18.01.2013 Views

AVR2038: AT86RF231 Range Extension 8-bit ... - Atmel Corporation

AVR2038: AT86RF231 Range Extension 8-bit ... - Atmel Corporation

AVR2038: AT86RF231 Range Extension 8-bit ... - Atmel Corporation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Features<br />

<strong>AVR2038</strong>: <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong><br />

• High Performance RF-CMOS 2.4GHz Radio Transceiver for IEEE 802.15.4,<br />

ZigBee ® , ZigBee ® RF4CE, 6LoWPAN, WirelessHART and ISM Applications<br />

• <strong>Range</strong> <strong>Extension</strong> using High Output Transmitter<br />

• Low Current Consumption<br />

TRX_OFF = 0.4mA<br />

RX_ON = 12.3mA<br />

BUSY_TX = 105mA (at Transmitter Power of +18dBm)<br />

1 Introduction<br />

The application note describes the usage, design, and layout of the <strong>AT86RF231</strong><br />

<strong>Range</strong> <strong>Extension</strong>. An implementation is shown in Figure 1-1. The information<br />

provided is intended as a helping hand for hardware designers to make use of the<br />

<strong>AT86RF231</strong> RF front-end control capabilities.<br />

Figure 1-1. <strong>AT86RF231</strong> – <strong>Range</strong> <strong>Extension</strong>.<br />

8-<strong>bit</strong><br />

Microcontrollers<br />

Application Note<br />

Rev. 8340A-AVR-10/10


2 Disclaimer<br />

3 Introduction<br />

4 <strong>Range</strong> <strong>Extension</strong> Board – Overview<br />

2 <strong>AVR2038</strong><br />

Typical values contained in this application note are based on simulations and testing<br />

of individual examples.<br />

The <strong>AT86RF231</strong> is a feature rich, low-power 2.4GHz radio transceiver designed for<br />

industrial and consumer ZigBee, ZigBee RF4CE, IEEE 802.15.4, 6LoWPAN and high<br />

data rate ISM applications.<br />

While these application areas are typically low cost, low power standards, solutions<br />

supporting higher transmit output power are occasionally desirable. To simplify the<br />

control of an optional external RF front-end, the <strong>AT86RF231</strong> provides a differential<br />

control pin pair to indicate a transmit operation. A detailed description, how to use and<br />

configure the RF front-end control, can be found in the <strong>AT86RF231</strong> datasheet [1],<br />

section References.<br />

The control of an external RF front-end is done via digital control pins DIG3/DIG4.<br />

The function of this pin pair is enabled with register <strong>bit</strong> PA_EXT_EN (register 0x04,<br />

TRX_CTRL_1). While the transmitter is turned off, pin 1 (DIG3) is set to low level and<br />

pin 2 (DIG4) to high level. If the radio transceiver starts to transmit, the two pins<br />

change their polarity. This differential pin pair can be used to control PA, LNA, and RF<br />

switches.<br />

If the <strong>AT86RF231</strong> is not in a receive or transmit state, it is recommended to disable<br />

register <strong>bit</strong> PA_EXT_EN (register 0x04, TRX_CTRL_1) to reduce the power<br />

consumption or avoid leakage current of external RF switches and other building<br />

blocks, especially during SLEEP state. If register <strong>bit</strong>s PA_EXT_EN = 0, output pins<br />

DIG3/DIG4 are both at logic low level.<br />

Figure 4-1 illustrates the setup of the <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> board. It mainly<br />

consists of three sections: the microcontroller ATmega1281/V and periphery, the<br />

radio transceiver <strong>AT86RF231</strong> and the RF front-end with power amplifier and low-pass<br />

filtering.<br />

8340A-AVR-10/10


4.1 Power Supply<br />

8340A-AVR-10/10<br />

Figure 4-1. <strong>Range</strong> <strong>Extension</strong> Board – Block Diagram.<br />

