21.01.2013 Views

Hot and Nonlinear – Loudspeakers at High Amplitudes - Klippel GmbH

Hot and Nonlinear – Loudspeakers at High Amplitudes - Klippel GmbH

Hot and Nonlinear – Loudspeakers at High Amplitudes - Klippel GmbH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hot</strong> <strong>and</strong> <strong>Nonlinear</strong> <strong>–</strong><br />

<strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong><br />

by Wolfgang <strong>Klippel</strong><br />

Tutorial<br />

Presented <strong>at</strong> 131st AES Convention,<br />

New York, October 2011<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 1


Abstract:<br />

<strong>Nonlinear</strong>ities inherent in electro-dynamical transducer <strong>and</strong> the he<strong>at</strong>ing of<br />

the voice coil <strong>and</strong> magnetic system limit the acoustical output, gener<strong>at</strong>e<br />

distortion <strong>and</strong> other symptoms <strong>at</strong> high amplitudes. The large signal<br />

performance is the result of a deterministic process <strong>and</strong> predictable by<br />

lumped parameter models comprising nonlinear <strong>and</strong> thermal elements.<br />

The tutorial gives an introduction into the fundamentals, shows altern<strong>at</strong>ive<br />

measurement techniques <strong>and</strong> discusses the rel<strong>at</strong>ionship between the<br />

physical causes <strong>and</strong> symptoms depending on the properties of the<br />

particular stimulus (test signal, music). Selection of meaningful<br />

measurements, the interpret<strong>at</strong>ion of the results <strong>and</strong> practical loudspeaker<br />

diagnostic is the main objective of the tutorial, which is important for<br />

designing small <strong>and</strong> light transducers producing the desired output <strong>at</strong> high<br />

efficiency <strong>and</strong> reasonable cost.<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 2


Our topic today<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 3


Amplitude<br />

X<br />

[mm]<br />

30<br />

10<br />

3<br />

1<br />

0,3<br />

voice-coil<br />

displacement<br />

Assessment of Sound Quality<br />

<strong>Nonlinear</strong><br />

<strong>and</strong><br />

Thermal<br />

Model<br />

Linear<br />

Model<br />

Destruction<br />

Large signal<br />

performance<br />

Small signal<br />

performance<br />

Rel<strong>at</strong>ed to size,<br />

weight, cost !!!<br />

• Maximal Output<br />

• Distortion<br />

• Power H<strong>and</strong>ling<br />

• Stability<br />

• Compression<br />

•B<strong>and</strong>width<br />

•Sensitivity<br />

•Fl<strong>at</strong>ness of Response<br />

•Impulse Accuracy<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 4


W<strong>at</strong>ch for <strong>Nonlinear</strong> Symptoms !<br />

Gener<strong>at</strong>or<br />

1. Experiment<br />

f < f s<br />

tone <strong>at</strong> f<br />

2. Experiment<br />

f � f s<br />

Resonance<br />

frequency f s<br />

pointer<br />

scale<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 5<br />

stroboscope<br />

3. Experiment<br />

f > f s


Vibr<strong>at</strong>ion Behavior<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 6<br />

<strong>Klippel</strong> <strong>GmbH</strong>


X [mm]<br />

7,5<br />

5,0<br />

2,5<br />

0,0<br />

-2,5<br />

-5,0<br />

1. Symptom: Distorted Waveform<br />

Input: sinousoidal voltage signal <strong>at</strong> 20 Hz<br />

Output: Voice coil Displacement<br />

ZOOM<br />

Y2(t)<br />

Input signal Y2(t) vs time<br />

0,00 0,05 0,10 0,15<br />

Time [s]<br />

0,20 0,25<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 7<br />

Distortion in<br />

the time<br />

domain


2. Symptom: Harmonic Distortion<br />

Stimulus Response<br />

Amplitude<br />

f1<br />

frequency<br />

Amplitude<br />

DC<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 8<br />

f1<br />

harmonics<br />

A single tone gener<strong>at</strong>es harmonics <strong>and</strong> a DC component<br />

(in displacement)<br />

Distortion in<br />

the frequency<br />

domain<br />

frequency


3. Symptom: Intermodul<strong>at</strong>ion Distortion<br />

Two-tone Stimulus<br />

Amplitude<br />

f1<br />

bass tone<br />

harmonics<br />

sound pressure spectrum<br />

difference tones summed tones<br />

f2<br />

voice tone<br />

frequency<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 9


dBu (Uo = 1V)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Example: Reproduced Two-tone Signal<br />

input <strong>Nonlinear</strong> System<br />

output<br />

Response 1<br />

Frequency Domain<br />

101 102 103 f [Hz]<br />

Two-tone signal<br />

dBu (Uo = 1V)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Response 1<br />

Frequency Domain<br />

101 102 103 f [Hz]<br />

Fundamentals<br />

Harmonics<br />

Intermodul<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 10


X [mm]<br />

7,5<br />

5,0<br />

2,5<br />

0,0<br />

-2,5<br />

-5,0<br />

ZOOM<br />

4. Symptom: DC-Displacement<br />

Y2(t)<br />

Input signal Y2(t) vs time<br />

0,00 0,05 0,10 0,15<br />

Time [s]<br />

0,20 0,25<br />

KLIPPEL<br />

K MS(x)<br />

•Dc displacement is gener<strong>at</strong>ed dynamically by rectific<strong>at</strong>ion of ac components<br />

•Caused by asymmetrical nonlinearities<br />

DC displacement<br />

rest position of the coil<br />

•working point is shifted away from rest position<br />

•significant amplitude X DC (comparable with fundamental)<br />

• usually in displacement (not in velocity, accelar<strong>at</strong>ion, input current)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 11<br />

x


5. Symptom: Amplitude Compression<br />

2,5<br />

Linear System<br />

X [mm] (rms)<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

23.4 Hz<br />

Fundamental component<br />

| X ( f1, U1 ) |<br />

KLIPPEL<br />

0,0 2,5 5,0 7,5<br />

Voltage U1 [V]<br />

10,0 12,5 15,0<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 12


dB - [V] (rms)<br />

130<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

Compression of SPL Output<br />

for a sinusoidal tone versus frequency<br />

Sound Pressure Response<br />

Long Term Response linear response<br />

Limited by peak displacement<br />

Limited by coil temper<strong>at</strong>ure<br />

20 50 200 500 2k<br />

Frequency [Hz]<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 13<br />

Long term response<br />

was measured by<br />

using a stepped sine<br />

wave <strong>and</strong> cycling 1<br />

min on/1 min off


Compression of 3 rd -order Harmonic<br />

Percent<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Third-order harmonic distortion in percent (IEC 60268)<br />

Signal <strong>at</strong> IN1<br />

0.50 V 1.57 V 2.64 V 3.71 V 4.79 V 5.86 V 6.93 V 8.00 V<br />

Voltage<br />

4*101 6*101 8*101 102 Frequency f1 [Hz]<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 14


Percent<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Harmonic Distortion<br />

Second-order harmonic distortion in percent (IEC 60268)<br />

Signal <strong>at</strong> IN1<br />

3.71 V 4.79 V 5.86 V 6.93 V 8.00 V<br />

4*101 6*101 8*101 102 Frequency f1 [Hz]<br />

• <strong>Nonlinear</strong> Distortion depend on frequency <strong>and</strong> voltage<br />

• Complic<strong>at</strong>ed amplitude characteristic (compression, reduction)<br />

• Measurement versus amplitude also required (3D measurement)<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 15


| X ( f1, U1 ) |<br />

Amplitude response of fundamental component in displacement<br />

10 0<br />

[mm]<br />

10 -1<br />

10 -2<br />

10 -3<br />

6. Vari<strong>at</strong>ion of Resonance Frequency<br />

caused by suspension nonlinearity K(x)<br />

6 dB<br />

steps<br />

resonance peak<br />

10 100 200<br />

Frequency [Hz]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 16


7. Symptom: Bifurc<strong>at</strong>ion into Multiple St<strong>at</strong>es<br />

X [mm]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

backbone curve<br />

10 100<br />

frequency f [Hz]<br />

Small signal<br />

resonance<br />

Sweeping down<br />

Large signal<br />

resonance<br />

Sweeping up<br />

unstable st<strong>at</strong>es<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 17


Occurs if:<br />

8. Symptom: Instabilities<br />

- Driver has soft linear suspension<br />

- Equal-length configur<strong>at</strong>ion<br />

(Bl(x) nonlinearity)<br />

- Sinusoidal stimulus f > fs<br />

Paket<br />

bifurc<strong>at</strong>ion caused by motor.MOV<br />

Bl(x)<br />

5,0<br />

4,5<br />

[N/A]<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

Unstable for f > f s<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 18<br />

KLIPPEL<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

[mm] x<br />

� Bifurc<strong>at</strong>ion into two stable st<strong>at</strong>es of vibr<strong>at</strong>ion


Bl(x)<br />

5,0<br />

4,5<br />

[N/A]<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

9. Symptom: Chaotic Behavior<br />

KLIPPEL<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

[mm]<br />

x<br />

� Gener<strong>at</strong>ion of subharmonics<br />

x [mm]<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 19<br />

x(t)<br />

KLIPPEL<br />

0,0 0,1 0,2 0,3 0,4 0,5<br />

t [s]<br />

0,6 0,7 0,8 0,9 1,0<br />

� Stochastic responses for sinusoidal excit<strong>at</strong>ion<br />

How far away from chaos ?


