic</strong><br />

<strong>behavior</strong> <strong>of</strong> electrohydraulic servovalves, Conf.<br />

HMH2004,<br />

5. Balasoiu,V., Raszga C., (1993), Theoretisches<br />

Studium des statischen und dynamischen Verhaltens<br />

elecktrohydraulischer Servoventile, 9,<br />

Fachtagung Huydraulik und Pneumatik, 22-23<br />

sept.1993, in Dresden, pg401-414,Technische<br />

Universitat Dresden.<br />

6. Backe W., (1974), Systematic de hydraulischen<br />

Widerst<strong>and</strong>schaltungen in Ventilen und Regelkreisen,<br />

Krausskopf, Verlag Mainz, 1974<br />

7. Deacu L., (1989), Tehnica hidraulicii proportionale,<br />

Ed. Dacia, Cluj Napoca, 1989<br />

309


8. Drumea P., (1998), Contributii la analiza si<br />

sinteza elementelor si instalatiilor de reglare<br />

electrohidraulice, Teza de doctorat, Universitatea<br />

Politehnica din Bucuresti, 1998,<br />

9. Fais<strong>and</strong>ier J., (1999) Mecanismes Hydrauliques<br />

et Pneumatiques, Dunod Paris, 1999<br />

10. Ionescu I.,Mares Cr.,(1996), Servovalve electrohidraulice,<br />

Editura Lux Libris, Brasov 1996,<br />

11. Jones J.C,(1997), Developments in design <strong>of</strong><br />

electrohydraulic control Valves from Their Initial<br />

Design Concept to Present day Design <strong>and</strong> Aplications,<br />

Workshop on Proportional <strong>and</strong> Servovalves,<br />

Monash University, Melbourne, Australia,<br />

1997<br />

12. Klinger F.R.,(1977), Ubertragungsverhalten der<br />

Steurkette Balastung unter besonder Beruksichtigung<br />

des Resonanzebetriebes, RWTH Aachen,<br />

1977, Disertation<br />

310<br />

13. Meritt H., (1967), Hydraulic Control Systems<br />

Willey, New York, 1967<br />

14. Murrenh<strong>of</strong>f H.,(2003), Trends in Valve Development,<br />

Institute for Fluid Power Drives Controls<br />

(IFAS), RWTH Aachen, Olhydraulik und Pneumatik,<br />

46, nr.4, 2003,<br />

15. Scheffel G.,(1997),Test St<strong>and</strong> <strong>and</strong> Experimental<br />

Valve for Stead State <strong>and</strong> Dynamic Valve Testing,<br />

OlhydrauliK und Pneumatik, Vol 21, nr.1, 1997<br />

16. Thayer William J, (1962), Specification st<strong>and</strong>ards<br />

for Electro hydraulic Flow Control Servovalves,<br />

Technical Bulletin, MOOG, 1962<br />

17. Thayer William J,(1998), Transfer Functions for<br />

MOOG Servovalves, Technical Bulletin, MOOG,<br />

1998, 1965.<br />

18. Vasiliu N, si altii,(1999), Mecanica fluidelor si<br />

sisteme hidraulice, Ed Tehnica Bucuresti, 1999

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!