Expansion<br />

Connector 1<br />

Expansion<br />

Connector 2<br />

Pushbutton<br />

32 kHz 3.68 MHz<br />

ATmega1281<br />

LEDs<br />

SPI / Ctrl<br />

signals<br />

ID<br />

EEPROM<br />

16 MHz<br />

<strong>AT86RF231</strong><br />

<strong>AVR2038</strong><br />

RF Frontend<br />

The <strong>Atmel</strong> ATmega1281/V controls the <strong>AT86RF231</strong> radio transceiver, and serves as<br />

an SPI master. The radio transceiver handles all actions concerning RF<br />

modulation/demodulation, signal processing, frame reception and transmission. MAC<br />

hardware acceleration functions are implemented in the radio transceiver, too. Further<br />

information about the radio transceiver and the microcontroller are available in the<br />

appropriate datasheets, refer to [1] and [2].<br />

The RF front-end incorporates signal amplification and filtering of the transmit signal.<br />

The degree of filtering depends on operating conditions as well as regional aspects.<br />

Switching between reception and transmission is directly controlled by the radio<br />

transceiver. This allows the unlimited use of the radio transceiver MAC acceleration<br />

modes RX_AACK and TX_ARET, see [1], and reduces the microcontroller interaction<br />

significantly. The usage of a low-noise amplifier (LNA) is not demonstrated in this<br />

application note, even if it is possible by reusing already existing control signals.<br />

All components are placed on one side of a four-layer, 1.5mm standard FR4 printed<br />

circuit board, giving a low cost manufacturing solution.<br />

A schematic of the RCB can be found in Appendix A.1 - Schematic.<br />

The board is powered by a single supply voltage in the range of 2.7V to 3.6V, which<br />

makes it possible to be powered by two 1.5V cells. Optionally the power can be<br />

supplied externally. All semiconductors are supplied by this power, reducing<br />

component count and power losses of voltage converters.<br />

Battery power<br />

For autonomous operation the <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> board can be powered<br />

by two AAA batteries that are held by the battery clip on the back of the board. Use<br />

power switch SW1 to manually switch on/off the board.<br />

External power<br />

When used as a daughter board in a more complex system, the board can be<br />

powered through the expansion connectors. For pin mapping see Table 4-2. In this<br />

case the power switch has to be in OFF position to avoid unintentionally charging of<br />

the batteries, if they are applied.<br />

3


4.2 Microcontroller<br />

4.3 RF Section<br />

4.4 Clock Sources<br />

4 <strong>AVR2038</strong><br />

The <strong>Atmel</strong> ATmega1281/V is a low-power 8-<strong>bit</strong> microcontroller based on the AVR ®<br />

enhanced RISC architecture. The non-volatile flash program memory of 128kB and<br />

8kB of internal SRAM, supported by a rich set of peripheral units, makes it suitable for<br />

a full function sensor network node.<br />

The microcontroller is capable of operating as a PAN-coordinator, a full function<br />

device (FFD) as well as a reduced function device (RFD), as defined by<br />

IEEE802.15.4 [3]. However, the <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> board is not limited to<br />

this and can be programmed to operate other standards or ISM applications, too.<br />

The radio transceiver <strong>AT86RF231</strong> contains all RF and BB critical components<br />

necessary to transmit and receive signals according to IEEE802.15.4 or proprietary<br />

ISM data rates.<br />

In this application note, the RF front-end is used mainly to demonstrate the RX/TX<br />

indicator usage in order to control a power amplifier. A balun B1 performs the<br />

differential to single ended conversion to connect the <strong>AT86RF231</strong> to the RF front-end.<br />

Two SPDT switches separate receive and transmit paths. The transmit path<br />

incorporates a power amplifier (PA) and low-pass filter (LPF). Both RF switches, and<br />

PA are directly controlled by the radio transceiver, for details refer to [1] in section<br />