Wh<strong>at</strong> Limits the Acoustical Output?<br />

Limiting factors:<br />

1. Maximal temper<strong>at</strong>ure of the voice coil<br />

2. Maximal voice coil displacement (e.g. in suspension)<br />

3. Maximal acceler<strong>at</strong>ion, forces (e.g. in the cone)<br />

4. Maximal sound pressure (e.g. in the horn)<br />

Those factors depend on<br />

• Properties of the transducer (linear, nonlinear <strong>and</strong> thermal<br />

parameters)<br />

• Properties of the enclosure (sealed or vented box)<br />

• Properties of the stimulus <strong>at</strong> the terminals (spectral <strong>and</strong><br />

amplitude distribution, vari<strong>at</strong>ion over time)<br />

• Ambient condition (temper<strong>at</strong>ure, air convection, …)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 20


dB - [V] (rms)<br />

Maximal Sound Pressure Output<br />

for a sinusoidal input with different On/Off Cycle<br />

140<br />

135<br />

130<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

SOUND PRESSURE LEVEL<br />

Maximal SPL (short term)<br />

Cycled sine wave 1 s on, 1 min off<br />

20 50 100 200 500 1k 2k 5k<br />

Limited by displacement<br />

Maximal SPL (long term)<br />

Cycled sine wave 1 min on, 1 min off<br />

Frequency [Hz]<br />

Limited by coil temper<strong>at</strong>ure<br />

Limited by acceler<strong>at</strong>ion<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 21


Agenda<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 22


<strong>Loudspeakers</strong> - a nonlinear <strong>and</strong> time-varying system<br />

Amplitude<br />

X<br />

[mm]<br />

30<br />

10<br />

3<br />

1<br />

0,3<br />

voice-coil<br />

displacement<br />

Working range<br />

Destruction<br />

Large signal domain<br />

Small signal domain<br />

MODELING<br />

<strong>Nonlinear</strong> Model<br />

Thermal Model<br />

Linear Model<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 23


How to Structure the Model ?<br />

Domains <strong>and</strong> interfaces passed by the audio signal<br />

Input power<br />

Coil temper<strong>at</strong>ure<br />

digital<br />

D<strong>at</strong>a compression<br />

Sample r<strong>at</strong>e<br />

conversion,<br />

AD conversion<br />

Voltage<br />

electrical<br />

Amplifier<br />

Crossover<br />

Motor<br />

He<strong>at</strong> transfer<br />

Convection cooling<br />

Time constants<br />

thermal<br />

Coil<br />

displacement<br />

velocity<br />

mechanical<br />

Suspension<br />

Cone<br />

Cone<br />

displacement<br />

Sound<br />

pressure in<br />

ear channel<br />

acoustical<br />

Radi<strong>at</strong>ion,<br />

Diffraction<br />

Propag<strong>at</strong>ion,<br />

Room Influence<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 24<br />

psychoacoustical<br />

Perception,<br />

Evalu<strong>at</strong>ion


Power density:<br />

Audio<br />

signal<br />

Power Distributed by the Loudspeaker<br />

Amplifier<br />

Crossover<br />

EQ<br />

linear<br />

u(t)<br />

10 W / cm 3 1 W / cm 3 1 W / m 3 1 mW / m 3<br />

Electromechanical<br />

Transducer<br />

i(t)<br />

x(t)<br />

nonlinear<br />

Mechanoacoustical<br />

Transducer<br />

(Cone)<br />

Radi<strong>at</strong>ion<br />

Radi<strong>at</strong>ion<br />

Radi<strong>at</strong>ion<br />

Sound<br />

Propag<strong>at</strong>ion<br />

Sound<br />

Propag<strong>at</strong>ion<br />

Sound<br />

Propag<strong>at</strong>ion<br />

linear<br />

Room<br />

Acoustics<br />

Room<br />

Interference<br />

Room<br />

Interference<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 25<br />

p(r 1 )<br />

p(r 2 )<br />

sound<br />

field<br />

p(r 3 )


estoring<br />

force<br />

Stiffness K ms (x) of Suspension<br />

F � Kms<br />

( x)<br />

x<br />

displacement<br />

F<br />

F<br />

x<br />

x<br />

K<br />

6<br />

N/mm<br />

5<br />

4<br />

3<br />

2<br />

1<br />

spider<br />

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0<br />

Kms(x) determined by<br />

• suspension geometry<br />

• impregn<strong>at</strong>ion<br />

surround<br />

diplacement x mm<br />

• adjustment of spider <strong>and</strong> surround<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 26<br />

total<br />

suspension


Das verknüpfte Bild kann nicht angezeigt werden. Möglicherweise wurde die D<strong>at</strong>ei verschoben, umbenannt oder gelöscht. Stellen Sie sicher, dass die Verknüpfung auf die korrekte D<strong>at</strong>ei und den korrekten Speicherort zeigt.<br />

Mechanical Stress in a Spider<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 27


Symmetrical Limiting of Spider<br />

K_MS [N/mm]<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

-x_max < x < x_max<br />

stiffness K_MS(x)<br />

KLIPPEL<br />

-10 -5 0 5 10<br />

><br />

spider<br />

diaphragm<br />

voice coil<br />

former<br />

Requirements:<br />

• geometry of inner corrug<strong>at</strong>ion roll is important<br />

• sufficient numbers of corrug<strong>at</strong>ion rolls<br />

• number of grooves equals numbers of ridges<br />

• symmetrical feet<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 28<br />

frame


Distortion Gener<strong>at</strong>ed by K ms(x)<br />

simplified signal flow chart<br />

fs<br />

Voltage pressure<br />

distortion<br />

multiplier<br />

Displacement x<br />

� ( x)<br />

� K ( 0)<br />

�<br />

Kms ms Re<br />

�<br />

Bl<br />

fs<br />

lowpass<br />

highpass<br />

Bass tone<br />

� Multiplic<strong>at</strong>ion of displacement time signals x(t)*Kms(x(t))<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 29<br />

pass b<strong>and</strong>


Symptom of Kms: Amplitude Compression<br />

Fundamental coil displacement in a vented-box System<br />

linear<br />

nonlinear<br />

X [mm] (rms)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Fundamental component<br />

| X ( f1, U1 ) |<br />

1.00 V 2.00 V 3.00 V<br />

4.00 V LINEAR MODEL<br />

Compression<br />

101 102 Frequency f1 [Hz]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 30


<strong>Nonlinear</strong> Stiffness K ms(x)<br />

Symptoms:<br />

- Compression of the fundamental (f


ack pl<strong>at</strong>e<br />

F<br />

magnet<br />

Φ dc<br />

Force Factor Bl(x)<br />

pole pl<strong>at</strong>e<br />

B-field<br />

0 mm<br />

F � Bl(<br />

x)<br />

i<br />

U � Bl(<br />

x)<br />

v<br />

coil<br />

pole piece<br />

displacement<br />

Electro-dynamical driving force Voice coil current<br />

Back EMF Voice coil velocity<br />

x<br />

Bl(x) determined by<br />

• Magnetic field distribution<br />

• Height <strong>and</strong> overhang of the coil<br />

• Optimal voice coil position<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 32<br />