References. Additional low pass filtering (L4/5, C28/29) between RX/TX switch U7<br />

and antenna may be required to further suppress harmonics caused by the limited<br />

isolation of the 2/1 RF switch. The amount of harmonic filtering has to be aligned to<br />

regional requirements. For instance, operating the device according to<br />

ETSI EN 300 228 [6] or ARIB STD-T66 [7], the LPF can be removed. Furthermore, it<br />

has to be noted that ETSI EN 300 228 limits the transmitter output power to<br />

+10dBm/MHz ERP. The transmitter output power for boards operating under ARIB<br />

STD-T66 depends on the data rate selected.<br />

Note - any modification in the PA RF path, including the LPF, requires a review of the<br />

RF front-end circuitry to ensure an optimum operating point of the PA. Any<br />

modification of components, PCB layout and shielding influences the performance of<br />

the circuitry.<br />

A separate switched supply VDD_SW for the RF front-end, see Figure A. 1-2,<br />

disconnects it from the main radio transceiver power supply VDD in case of no active<br />

transceiver operation. This ensures the lowest possible current consumption for all<br />

other operating modes. If this is not needed, IC1B and R16 are not required; VDD_SW<br />

can be connected to VDD via L12.<br />

An antenna has to be connected to the SMA connector for proper operation.<br />

Radio Transceiver<br />

The radio transceiver is clocked by the 16MHz reference crystal Q1. The 2.4GHz<br />

modulated signal is derived from this clock. Operating the node according to<br />

IEEE802.15.4 [3] the reference frequency should not exceed a deviation of ±40ppm.<br />

The absolute frequency is mainly determined by the external load capacitance of the<br />

crystal, which depends on the crystal type and is given in its datasheet.<br />

8340A-AVR-10/10


8340A-AVR-10/10<br />

<strong>AVR2038</strong><br />

The radio transceiver reference crystal Q1 is isolated from fast switching digital<br />

signals and surrounded by the ground plane to minimize disturbances of the<br />

oscillation.<br />

The <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> board uses a SIWARD crystal SX4025 with two<br />

load capacitors of 10pF. To compensate fabrication and environment variations the<br />

frequency can be tuned with the transceiver register “XOSC_CTRL (0x12)”, for more<br />

detailed information refer to [1], section References. An initial tuning is done during<br />

fabrication and stored in the onboard EEPROM, also carrying the board ID, see<br />

section 4.6.<br />

Microcontroller<br />

There are various clock source options for the microcontroller <strong>Atmel</strong> ATmega1281/V.<br />

• 8MHz calibrated internal RC oscillator<br />

• 128kHz internal RC oscillator<br />

• 3.6872MHz ceramic resonator<br />

• CLKM 1..16MHz (radio transceiver clock)<br />

The 8MHz calibrated internal RC oscillator is used as the default clocking. The CLKM<br />

signal, generated by the transceiver, is connected to T1 (PD6) of the ATmega1281V<br />

and can be used as a symbol synchronous counter as well as a reference clock to<br />

calibrate the internal RC oscillator. Optionally, the microcontroller can be clocked<br />

directly from the CLKM signal, for this purpose the 0Ω resistor R105 has to be<br />

soldered to R102 and R104 has to be mounted. In this configuration Q101 and<br />

C104/5 are not required.<br />

A 32kHz crystal is connected to the AVR pins (TOSC1, TOSC2) to be used as a low<br />

power real time clock. The connection of the SLP_TR pin of the radio transceiver to<br />

the OC2A pin (PB4) of the ATmega1281/V makes it possible to wake up both the<br />

microcontroller and the radio transceiver simultaneously from a Timer 2 Output<br />

Compare Match event.<br />

This operation mode saves valuable time in a cycled sleep/wakeup network scenario.<br />

4.5 On-Board Peripherals<br />

For simple applications, debugging purposes or just to deliver status information, a<br />

basic user interface is provided directly on the board, consisting of three LED’s and a<br />

pushbutton connected to Port E (PE2…PE4 and PE5).<br />

4.6 ID EEPROM<br />

To identify the board type by software, an optional identification EEPROM is<br />

populated. Information about the board, the node MAC address and production<br />

calibration values are stored here. An <strong>Atmel</strong> AT25010A with 128 x 8 <strong>bit</strong> organization<br />

and SPI interface is used because of its small package, and low voltage and low<br />

power operation.<br />

For interfacing the EEPROM, the SPI bus is shared with the transceiver. The select<br />

signal for each of the SPI slave (EEPROM, radio transceiver) is decoded with the<br />

reset line RSTN of the transceiver. Therefore, the EEPROM is addressed when the<br />

radio transceiver is held in reset (RSTN = 0), see Figure 4-2.<br />

5


6 <strong>AVR2038</strong><br />

Figure 4-2. EEPROM Access Decoding Logic.<br />

PB5 (RSTN)<br />

PB0 (SEL)<br />

PB1..3 (SPI)<br />

>1<br />

>1<br />

RSTN<br />

SEL#<br />

SPI<br />

/RST<br />

/SEL<br />

#CS<br />

Transceiver<br />

<strong>AT86RF231</strong><br />

On-Board<br />

EEPROM<br />

The EEPROM data is written during board production test. A unique serial number;<br />

the MAC address (1) as well as calibration values, is stored. These can be used to<br />

optimize system performance.<br />

Final products do not require this external ID EEPROM. All data can be stored directly<br />

in the microcontroller internal EEPROM. The following table gives the data structure<br />

of the EEPROM.<br />

Table 4-1. ID EEPROM Mapping.<br />

Address Name Type Description<br />

0x40 MAC address uint64 MAC address (1) for the 802.15.4 node, little<br />

endian byte order<br />

0x48 Serial Number uint64 Board serial number, little endian byte order<br />

0x50 Board Family uint8 Internal board family identifier<br />

0x51 Revision uint8[3] Board revision number ##.##.##<br />

0x54 Feature uint8 Board features, coded into seven <strong>bit</strong>s<br />

7 Reserved<br />

6 Reserved<br />

5 External LNA<br />

4 External PA<br />

3 Reserved<br />

2 Diversity<br />

1 Antenna<br />

0 SMA connector<br />

0x55 Cal OSC<br />

16MHz<br />

uint8 RF231 XTAL calibration value, register<br />

“XTAL_TRIM”<br />

0x56 Cal RC 3.6V uint8 AVR internal RC oscillator calibration value<br />

@ 3.6V, register “OSCCAL”<br />

0x57 Cal RC 2.0V uint8 AVR internal RC oscillator calibration value<br />

@ 2.0V, register “OSCCAL”<br />

0x58 Antenna Gain int8 Antenna gain [1/10dBi]<br />

0x60 Board Name char[30] Textual board description<br />

8340A-AVR-10/10


4.7 External Peripherals<br />

5 Programming<br />

8340A-AVR-10/10<br />

Address Name Type Description<br />

<strong>AVR2038</strong><br />

0x7E CRC uint16 16 Bit CRC checksum, standard ITU-T generator<br />

polynomial G16(x) = x 16 + x 12 + x 5 + 1<br />

Note: 1. MAC addresses used for this package are <strong>Atmel</strong> property. The use of these<br />

MAC addresses for development purposes is permitted.<br />

The RCB is equipped with two 50 mil connectors to place the board on a variety of<br />

expansion boards. The connectors provide access to all spare <strong>Atmel</strong> ATmega1281/V<br />