5.0<br />

N/A<br />

Bl(x)<br />

N S<br />

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5<br />

><br />

F<br />

i<br />

F �<br />

Bli


Motor with Equal-length Configur<strong>at</strong>ion<br />

magnet<br />

pole piece<br />

h coil<br />

h<br />

gap<br />

Coil height h coil � gap height h gap<br />

x<br />

pole pl<strong>at</strong>e<br />

voice coil<br />

Properties:<br />

3,0<br />

50%<br />

b [N/A]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 33<br />

3,5<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

-x_max < x < x_max<br />

force factor b(x)<br />

h coil<br />

KLIPPEL<br />

-7,5 -5,0 -2,5 0,0 2,5 5,0 7,5<br />

><br />

• Sensitive to offset in rest position<br />

• Sensitive to instabilities f>fs • Low-order distortion <strong>at</strong> low amplitudes<br />

• Low inductance <strong>and</strong> flux modul<strong>at</strong>ion<br />


magnet<br />

pole piece<br />

Motor with Overhang Coil<br />

h coil<br />

h<br />

gap<br />

Coil height h coil > gap height h gap<br />

x<br />

pole pl<strong>at</strong>e<br />

voice coil<br />

Properties:<br />

b [N/A]<br />

5,5<br />

5,0<br />

4,5<br />

50%<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

-x_max < x < x_max<br />

force factor b(x)<br />

�h � h �<br />

h coil<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 34<br />

�<br />

�<br />

coil<br />

KLIPPEL<br />

-10,0 -7,5 -5,0 -2,5 0,0 2,5 5,0 7,5 10,0<br />

><br />

• Insensitive to offset <strong>at</strong> rest position<br />

• Low distortion for x < (h coil-h gap)<br />

• <strong>High</strong> distortion for x > (h coil-h gap)<br />

• <strong>High</strong> voice coil inductance<br />

• Sensitive to flux modul<strong>at</strong>ion<br />

gap


Adjusting Coil‘s Rest Position<br />

Bl [N/A]<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

magnet<br />

pole piece<br />

x=0<br />

pole pl<strong>at</strong>e<br />

Induction B<br />

voice coil<br />

displacement<br />

Force factor Bl vs. displacement X<br />

Bl(X)<br />

-10,0 -7,5 -5,0 -2,5 0,0 2,5 5,0 7,5 10,0<br />

Displacement X [mm]<br />

Bl [N/A]<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

magnet<br />

pole piece<br />

x=x b<br />

pole pl<strong>at</strong>e<br />

Induction B<br />

voice coil<br />

Force factor Bl vs. displacement X<br />

Bl(X)<br />

displacement<br />

-10,0 -7,5 -5,0 -2,5 0,0 2,5 5,0 7,5 10,0<br />

Displacement X [mm]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 35


Gener<strong>at</strong>ion of Bl(x) Distortion<br />

1 st nonlinear effect: Parametrical Excit<strong>at</strong>ion<br />

Voice tone<br />

Bass tone<br />

1. Motor force F=Bl(x)*i<br />

2. Multiplic<strong>at</strong>ion of displacement x(t) <strong>and</strong> current i(t)<br />

3. <strong>High</strong> distortion (f 1 ≤ f s, f 2 > f s)<br />

fs<br />

fs<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 36<br />

pass b<strong>and</strong><br />

Voltage fs pressure<br />

distortion<br />

impedance highpass<br />

multiplier<br />

current<br />

x<br />

lowpass


Bl(x)<br />

5,0<br />

[N/A]<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

Symmetrical<br />

Force factor<br />

Bl(x)<br />

Amplitude Modul<strong>at</strong>ion<br />

KLIPPEL<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

[mm]<br />

two-tone stimulus f 1 < f s, f 2 > f s<br />

Pfar [ N / m^2 ]<br />

5,0<br />

2,5<br />

0,0<br />

-2,5<br />

-5,0<br />

Sound pressure Pfar(t) in far field vs time<br />

Pfar(t)<br />

x peak<br />

Bottom<br />

Rest position<br />

Mean<br />

Cycle<br />

0,05 0,10 0,15<br />

Time [s]<br />

0,20 0,25 0,30<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 37


Third-order intermodul<strong>at</strong>ion distortion in percent (IEC 60268)<br />

Pressure Pfar in far field<br />

125<br />

100<br />

75<br />

50<br />

25<br />

Symptoms of Bl(x)<br />

Intermodul<strong>at</strong>ion Distortion<br />

intermodul<strong>at</strong>ion in same<br />

order of magnitude as<br />

harmonics for f < fs<br />

U = 1.5 U = 3 U = 4.5 U = 6 U = 7.5<br />

U = 9 U = 10.5 U = 12 U = 13.5 U = 15<br />

4*102 6*102 8*102 103 Frequency [Hz]<br />

KLIPPEL<br />

(constant bass tone f 1 =0.5f s <strong>and</strong> varying voice tone).<br />

magnet<br />

pole piece<br />

x=x b<br />

pole pl<strong>at</strong>e<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 38<br />

Induction B<br />

voice coil<br />

displacement<br />

Parametric excit<strong>at</strong>ion<br />

F=Bl(x)*i


X dc<br />

5 mm -<br />

0<br />

Bl-maximum<br />

dc-displacement (X dc )<br />

Symptoms of Bl(x)<br />

dc displacement<br />

unstable<br />

fs 2fs frequency<br />

for f < f s : small X dc towards maximum of Bl-curve<br />

for f = f s (resonance): no dc-part gener<strong>at</strong>ed (X dc = 0)<br />

for f > f s : X dc away from Bl-maximum<br />

for f � 1.5fs: high values of X dc (� may become unstable)<br />

UNIQUE SYMPTOM<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 39


(x)<br />

Instability of the <strong>Nonlinear</strong> Motor<br />

5,0<br />

4,5<br />

[N/A]<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

Unstable for f > f s<br />

KLIPPEL<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

[mm] x<br />

145.0<br />

U [V]<br />

20<br />

15<br />

Effects:<br />

• Reduced acoustical output<br />

• Substantial Distortion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 40<br />

10<br />

5<br />

Fundamental<br />

| Pfar( f1, U1 ) |<br />

100<br />

200<br />

300<br />

f [Hz]<br />

400<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

500<br />

Pfar [N/m^2]


Bl [N/A]<br />

5,5<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

Curve 1<br />

Effect of a <strong>Nonlinear</strong> Motor<br />

KLIPPEL<br />

-15 -10 -5 0 5 10 15<br />

Displacement X [mm]<br />

• Parametric excit<strong>at</strong>ion<br />

F=Bl(x)*i<br />

• <strong>Nonlinear</strong> damping<br />

F=Bl(x) 2 /Re*v<br />

mm<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

driver with<br />

• dominant Bl(x)-nonlinearity<br />

• linear suspension<br />

• constant inductance<br />

Fundamental component<br />

| X ( f1, U1 ) |<br />

U = 1.5 U = 3 U = 4.5 U = 6 U = 7.5<br />

U = 9 U = 10.5 U = 12 U = 13.5 U = 15<br />

KLIPPEL<br />

displacement<br />

102 103 Frequency [Hz]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 41


Force Factor Bl(x)<br />

Symptoms:<br />

- Compression of the fundamental (f


Φ coil(-9 mm)<br />

U ind<br />

Φ counter<br />

Reluctance<br />

force<br />

shorting ring<br />

d ( x,<br />

i)<br />

� �<br />

dt<br />

�<br />

F rel<br />

Voice Coil Inductance L e(x)<br />

-9 mm<br />

d<br />

�L( x)<br />

i�<br />

dt<br />

0 mm<br />

2<br />

i ( t)<br />

dL(<br />

x)<br />

� �<br />

2 dx<br />

Φ coil(+9 mm)<br />

9 mm<br />

Differenti<strong>at</strong>ed<br />

Magnetic flux<br />

voice coil displacement<br />

x<br />

L e(x) determined by<br />

With with shorting rings ring<br />

• geometry of coil, gap, magnet<br />

• optimal size <strong>and</strong> position of short cut ring<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 43<br />

4.0<br />

Le<br />

[mH]<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Without without shorting rings ring<br />

-15 -10 -5 0 5 10 15<br />


[mH<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

Effect of <strong>Nonlinear</strong> Inductance L e(x)<br />

Le(X)<br />

[Ohm]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

KLIPPEL<br />

-4 -3 -2 -1 -0 1 2 3 4<br />

><br />

X=-4 mm X=4 mm<br />

Le(x) nonlinearity causes vari<strong>at</strong>ion of<br />

electrical input impedance<br />

Magnitude of electric impedance Z(f)<br />

x= 0 mm x = - 4 mm x = + 4 mm<br />

Coil is clamped<br />

X=-4 mm<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 44<br />

KLIPPEL<br />

X=4 mm<br />

101 102 103 104 Frequency [Hz]