pins, including USART, TWI, ADC, PWM and external memory pins.<br />

The detailed pin mapping is shown in Table 4-2.<br />

Table 4-2. Expansion Connector Mapping.<br />

EXT0 EXT1<br />

Pin# Function Pin# Function Pin# Function Pin# Function<br />

1 PB6 2 PB7 1 PB1 (SCK) 2 GND<br />

3 #RESET 4 VCC 3 PE7 4 PE6<br />

5 GND 6 XTAL2 5 PE5 6 PE4<br />

7 XTAL1 8 GND 7 PE3 8 PE2<br />

9 PD0 (SCL) 10 PD1 (SDA) 9 PE1 (PDO) 10 PE0 (PDI)<br />

11 PD2 (RXD1) 12 PD3 (TXD1) 11 AGND 12 AREF<br />

13 PD4 14 PD5 13 PF0 14 PF1<br />

15 PD6 (CLKM) 16 PD7 15 PF2 16 PF3<br />

17 PG0 (#WR) 18 PG1 (#RD) 17 PF4 (TCK) 18 PF5 (TMS)<br />

19 GND 20 GND 19 PF6 (TDO) 20 PF7 (TDI)<br />

21 PC0 22 PC1 21 Vcc 22 GND<br />

23 PC2 24 PC3 23 PA0 24 PA1<br />

25 PC4 26 PC5 25 PA2 26 PA3<br />

27 PC6 28 PC7 27 PA4 28 PA5<br />

29 GND 30 PG2 (ALE) 29 PA6 30 PA7<br />

This RCB type of board provides all required programming interfaces through the two<br />

50 mil connectors. Using an appropriate expansion board the interfaces are available<br />

as 100 mil connectors to connect for instances to a JTAGICE mkII.<br />

7


6 Electrical Characteristics<br />

6.1 Absolute Maximum Ratings<br />

6.2 Recommended Operating <strong>Range</strong><br />

8 <strong>AVR2038</strong><br />

Absolute maximum ratings are dependent on the individual parts and their usage<br />

within the final design. For details about these parameters, refer to individual<br />

datasheets of the components used.<br />

Table 6-1.Operating <strong>Range</strong>.<br />

No. Symbol Parameter Condition Min. Typ. Max. Units<br />

6.2.1 TOP Operating temperature range (1) -20 +70 °C<br />

6.2.2 fRF Operating frequency range 2400 2483.5 MHz<br />

6.2.3 VCC Supply voltage 2.7 (2) 3.0 3.6 V<br />

Notes: 1. Operating temperature range is limited by crystal only, other important<br />

components covering a range of -40…+85°C. For details refer individual<br />

datasheets.<br />

2. Minimum value set by power amplifier specification. A lower value of the<br />

minimum supply voltage will affect the TX output power.<br />

6.3 General RF Specifications<br />

Test Conditions (unless otherwise stated):<br />

VDD = 3.0V, fRF = 2.45GHz, TOP = 25°C<br />

Table 6-2.RF Specifications.<br />

No. Symbol Parameter Condition Min. Typ. Max. Units<br />

6.3.1 fRF Frequency range As specified in [3] 2405 2480 MHz<br />

6.3.2 fCH Channel spacing As specified in [3] 5 MHz<br />

6.3.3 fHDR Header <strong>bit</strong> rate (SHR, PHR) As specified in [3] 250 kb/s<br />

6.3.4 fPSDU_Sym PSDU symbol rate As specified in [3] 62.5 ks/s<br />

6.3.5 fPSDU_Bit PSDU <strong>bit</strong> rate As specified in [3]<br />

250<br />

kb/s<br />

OQPSK_DATA_RATE = 1<br />

500<br />

kb/s<br />

OQPSK_DATA_RATE = 2<br />

1000<br />

kb/s<br />

OQPSK_DATA_RATE = 3<br />

2000<br />

kb/s<br />

6.3.6 fCHIP Chip rate As specified in [3] 2000 kchip/s<br />

6.3.7 fXTAL Crystal oscillator frequency Reference oscillator (XTAL) 16 MHz<br />