Distortion caused by L e(x)<br />

6dB/oct<br />

pass b<strong>and</strong><br />

fs<br />

Voltage pressure<br />

distortion<br />

differenti<strong>at</strong>or<br />

multiplier<br />

L(<br />

x)<br />

1� L(x) L(<br />

0)<br />

current<br />

Voice tone<br />

f 2<br />

Bass tone<br />

f 1<br />

1. Multiplic<strong>at</strong>ion of x(t) <strong>and</strong> i(t)<br />

2. Differenti<strong>at</strong>ion of distortion + <strong>High</strong>-pass filtering<br />

� <strong>High</strong> intermodul<strong>at</strong>ion distortion (f 1 ≤ f s, f 2 > f s)<br />

i<br />

x<br />

displacement<br />

impedance<br />

fs<br />

fs<br />

lowpass<br />

highpass<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 45


Remedies for L e(x)<br />

Symptoms:<br />

- Intermodul<strong>at</strong>ion distortion (f 1 < f s , f 2 > f s)<br />

- dc displacement (f>f s)<br />

Remedies:<br />

1. Reduce magnetic ac-flux<br />

• by using a smaller coil with less windings<br />

• by increasing the voice coil resistance<br />

• Using shorting m<strong>at</strong>erial<br />

2. Make Le(x)=constant<br />

• By placing shorting m<strong>at</strong>erial <strong>at</strong> right position<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 46


Counter flux<br />

� C<br />

L E(x)<br />

L_E [mH]<br />

Remedy for L e(x): Shorting Ring<br />

1,75<br />

1,50<br />

1,25<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

0,00<br />

magnet<br />

pole piece<br />

-x_max < x < x_max<br />

inductance L_E(x)<br />

pole pl<strong>at</strong>e<br />

Coil flux � A<br />

voice coil<br />

KLIPPEL<br />

Reduced<br />

value<br />

Less vari<strong>at</strong>ion versus x<br />

-5,0 -2,5 0,0 2,5 5,0<br />

><br />

short cut ring<br />

x<br />

i<br />

R E (T V )<br />

u<br />

L E (x)<br />

R RING<br />

Effect depends on<br />

b(x)v b(x) b(x)i<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 47<br />

L 2 (x)<br />

R 2 (x)<br />

v<br />

CMS (x) MMS RMS Electro-mechanical Equivalent Circuit<br />

• Geometry (Ring or Cap)<br />

• M<strong>at</strong>erial (Aluminum or Copper)<br />

• Size, position, distance to the coil<br />

F m (x,i)


<strong>Nonlinear</strong>ities of Loudspeaker Ports<br />

Air plug Air plug<br />

• Usual modeling the air flow by a lumped mass (air plug) is a<br />

simplific<strong>at</strong>ion !<br />

jet stream in loudspeaker ports .MOV<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 48


• V < V Crit<br />

Flow Resistance R A(v) of a Port<br />

<strong>at</strong> Medium <strong>Amplitudes</strong><br />

• Gener<strong>at</strong>ing an air jet<br />

• energy dissip<strong>at</strong>ed in the far field<br />

• Harmonics <strong>at</strong> low frequencies<br />

R A(v)<br />

• R A(v) ~ |v|*m v<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 49


Asymmetrical Flow Resistance R A(v)<br />

p box<br />

• R A(v 0) > R A(-v 0)<br />

p 0<br />

x DC<br />

• DC component in pressure p box<br />

• dynamical voice coil offset x<br />

R A(v)<br />

p box<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 50<br />

v<br />

x DC


Symptoms:<br />

Vented Box System<br />

• Q-factor of port decreases with amplitude (port closes !!)<br />

• Harmonics (not critical !!)<br />

• Gener<strong>at</strong>es modul<strong>at</strong>ed air noise (critical !!)<br />

• dc component in sound pressure in enclosure <strong>and</strong> a dynamic offest in<br />

voice coil working point (critical !!)<br />

Remedies:<br />

• Keep velocity in port low (< 10 m/s)<br />

• Keep port geometry symmetrical !!<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 51


<strong>Nonlinear</strong> Sound Propag<strong>at</strong>ion<br />

Wave Steepening<br />

Speed of sound depends on sound pressure c(p)<br />

Sound pressure maxima travel faster than minima<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 52


Wave Steepening in Horns<br />

Symptoms:<br />

• dominant second order harmonic <strong>and</strong> intermodul<strong>at</strong>ion distortion<br />

• Distortion rises by 6dB/oct. to higher frequencies<br />

• Distortion rises with distance from thro<strong>at</strong><br />

Remedies:<br />

� Reduce propag<strong>at</strong>ion where sound pressure is high<br />

� <strong>High</strong> Flare r<strong>at</strong>e of the horn<br />

� Short horn length<br />

� Low pressure <strong>at</strong> thro<strong>at</strong><br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 53


<strong>Nonlinear</strong> Mechanical Resistance R ms(v)<br />

Air flow<br />

magnet<br />

Pole piece<br />

v<br />

dome<br />

gap<br />

spider<br />

R ms(v)<br />

R ms(v) depends on velocity v of the coil due to air flow <strong>and</strong> turbulences <strong>at</strong> vents <strong>and</strong><br />

porous m<strong>at</strong>erial (spider, diaphragm)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 54<br />

v


Remedies for <strong>Nonlinear</strong> Mechanical Damping<br />

Problem:<br />

• Air Flow in vents, holes, leakages or porous m<strong>at</strong>erial in enclosures<br />

• Dissip<strong>at</strong>ion depends on velocity (turbulences, energy is moved into the<br />

far field)<br />

Occurs in:<br />

• Microspeaker, Headphones, Tweeter<br />

• Horn compression driver<br />

Remedy:<br />

• Increase electrical damping by increasing Bl or decreasing Re<br />

• better sealing of the enclosure<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 55


Which nonlinearities are important ?<br />

Criteria for dominant <strong>Nonlinear</strong>ities:<br />

• limits acoustical output<br />

• gener<strong>at</strong>es audible distortion,<br />

• indic<strong>at</strong>es an overload situ<strong>at</strong>ion<br />

• causes unstable behavior<br />

• rel<strong>at</strong>ed with cost, weight, volume, efficiency<br />

• affects speaker system alignment<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 56


Ranking List of<br />

Transducer <strong>Nonlinear</strong>ities<br />

1. Force Factor Bl(x)<br />

2. Compliance Cms(x) � tweeter<br />

3. Inductance Le(x) 4. Flux Modul<strong>at</strong>ion of Le(i) 5. Mechanical Resistance Rms(v) 6. <strong>Nonlinear</strong> Sound Propag<strong>at</strong>ion c(p)<br />

7. Doppler Distortion �(x)<br />

8. Flux Modul<strong>at</strong>ion of Bl(i)<br />

9. <strong>Nonlinear</strong> Cone Vibr<strong>at</strong>ion<br />

10. Port <strong>Nonlinear</strong>ity RA(v) 11. many others ...<br />

� microspeaker<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 57<br />

� woofers<br />

� microspeaker<br />

� horns


Electro-mechanical Equivalent Circuit<br />

<strong>Nonlinear</strong> parameters:<br />

• Force factor Bl(x) of the motor<br />

• Compliance C MS(x, t) of the suspension<br />

• Voice coil inductance L E(x), L 2(x)<br />

• resistance R 2(x) due to eddy currents<br />

• DC-resistance R E(T V)<br />

• Reluctance force F M(x)<br />

• Compliance C r (p rear ) of rear enclosure<br />

• Compliance C ab (p box ) of vented enclosure<br />

• Losses in port R ap(q p)<br />

• Time delay t(x) due to Doppler effect<br />

i<br />

Re (Tv)<br />

Le(x)<br />

L2(x)<br />

R2(x)<br />

Mms Rms(v) Cms(x)<br />

U Bl(x,I)V Bl(x,I) Bl(x,I)I<br />

Sd<br />

V<br />

Fm (x,I)<br />

are not constant parameters but<br />

depend on st<strong>at</strong>e variables:<br />

• Displacement x<br />

• Voice coil temper<strong>at</strong>ure T V<br />

•Time t due to ageing<br />

• volume velocity q p in port<br />

• pressure p rear rear enclosure<br />

• pressure p box in vented enclosure<br />

Cab(pbox)<br />

Cr(prear)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 58<br />

SdV<br />

pbox<br />

prear<br />

Ral<br />

qp<br />

Rap(qp)<br />

Map<br />

radi<strong>at</strong>ion


Signal Flow Chart of the Transducer<br />

simplified by assuming a linear impedance for the mechanical load<br />

Feedback<br />

<strong>Nonlinear</strong> differential equ<strong>at</strong>ion<br />

Based on lumped parameter modeling<br />

Linear system modeled by transfer function H(f,r a)<br />

Feed-forward<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 59


Source of the <strong>Nonlinear</strong> Distortion<br />

considering dominant nonlinearities in electrodynamical loudspeakers<br />

Loudspeaker<br />

u<br />

input<br />

uD<br />

<strong>Nonlinear</strong><br />

distortion<br />

<strong>Nonlinear</strong><br />

System<br />

H(s,r1)<br />

H(s,ri) p(ri)<br />

H(s,rN)<br />

p(r1)<br />

sound<br />

...<br />

... field<br />

...<br />

...<br />

...<br />

...<br />

p(rN)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 60


Voice Coil He<strong>at</strong>ing depends on the<br />

Spectral Properties of the Stimulus<br />

100<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

0<br />

-1 0<br />

KLIPPEL<br />

[K ] [W ]<br />

40<br />

t 1<br />

t 2<br />

0 250 500 750 1000 1250 1500 1750 2000 2250<br />

t [s e c ]<br />

t 3<br />

P RE<br />

P Re<br />

� T V<br />

Delta Tv<br />

Music: Classic<br />

Pop<br />

Vocal<br />

Thermal resistance<br />

�T v/P re=<br />

6,8 K/W 4,6 K/W 7,5 K/W<br />

<strong>High</strong> voice coil displacement gives<br />

high Convection cooling<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 61<br />

30<br />

25<br />

15<br />

10<br />

is not constant !!<br />

5<br />

0


P coil<br />

T v<br />

�T v<br />

<strong>Nonlinear</strong> Thermal Model<br />

C tv<br />

P tv<br />

P con<br />

R tc (v)<br />

Air<br />

convection<br />

cooling<br />

Rta (x)<br />

R tv<br />

R tt (v)<br />

C ta<br />

T a<br />

P eg<br />

Direct he<strong>at</strong><br />

transfer<br />

T g<br />

�T g<br />

�T m<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 62<br />

P g<br />

C tg<br />

R tg<br />

P mag<br />

T m<br />

C tm<br />

R tm


Agenda<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 63


Identific<strong>at</strong>ion of the Driver Model<br />

Three Tasks:<br />

Abstraction<br />

i<br />

R E (T V )<br />

u<br />

L E (x)<br />

L 2 (x)<br />

R 2 (x)<br />

b(x)v b(x) b(x)i<br />

Lumped Parameter Model<br />

Identific<strong>at</strong>ion<br />

v<br />

CMS (x) MMS RMS • prove th<strong>at</strong> the model is adequ<strong>at</strong>e for the particular driver<br />

• measure the free parameters (C ms, Bl, M ms, ...) of the model<br />

• measure instantaneous st<strong>at</strong>e variables (displacement x, ...)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 64<br />

F m (x,i)<br />

2<br />

� dLe<br />

( x)<br />

� d x dx<br />

�Bl(<br />

x)<br />

� i�i<br />

� Mms<br />

� Rms<br />

� Kms(<br />

x)<br />

x<br />

2<br />

� dx � dt dt<br />

dx d(<br />

Le(<br />

x)<br />

i)<br />

u � Rei<br />

� Bl(<br />

x)<br />

�<br />

dt dt<br />

Differential Equ<strong>at</strong>ion


Large Signal Model & Parameters<br />

He<strong>at</strong> transfer<br />

Convection cooling<br />

Stimulus<br />

Amplifier<br />

Crossover<br />

Linear<br />

System<br />

H el(s)<br />

R tv, R tm,<br />

� tv, � tm,<br />

Bl(x), L(x),<br />

L(i)<br />

T/S Parameter<br />

Thermal<br />

Model<br />

<strong>Nonlinear</strong><br />

System<br />

Kms(x)<br />

Z m(s)<br />

Motor Suspension Cone<br />

Linear<br />

System<br />

H a(s)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 65<br />

Sound<br />

pressure<br />

output<br />

Enclosure, Horn room


Measurement of Large Signal Parameters<br />

St<strong>and</strong>ard IEC 62458<br />

defines<br />

1. St<strong>at</strong>ic (quasi-st<strong>at</strong>ic) method<br />

2. Incremental dynamic method<br />

3. Full dynamic method<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 66


Method:<br />

1. Select a working point<br />

2. Excite with DC stimulus<br />

St<strong>at</strong>ic Measurement<br />

3. Measure associ<strong>at</strong>ed st<strong>at</strong>e signals<br />

4. Calcul<strong>at</strong>e instantaneous parameters<br />

5. Repe<strong>at</strong> the measurement <strong>at</strong> other<br />

working points<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 67<br />

F<br />

secant<br />

x<br />

K MS(x)= F DC<br />

x DC


Example: St<strong>at</strong>ic Measurement of Stiffness<br />

Ringlstetter Harman Becker Straubing 2004<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 68


Incremental dynamic Measurement<br />

Method:<br />

1. Select a working point<br />

2. Excite with a dc stimulus<br />

3. Add a small AC-signal<br />

4. Measure st<strong>at</strong>e variables XAC <strong>and</strong> FAC 5. Calcul<strong>at</strong>e gradient Kgrad (XDC) 6. Repe<strong>at</strong> <strong>at</strong> other working points<br />

7. Parameter Transform<strong>at</strong>ion<br />

F DC FAC<br />

K grad(x)= F AC<br />

X AC<br />

Transform<strong>at</strong>ion<br />

K MS(x)= F<br />

X<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 69<br />

tangent<br />

x DC<br />

x AC


First available product: DUMAX<br />

incremental dynamic method<br />

Photo courtesy by D. Clark<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 70


Method:<br />

Full dynamic Measurement<br />

1. Excite speaker with audio-like signal<br />

2. Measure instantaneous st<strong>at</strong>e variables<br />

3. Estim<strong>at</strong>e free model parameters<br />

� first applic<strong>at</strong>ion of system<br />

identific<strong>at</strong>ion to loudspeakers<br />

(Knudsen 1993)<br />

F AC(t)<br />

K MS(x)= F<br />

X<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 71<br />

F<br />

secant<br />

x<br />

X AC(t)


Full Dynamic Measurement of<br />

Loudspeaker <strong>Nonlinear</strong>ities<br />

Suspension Part<br />

Measurement<br />

(SPM)<br />

Large Signal<br />

Identific<strong>at</strong>ion (LSI)<br />

Long-term Power<br />

Testing (PWT)<br />

Motor-Suspension<br />

Check QC (MSC)<br />

Advantages:<br />

• Loudspeaker under normal<br />

working conditions<br />

• Audio-like stimulus<br />

• On-line measurement<br />

Disadvantage:<br />

• Large Signal Idenific<strong>at</strong>ion requires<br />

nonlinear signal processing<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 72


Adaptive Identific<strong>at</strong>ion Principle<br />

full dynamic method based on current & voltage measurement<br />

audio-like,<br />

persistent<br />

Signal<br />

Source<br />

protection<br />

Detection<br />

working range<br />

normal<br />

working<br />

conditions<br />

Model<br />

precise,<br />

robust<br />

sensor<br />

St<strong>at</strong>e<br />

Measurement<br />

optimal fitting<br />

Parameter<br />

Estim<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 73


Stimulus<br />

Noise,<br />

Audio signals<br />

(music, noise)<br />

Multi-tone<br />

complex<br />

Linear Parameters<br />

• T/S parameters <strong>at</strong> x=0<br />

• Box parameters fb,Qb<br />

• Impedance <strong>at</strong> x=0<br />

Dynamic Measurement<br />

of Motor <strong>and</strong> Suspension <strong>Nonlinear</strong>ities<br />

Voltage & current<br />

<strong>Nonlinear</strong><br />

System<br />

Identific<strong>at</strong>ion<br />

<strong>Nonlinear</strong> Parameters<br />

• nonlinearities Bl(x), Kms(x), Cms(x),<br />

Rms(v), L(x), L(i)<br />

• Voice coil offset<br />

• Suspension asymmetry<br />

• Maximal peak displacement (Xmax)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 74<br />