6.3.8 fXTAL_ACC XTAL frequency accuracy -40 (1) +40 ppm<br />

6.3.9 tXTAL XTAL settling time Leaving SLEEP state to clock<br />

available at pin 17 (CLKM)<br />

330 1000 µs<br />

6.3.10 B20dB 20dB bandwidth 2.8 MHz<br />

6.4 Transmitter Characteristics<br />

Note: 1. A reference frequency accuracy of ±40ppm is required by [3].<br />

Test Conditions (unless otherwise stated):<br />

VCC = 3.0V, fRF = 2.45GHz, TOP = 25°C<br />

8340A-AVR-10/10


8340A-AVR-10/10<br />

<strong>AVR2038</strong><br />

Table 6-3.Transmitter Characteristics.<br />

No. Symbol Parameter Condition Min. Typ. Max. Units<br />

6.4.1 PTX TX Output power Maximum configurable TX output<br />

power value (2)<br />

Register <strong>bit</strong> TX_PWR = 0<br />

-4 (3) +18 (1) +21 (3) dBm<br />

6.4.2 PRANGE Output power range 16 steps, configurable in<br />

register 0x05 (PHY_TX_PWR)<br />

15 dB<br />

6.4.3 PACC Output power tolerance ±3 dB<br />

6.4.4 EVM 8 % rms<br />

6.4.5 PHARM Harmonics (FCC) (1)<br />

2 nd harmonic<br />

3 rd Pout = Pmax<br />

CW, no modulation<br />

-42<br />

dBm<br />

harmonic<br />

-50<br />

dBm<br />

6.4.6 PSPUR Spurious Emissions<br />

Complies with<br />

30 – ≤1000MHz<br />

>1 – 12.75GHz<br />

1.8 – 1.9GHz<br />

5.15 – 5.3GHz<br />

(1)<br />

EN 300 328/440,<br />

-36<br />

dBm<br />

FCC-CFR-47 part 15,<br />

-30<br />

dBm<br />

ARIB STD-66, RSS-210<br />

-47<br />

dBm<br />

-47<br />

dBm<br />

Notes: 1. Note - the operation of devices using a high output power has to follow rules of<br />

the local regulatory bodies, like FCC [5], ETSI [6], ARIB [7] or other authorities.<br />

2. According to EN 300 328 and STD-T66 (partly) the TX output power is limited<br />

to 10mW/MHz. The low-pass filter consisting of L4/5 and C28/29 is not<br />

required.<br />

3. Min. and Max. are typical values for minimum output power at lowest supply<br />

voltage or maximum output power at maximum supply voltage, respectively.<br />

6.5 Current Consumption Specifications<br />

(1) (2)<br />

Test Conditions (unless otherwise stated)<br />

VDD = 3.0V, fRF = 2.45GHz, TOP = 25°C, MCU off<br />

Table 6-4.Current Consumption Specifications.<br />

No. Symbol Parameter Condition Min. Typ. Max. Units<br />

6.5.1 IBUSY_TX Supply current transmit state PTX,max = +18dBm<br />

PTX,min = +4dBm<br />

6.5.2 IRX_ON Supply current RX_ON state RX_ON state – high input level (3)<br />

10.3 mA<br />

6.5.3 IRX_ON Supply current RX_ON state RX_ON state – high sensitivity 12.3 mA<br />

6.5.4 IRX_ON_P Supply current RX_ON state RX_ON state, with register<br />

setting RX_PDT_LEVEL > 0<br />

11.8 mA<br />

6.5.5 IPLL_ON Supply current PLL_ON state PLL_ON state 5.6 mA<br />

6.5.6 ITRX_OFF Supply current TRX_OFF state TRX_OFF state 0.4 mA<br />

6.5.7 ISLEEP Supply current SLEEP state SLEEP state 0.02 μA<br />

Notes: 1. Current consumption figures does not include microcontroller.<br />

2. Current consumption for all operating modes is reduced at lower VDD.<br />

3. Current consumption for operating modes other than transmit are similar to<br />

radio transceiver only without RF front-end, see [1].<br />

105<br />

36<br />

mA<br />

mA<br />

9


7 Typical Characteristics<br />

7.1 TX Supply Current<br />

7.1.1 TX_BUSY state<br />

10 <strong>AVR2038</strong><br />

The following charts each show a typical behavior of the <strong>AT86RF231</strong> <strong>Range</strong><br />