St<strong>at</strong>e Variables<br />

• peak displacement during measurement<br />

• voice coil temper<strong>at</strong>ure<br />

• eletrical input power,<br />

Thermal Parameters<br />

• Thermal resistances Rtv, Rtm<br />

• Thermal capacity Ctv, Ctm<br />

• Air convection cooling


Controlling the Production Process<br />

Corrected<br />

Rest Position<br />

B field<br />

voice<br />

coil<br />

Shift coil 0.6 mm to backpl<strong>at</strong>e<br />

Action<br />

Failure:<br />

Coil Offset<br />

B field<br />

Fail<br />

voice<br />

coil<br />

Targets:<br />

•Detection of motor <strong>and</strong><br />

suspension problem as fast<br />

as possible (when first<br />

device arrives <strong>at</strong> the end of<br />

line)<br />

•Simplify interpret<strong>at</strong>ion of<br />

results (voice coil offset in<br />

mm)<br />

•Single-valued parameter<br />

can be directly be used for<br />

adjustment<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 75


Delta Tv [K]<br />

[mm]<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Measurement of Thermal Parameters<br />

within the Large Identific<strong>at</strong>ion Module (LSI)<br />

0 Delta 2500 Tv 5000 7500 P real 10000 12500P Re 15000<br />

t [sec]<br />

KLIPPEL<br />

nonlinear<br />

r V<br />

0 2500 5000 7500<br />

t [sec]<br />

10000 12500 15000<br />

R TV ,� V<br />

�<br />

Xpeak Xbottom<br />

Voice coil displacement<br />

Power dissep<strong>at</strong>ed in Re<br />

R TM ,� M<br />

Thermal identific<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 76<br />

KLIPPEL<br />

Voice coil temper<strong>at</strong>ure<br />

Real input power<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

P [W]


Agenda<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 77


Small Signal Performance<br />

Specific<strong>at</strong>ions for Active <strong>and</strong> Passive Loudspeaker Systems<br />

180°<br />

90°<br />

90°<br />

270°<br />

-90°<br />

�<br />

�<br />

0°<br />

All inform<strong>at</strong>ion are provided by a complex 3D far<br />

field response H(f,�, �) measured with sufficient<br />

angular resolution<br />

Most important responses:<br />

• SPL on-axis amplitude response<br />

� under anechoic conditions (IEC 60268-5)<br />

• Directivity<br />

� Directivity index D i(f) or sound power response P a(f) (IEC 60268-5 Sec. 22.1)<br />

• Group delay<br />

� l<strong>at</strong>ency<br />

� vari<strong>at</strong>ion vs. Frequency,<br />

� vari<strong>at</strong>ion between channels<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 78


Large Signal Performance<br />

Specific<strong>at</strong>ions for Active <strong>and</strong> Passive Loudspeaker Systems<br />

• Maximal SPL max <strong>at</strong> 1 m, on-axis anechoic conditions, in frequency range<br />

• Effective frequency range (Upper <strong>and</strong> lower limits f lower,l < f < f upper,l )<br />

• Fl<strong>at</strong>ness of on-axis response (maximal devi<strong>at</strong>ion of SPL on-axis response from<br />

mean SPL)<br />

• Harmonic distortion (Equivalent input distortion)<br />

• Intermodul<strong>at</strong>ion distortion (voice <strong>and</strong> bass sweep)<br />

• Impulsive distortion (peak, crest) indic<strong>at</strong>ing rub&buzz, loose particles<br />

• Modul<strong>at</strong>ed noise (MOD) indic<strong>at</strong>ing air leakage<br />

• Durability verified in acceler<strong>at</strong>ed life test<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 79


How to interprete Harmonic Distortion<br />

2 nd harmonic<br />

asymmetry<br />

2 nd , 3 rd <strong>and</strong> higher-order harmonics<br />

(amplitude <strong>and</strong> phase inform<strong>at</strong>ion)<br />

3 rd harmonic<br />

symmetry<br />

THD<br />

magnitude<br />

Characteristics of the nonlinearity<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 80<br />

Important for<br />

irregular defects<br />

„rub & buzz“<br />

CHD<br />

Crest factor<br />

smoothness


dB - [V] (rms)<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Interpret<strong>at</strong>ion of THD in SPL<br />

Kms(x)<br />

Bl(x)<br />

L(x)<br />

Fundamental<br />

Fundamental<br />

Fundamental THD<br />

50 100 200 500 1k 2k 5k<br />

Frequency [Hz]<br />

THD<br />

L(i)<br />

Cone Vibr<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 81<br />

KLIPPEL


dB - [V]<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

Transform Distortion to the Source<br />

Sinusoidal<br />

sweep<br />

Distortion in Voltage<br />

3rd harmonic distortion in voltage<br />

Signal <strong>at</strong> IN1<br />

nearfield 30 cm 60 cm 1 m distance<br />

KLIPPEL<br />

Independent of room<br />

50 100 200<br />

Frequency [Hz]<br />

500 1k<br />

U(f)<br />

D<br />

<strong>Nonlinear</strong><br />

<strong>Nonlinear</strong><br />

System<br />

System<br />

H(f,r1)<br />

H(f,r2)<br />

Inverse filtering<br />

with H(f,r)<br />

p(r1)<br />

sound<br />

field<br />

p(r2)<br />

3rd harmonics absolute<br />

Signal <strong>at</strong> IN1<br />

1 m distance 60 cm distance 30 cm distance nearfield<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 82<br />

dB - [V]<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

Sound pressure<br />

measurement<br />

50 100 200<br />

Frequency [Hz]<br />

500 1k


Interpret<strong>at</strong>ion of Multi-tone Distortion<br />

[dB]<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Kms(x)<br />

Fundamental Multi-tone Distortion<br />

Fundamental<br />

50 100 200 500 1k 2k 5k 10k<br />

Frequency [Hz]<br />

Bl(x)<br />

Distortion<br />

L(x)<br />

L(i)<br />

Doppler Effect<br />

Cone Vibr<strong>at</strong>ion<br />

KLIPPEL<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 83


How to cope with nonlinearities<br />

• Measure nonlinear distortion in the near field<br />

� ensure sufficient SNR<br />

• Transform distortion to the loudspeaker input<br />

� concept of equivalent input distortion<br />

• Be aware of interactions between nonlinearities<br />

� no compens<strong>at</strong>ion of Kms(x), Bl(x), L(x)<br />

• Check for dc-displacement<br />

� instability<br />

• Use numerical simul<strong>at</strong>ion tool<br />

� predict THD, Xmax, SPLmax, IMD, Pmax, T<br />

• Separ<strong>at</strong>e regular nonlinearities from irregular defects<br />

� measure Crest Factor of Distortion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 84


Thermal Parameters<br />

alpha 0.375914 He<strong>at</strong>ing of voice coil by eddy currents<br />

Rtv 0.932822 K/W thermal resistance coil ==> pole tips<br />

rv 0.192945 Ws/Km air convection cooling depending on velocity<br />

Rtm 0.372579 K/W thermal resistance magnet ==> environment<br />

tau m 67 min thermal time constamt of magnet<br />

Ctm 10796.289063 Ws/K thermal capacity of the magnet<br />

tau v 131.063660 s thermal time constant of voice coil<br />

Ctv 140.502304 Ws/K thermal capacity of the voice coil<br />

Can be directly be pasted into the Simul<strong>at</strong>ion module (SIM) to<br />

make a thermal analysis (predict temper<strong>at</strong>ures <strong>and</strong> power flow)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 85


P coil<br />

P RE +<br />

0.3 (P real <strong>–</strong>P RE)<br />

T v<br />

�T v<br />

C tv<br />

Thermal Analysis<br />

single tone <strong>at</strong> 65 Hz with 40 V rms<br />

P con<br />

Air<br />

convection<br />

cooling<br />

P tv<br />

R tc (v)<br />

1/r tv V rms<br />

R tv<br />

0.93 K/ W<br />

Direct he<strong>at</strong><br />

transfer<br />

T a<br />

P eg<br />

�T m<br />

C tm<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 86<br />

P g<br />

0.7 (P real <strong>–</strong>P RE)<br />

T m<br />

0.37 K/ W<br />

R tm


P coil<br />

167 W<br />

T v<br />

�T v<br />

C tv<br />

Thermal Analysis<br />

single tone <strong>at</strong> 65 Hz with 40 V rms<br />

146 W<br />

Rtv 196 K P T g 163 W m 60 K<br />

P tv<br />

P con<br />

Air<br />

convection<br />

cooling<br />

21 W<br />

R tc (v)<br />

Direct he<strong>at</strong><br />

transfer<br />

T a<br />

P eg<br />

17 W<br />

�T m<br />

C tm<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 87<br />

R tm


70 W<br />

P coil<br />

T v<br />

�T v<br />

C tv<br />

Thermal Analysis<br />

single tone <strong>at</strong> 1000 Hz with 40 V rms<br />

69 W<br />

P tv<br />

P con<br />

R tc (v)<br />

R tv<br />

99 K 34 K<br />

1 W<br />

T a<br />

P eg<br />

22 W<br />

Direct he<strong>at</strong><br />

transfer<br />

�T m<br />

C tm<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 88<br />

P g<br />

91 W<br />

T m<br />

R tm


P coil<br />

134 W<br />

T v<br />

�T v<br />

Thermal Analysis<br />

two-tone <strong>at</strong> 1000 Hz <strong>and</strong> 50 Hz with 30 V rms<br />

C tv<br />

118 W<br />

R tv<br />

160 K 50 K<br />

P tv<br />

P con<br />

16 W<br />

R tc (v)<br />

Direct he<strong>at</strong><br />

transfer<br />

T a<br />

P eg<br />

16 W<br />

�T m<br />

C tm<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 89<br />

P g<br />

134 W<br />

T m<br />

R tm


P coil<br />

Tv Rtv Tm<br />

�T v<br />

C tv<br />

Power Bypass Factor<br />

The power P tv should be minimal !<br />

P tv<br />

P con<br />

R tc (v)<br />

T a<br />

118 W<br />

16 W<br />

16 W<br />

P eg<br />

P mag<br />

�T m<br />

C tm<br />

R tm<br />

� �<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 90<br />

The bypass<br />

factor � should<br />

be maximal !<br />

P � P<br />

con eg<br />

P � P<br />

Re R2<br />

Total input power


Optimal Thermal Design<br />

Investig<strong>at</strong>ion of Design Choices<br />

dome<br />

vent<br />

gap<br />

Vented pole piece<br />

Av<br />

dome<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 91<br />

vent<br />

Av<br />

gap<br />

Sealed pole piece<br />

Which design Choice provides a better he<strong>at</strong> transfer ?


Bypass Power Factor �<br />

dome<br />

vent<br />

Av<br />

(vented <strong>and</strong> sealed pole piece)<br />

gap<br />

60<br />

50<br />

��������� ���������<br />

40<br />

[%]<br />

30<br />

20<br />

10<br />

00<br />

1 10 100 1000 1000<br />

frequency [Hz]<br />

Closing the vent in the pole piece:<br />

50 percent of the power will bypass the coil !<br />

vent sealed<br />

vent open<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 92


Agenda<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 93


Steps in Loudspeaker System<br />

Design<br />

1. Definition of target performance <strong>and</strong> constraints<br />

2. Defining the interface between the components<br />

(DSP, amplifier, transducers)<br />

3. Specific<strong>at</strong>ion of the components<br />

4. Selecting the components<br />

5. Building the first prototype<br />

6. Verific<strong>at</strong>ion of the performance<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 94


Modeling<br />

Measurement<br />

Applic<strong>at</strong>ion<br />

Parts<br />

(cone, spider,<br />

motor parts)<br />

Loudspeaker Development<br />

Distributed Parameter<br />

Models<br />

(FEA, BEA)<br />

Geometry<br />

M<strong>at</strong>erial<br />

Parameter<br />

Driver<br />

(woofer,<br />

tweeter)<br />

Thermal<br />

Parameters<br />

Linear T/S<br />

Parameters<br />

Lumped<br />

Parameter<br />

Models<br />

Cone<br />

Vibr<strong>at</strong>ion<br />

Parameters independent of stimulus<br />

<strong>Nonlinear</strong><br />

Parameters<br />

Definition of Target Performance<br />

Selection of Components & Design<br />

System<br />

(driver + Xover + room)<br />

Evalu<strong>at</strong>ion of the First Prototype<br />

End-of-line Testing<br />

System-oriented<br />

Models<br />

<strong>Nonlinear</strong><br />

Distortion<br />

Power<br />

H<strong>and</strong>ling<br />

Loudness<br />

density<br />

Small Signal<br />

Performance<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 95<br />

Listener<br />

Psychoacoustical<br />

Models<br />

Symptoms dependent on stimulus<br />

R&D<br />

Sound<br />

Attributes<br />

Quality<br />

Metrics<br />

QC


How to define the Target Performance<br />

Auraliz<strong>at</strong>ion using the large signal model<br />

Development<br />

Manufacturing<br />

Objective Evalu<strong>at</strong>ion<br />

• Distortion, Maximal Output<br />

• Displacement, Temper<strong>at</strong>ure<br />

• Evalu<strong>at</strong>ion of Design Choices<br />

• Indic<strong>at</strong>ions for Improvements<br />

Marketing<br />

Management<br />

Subjective Evalu<strong>at</strong>ion<br />

• Personal Impression<br />

• Sufficient Sound Quality<br />

• Tuning to the target market<br />

• Performance/Cost R<strong>at</strong>io<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 96


Auraliz<strong>at</strong>ion - System<strong>at</strong>ic Listening Tests<br />

using Simul<strong>at</strong>ion <strong>and</strong> Decomposition Techniques<br />

Stimulus<br />

H el(s)<br />

Linear<br />

System<br />

Transfer function<br />

Thermal<br />

Parameters<br />

R tv, R tm<br />

Power<br />

varied parameter<br />

Thermal<br />

Model<br />

Lumped<br />

Parameters<br />

<strong>Nonlinear</strong><br />

System<br />

Bl(x), L(x).<br />

Cms(x) Re, Mms<br />

Temper<strong>at</strong>ure<br />

Y(s)<br />

Mechancial<br />

Cone<br />

Admittance<br />

Linear<br />

System<br />

H a(s)<br />

Electrical Transfer<br />

Function<br />

Amplifier Crossover Motor Suspension Cone Enclosure, Horn Room<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 97<br />

Listening test<br />

Sens<strong>at</strong>ions<br />

Psychoacoustical<br />

Model


Music<br />

Test signals<br />

<strong>Nonlinear</strong> Auraliz<strong>at</strong>ion Technique<br />

Force factor Bl (X)<br />

-Xprot < X < Xprot Xp- < X < Xp+<br />

Stiffness of suspension Kms (X)<br />

6<br />

KLIPPEL<br />

5<br />

4<br />

3<br />

2<br />

2,25<br />

-Xprot < X < Xprot<br />

2,00<br />

1,75<br />

Xp- < X < Xp+<br />

KLIPPEL<br />

1<br />

1,50<br />

0<br />

-7,5 -5,0 -2,5 0,0 2,5 5,0 7,5<br />

X [mm]<br />

1,25<br />

1,00<br />

0,75<br />

0,50<br />

0,25<br />

0,00<br />

-7,5 -5,0 -2,5 0,0 2,5<br />

X [mm]<br />

5,0 7,5<br />

Bl [N/A]<br />

Parameters<br />

Kms [N/mm]<br />

Loudspeaker<br />

Model<br />

Coil displacement,<br />

Power, Temper<strong>at</strong>ure<br />

Linear Signal<br />

SLIN<br />

SDIS<br />

Plin<br />

PDIS<br />

Distortion<br />

Separ<strong>at</strong>ion of the nonlinear<br />

distortion components<br />

Perceptual<br />

Signal Quality<br />

Analyzer<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 98<br />

Sound pressure<br />

output


Ideal Speaker (Linear)<br />

Real Speaker<br />

Perceptual Sound Quality Evalu<strong>at</strong>ion<br />

OPERA/PEAQ<br />

Total signal<br />

distortion<br />

Perceptional <strong>at</strong>tributes<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 99


How to Specify the Optimal Transducer ?<br />

Parameters give a<br />

comprehensive<br />

set of d<strong>at</strong>a !!<br />

Should be<br />

transformed into<br />

parameters<br />

1. Parameters (independent of stimuli)<br />

• Acoustical transfer functions<br />

• Mechanical transfer functions<br />

• Small signal parameter T/S<br />

• Large signal parameters (thermal, nonlinear)<br />

2. Stimulus-based Characteristics<br />

• Maximal SPL<br />

• <strong>Nonlinear</strong> distortion (THD, IMD, XDC)<br />

• Symptoms of irregular defects (rub, buzz, leakage,...)<br />

• Coil temper<strong>at</strong>ure, compression, Pmax<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 100


Transform<strong>at</strong>ion of Symptoms into Parameters<br />

Intermodul<strong>at</strong>ion distortion IMD @ SPL MAX � force factor BL(x)<br />

[Percent]<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Two- tone<br />

Stimulus<br />

Rel<strong>at</strong>ive third-order intermodul<strong>at</strong>ion distortion ( d3 )<br />