<strong>Extension</strong> Boards. These figures are examples only and not tested during<br />

manufacturing.<br />

Power consumption of the microcontroller required to program the radio transceiver<br />

as well as power consumption of the LED’s are not included in the measurement<br />

results.<br />

The current consumption is a function of several factors such as: operating voltage,<br />

operating frequency, loading of I/O pins, switching rate of I/O pins, and ambient<br />

temperature. The dominating factors are operating voltage and ambient temperature.<br />

If possible, measurement results are not affected by current drawn from I/O pins.<br />

Register, SRAM or Frame Buffer read or write accesses are not performed during<br />

current consumption measurements.<br />

Figure 7-1.Current Consumption vs. TX_PWR.<br />

PA + PHY Current Consumption [mA]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3.6 V<br />

3.3 V<br />

3.0V<br />

2.5 V<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

TX_PWR (Register Value)<br />

Note: Setting of <strong>AT86RF231</strong> register <strong>bit</strong>s TX_PWR are according to [1]. The<br />

highest radio transceiver output power of +3dBm is achieved by setting<br />

register <strong>bit</strong>s TX_PWR = 0, and the lowest radio transceiver TX output power<br />

of -17dBm with TX_PWR = 0, respectively. For further details refer to [1],<br />

section References, and see Figure 7-4.<br />

Ch22<br />

8340A-AVR-10/10


8340A-AVR-10/10<br />

Figure 7-2. Current Consumption vs. TX Output Power.<br />

PA + PHY Current Consumption [mA]<br />

150<br />

130<br />

110<br />

90<br />

70<br />

50<br />

30<br />

3.6 V<br />

3.3 V<br />

3.0 V<br />

2.5 V<br />

<strong>AVR2038</strong><br />

10<br />

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22<br />

TX output Power [dBm]<br />

Figure 7-3. Current Consumption vs. Channel (TX_PWR = 0).<br />

PA + PHY Current Consumption [mA]<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

Channel<br />

3.6 V<br />

3.3 V<br />

3.0 V<br />

2.5 V<br />

Ch22<br />

11


7.2 TX Performance<br />

7.2.1 TX Output Power<br />

12 <strong>AVR2038</strong><br />

Figure 7-4. TX Output Power vs. TX_PWR.<br />

RCB231LPA TX Pout [dBm]<br />

7.2.2 TX Output Power vs. IEEE802.15.4 Channel<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

3.6 V<br />

3.3 V<br />

3.0V<br />

2.5 V<br />

<strong>AT86RF231</strong><br />

-6<br />

-23<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

TX_PWR (Register Value)<br />

Figure 7-5. TX Output Power vs. Channel (TX_PWR = 0).<br />

TX Output Power [dBm]<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

3.6 V<br />

3.3 V<br />

3.0V<br />

2.5 V<br />

12<br />

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

Channel<br />

Ch18<br />

5<br />

3<br />

1<br />

-1<br />

-3<br />

-5<br />

-7<br />

-9<br />

-11<br />

-13<br />

-15<br />

-17<br />

-19<br />

-21<br />

<strong>AT86RF231</strong> TX Pout [dBm]<br />

8340A-AVR-10/10


7.2.3 TX Modulation Accuracy (EVM)<br />

8340A-AVR-10/10<br />

Figure 7-6. Error Vector Magnitude vs. TX Output Power.<br />

EVM [%]<br />

8<br />

7,5<br />

7<br />

6,5<br />

3.6 V<br />

3.0 V<br />

2.5 V<br />

<strong>AVR2038</strong><br />

6<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

TX_PWR (Register Value)<br />

Figure 7-7. Error Vector Magnitude vs. IEEE802.15.4 Channel (TX_PWR = 0).<br />

EVM [%]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

3.6 V<br />

3.0 V<br />

2.5 V<br />

5<br />

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

Channel<br />

Ch19<br />

13


7.2.4 RF Front-End Transmit Gain<br />

7.2.5 Harmonics<br />

14 <strong>AVR2038</strong><br />

Figure 7-8. RF Front-End Overall Transmit Gain.<br />

RF Front-End Transmit Gain [dB]<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