Pfar - pressure in far field<br />

1.00 V 2.15 V 4.64 V 10.00 V<br />

KLIPPEL<br />

4*102 6*102 8*102 103 2*103 Frequency f1 [Hz]<br />

Loudspeaker<br />

Model<br />

(SIM Module)<br />

Target:<br />

change WIDTH in nonlinear<br />

curve editor of Bl(x) curve<br />

IMD<br />

Distortion<br />

• Check<br />

• 3rd order IMD @ SPLMAX using two-tone<br />

signal f2 >> fs <strong>and</strong> f1 < fs<br />

• Displacement limit XBl Bl [N/A]<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

Force factor Bl(X) vs displacement<br />

50 % Bl<br />

5 mm 10 mm<br />

Coíl Height<br />

0,0<br />

-10,0 -7,5 -5,0 -2,5 0,0 2,5 5,0 7,5 10,0<br />

Displacement X [mm]<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 101


u<br />

Tv<br />

Magnetic<br />

FEA<br />

Motor<br />

(coil,gap,<br />

magnet)<br />

Thermal<br />

Dynamics<br />

Thermal<br />

FEA<br />

Design of the Transducer<br />

P<br />

F<br />

coil<br />

former<br />

v<br />

Mechanical<br />

System<br />

(suspension,<br />

cone,<br />

diaphragm)<br />

Coupled mechano-acoustical analysis<br />

FEA<br />

X(rc)<br />

Radi<strong>at</strong>or<br />

Acoustical<br />

System<br />

(enclosure,<br />

horn)<br />

near field<br />

F(rc)<br />

v(r)<br />

p(r)<br />

BEA<br />

Sound<br />

Propag<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 102<br />

p(ra)<br />

Far-Field


Progress:<br />

• Processing time, h<strong>and</strong>ling<br />

• Asymmetries in the shape<br />

• Geometrical nonlinearities<br />

(“vari<strong>at</strong>ion of the geometry”)<br />

• Acoustical-mechanical coupling<br />

Problems:<br />

• (<strong>Nonlinear</strong>) M<strong>at</strong>erial parameters<br />

• visco-elastic properties<br />

(Hyperelasticity, creep,<br />

Relax<strong>at</strong>ion)<br />

FEA Modeling<br />

by A. Svobodnik<br />

NADwork<br />

Pacsys<br />

ANSYS<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 103<br />

FineCone<br />

By P. Larsen<br />

Comsol


Agenda<br />

1. Large Signal Behavior (Symptoms)<br />

2. Physical Causes <strong>and</strong> Models<br />

3. Measurement of Large Signal Parameters<br />

4. Loudspeaker Diagnostics<br />

5. Modern Loudspeaker Design<br />

6. Active Control<br />

7. Conclusion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 104


u<br />

u D<br />

Equivalent Input Distortion<br />

<strong>Nonlinear</strong><br />

System<br />

H(f,r 1 )<br />

H(f,r 2 ) p(r 2 )<br />

H(f,r 3 )<br />

p(r ) 1<br />

sound<br />

field<br />

p(r 3 )<br />

9<br />

[V]<br />

rms<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Equivalent Input Fundamental <strong>and</strong><br />

Distortion in Volt<br />

Compression<br />

3 rd -order Harmonic<br />

2 nd -order Harmonic<br />

Fundamental<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 105<br />

KLIPPEL<br />

50 100 200 500 1k<br />

Frequency [Hz]


Active Speaker Lineariz<strong>at</strong>ion<br />

Active Control Loudspeaker<br />

z<br />

<strong>Nonlinear</strong><br />

System<br />

-<br />

u D<br />

u<br />

u D<br />

<strong>Nonlinear</strong><br />

System<br />

H(f,r 1 )<br />

H(f,r 2 )<br />

H(f,r 3 )<br />

p(r1 )<br />

sound<br />

field<br />

Only the equivalent input distortion (EID) can be<br />

compens<strong>at</strong>ed by an active control system !!<br />

p(r 2 )<br />

p(r 3 )<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 106


New Degrees of freedom<br />

Controller Design Adjustment<br />

sound quality<br />

(linear <strong>and</strong> nonlinear<br />

distortion)<br />

Active Speaker System<br />

Passive Speaker<br />

Design<br />

cost,weight<br />

directivity<br />

enclosure volume<br />

max. sound pressure<br />

efficiency<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 107


Force Factor Bl(x)<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 108


Curing Loudspeaker Defects by DSP ?<br />

Coil hitting<br />

backpl<strong>at</strong>e<br />

Waveform is<br />

completely<br />

reproducible<br />

Buzzing loose<br />

joint<br />

vibr<strong>at</strong>ion<br />

Rubbing<br />

voice coil<br />

Envelope is<br />

reproducible<br />

(Waveform is not)<br />

Flow noise <strong>at</strong> air<br />

leak<br />

Waveform is not<br />

reproducible<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 109<br />

Loose particle<br />

hitting<br />

membrane<br />

Semi‐r<strong>and</strong>om<br />

Deterministic R<strong>and</strong>om<br />

(mixed characteristic)<br />

Loose particle


gap<br />

Loudspeaker Defect: Voice Coil Rubbing<br />

• signal contains reproducible <strong>and</strong><br />

stochastic components<br />

Voice coil<br />

voice coil rubbing<br />

distortion signal<br />

Cause: rocking mode <strong>at</strong> 328 Hz<br />

one period<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 110<br />

time


Loudspeaker Defect: Air Noise<br />

• stochastic signal<br />

• air pressure is changed by coil displacement<br />

• synchronized with stimulus <strong>–</strong> signal envelope<br />

one period<br />

Air noise<br />

gap<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 111<br />

cone<br />

leakage<br />

dust cap<br />

time


Loudspeaker Defect: Loose Particles<br />

• r<strong>and</strong>om process<br />

• impulsive<br />

• particles are acceler<strong>at</strong>ed by cone displacement<br />

• not synchronized with stimulus<br />

• constant output power<br />

bouncing<br />

distortion signal<br />

bouncing<br />

one period<br />

gap<br />

Voice<br />

coil<br />

former<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 112<br />

cone<br />

dust cap<br />

Loose Particle<br />

time


Loudspeaker Defect: Voice Coil Bottoming<br />

Voice coil Voice coil<br />

Voice coil<br />

backpl<strong>at</strong>e backpl<strong>at</strong>e backpl<strong>at</strong>e backpl<strong>at</strong>e<br />

distortion signal<br />

Short impulse, deterministic symptom<br />

one period<br />

Voice coil<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 113<br />

time


Protection of the Driver<br />

audio<br />

signal<br />

Ptrotection<br />

System<br />

parameter<br />

vector<br />

st<strong>at</strong>e<br />

vector<br />

Mirror Filter<br />

-<br />

Adaptive<br />

Detector<br />

voltage<br />

current<br />

Benefits:<br />

• Access to critical st<strong>at</strong>e variables (displacement, temper<strong>at</strong>ure)<br />

• autom<strong>at</strong>ic adjustment to particular speaker (Xmax, Tv)<br />

• full mechanical protection due to prediction of envelope<br />

• minimal impact on sound quality<br />

• no additional time delay<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 114


Summary<br />

Thermal <strong>and</strong> nonlinear properties of the loudspeaker<br />

• limit the maximal acoustical output<br />

• cause a smooth compression of the fundamental<br />

• cause additional signal component (distortion)<br />

• indic<strong>at</strong>e an overload situ<strong>at</strong>ion<br />

• can be described by lumped parameters<br />

• can be predicted by FEM<br />

• are directly rel<strong>at</strong>ed with cost, weight <strong>and</strong> size<br />

• can be be identified by voltage <strong>and</strong> current monitoring<br />

• have to be considered by electrical protection systems<br />

• can be compens<strong>at</strong>ed by adaptive control<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 115


Thank you !<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 116


Loudspeaker <strong>Nonlinear</strong>ities <strong>–</strong><br />

Causes, Parameters, Symptoms<br />

• Get a free poster giving a<br />

summary on this topic<br />

• Detailed discussion on<br />

practical examples in the<br />

Journal of Audio Eng. Soc.,<br />

Oct. 2006.<br />

• Poster on cone vibr<strong>at</strong>ion <strong>and</strong><br />

sound rad<strong>at</strong>ion<br />

<strong>Klippel</strong>, Tutorial: <strong>Loudspeakers</strong> <strong>at</strong> <strong>High</strong> <strong>Amplitudes</strong>, 117

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!