3.6 V<br />

3.3 V<br />

3.0V<br />

2.5 V<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

TX_PWR (Register Value)<br />

Figure 7-9. TX P out and Harmonics vs. IEEE802.15.4 Channel (TX_PWR = 0)<br />

Fundamental Output Power [dBm]<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

-60<br />

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

Channel<br />

Note: Harmonic measurement results shown in this paper are derived using CW<br />

signals without modulation, and therefore illustrating a worst case scenario.<br />

Applying normal TX test mode operation using IEEE802.15.4 modulated<br />

signals, harmonic power is further reduced due to the relation of a limited<br />

measurement detector bandwidth and a wide modulation bandwidth.<br />

f0<br />

2 f0<br />

3 f0<br />

4 f0<br />

Ch18<br />

-40<br />

-42<br />

-44<br />

-46<br />

-48<br />

-50<br />

-52<br />

-54<br />

-56<br />

-58<br />

Harmonic Output Power [dBm]<br />

8340A-AVR-10/10


7.2.6 Spurious Emissions – FCC<br />

8340A-AVR-10/10<br />

Figure 7-10. FCC Band Edge Spurious Emissions (conducted).<br />

Power [dBm]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

FCC part 15.247 limit<br />

PSD<br />

<strong>AVR2038</strong><br />

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700<br />

Frequency [MHz]<br />

RBW = 1 MHz, VBW = 10Hz<br />

Figure 7-11. FCC Band Edge Spurious Emissions (conducted), Lower Band Edge.<br />

Power [dBm]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

PSD - Lower Channels<br />

2385 2390 2395 2400 2405 2410 2415 2420<br />

Frequency [MHz]<br />

FCC part 15.247 limit<br />

RBW = 1 MHz, VBW = 10Hz<br />

15


16 <strong>AVR2038</strong><br />

Figure 7-12. FCC Band Edge Spurious Emissions (conducted), Upper Band Edge.<br />

Power [dBm]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

PSD - Higher Channels<br />

2460 2465 2470 2475 2480 2485 2490 2495 2500<br />

Frequency [MHz]<br />

FCC part 15.247 limit<br />

RBW = 1 MHz, VBW = 10Hz<br />

Note: Operating the <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> in the United States, FCC<br />

regulates the usage of such devices intended for unlicensed operation in the<br />

2.4GHz ISM band [5]. A summary is given in IEEE802.15.4-2006 [3]; refer to<br />

the informative Annex F, IEEE 802.15.4 regulatory requirements.<br />

Harmonic requirements of Section 15.247 of FCC CFR47 are easily<br />

achieved using the low pass filter consisting of L4/5 and C28/29, even if 2 nd<br />

and 3 rd harmonics fall into restricted bands. Most critical areas are spurious<br />

emissions at lower and upper band edges. Especially the upper band edge<br />

requirement is hard to achieve for devices transmitting at higher output<br />

power. According to FCC Part 15.247, an IEEE802.15.4 compliant device<br />

using DSSS modulation is allowed to transmit up to +30dBm (conducted).<br />

Referring to Figure 7-12, out-of band power from certain channels violates<br />

the requirements of FCC 15.247 in the restricted bands up to 2390MHz and<br />

starting from 2483.5MHz. To achieve this requirement, the output power of<br />

the affected channels has to be reduced and/or a duty cycle has to be<br />

introduced.<br />

To investigate spurious emissions for frequencies above 1GHz, FCC CFR47<br />

specifies peak and average limits in combination with specific detectors. The<br />

averaging limit is related to a 100ms reference period. The application of the<br />

average detector allows higher fundamental if the active on-air transmit time<br />

is less than the reference period. A relaxation factor can be calculated<br />

according to:<br />

min{20 dB; 20log((TX on-air time)/100ms)}<br />

This factor may be applied to the spurious emissions. In other words, if<br />

spurious emissions are above the average limit, duty cycle operation has to<br />

be introduced to fulfill specification. However, this can be applied to an<br />

average reading only, peak limits are to be fulfilled without exceptions. A<br />

peak limit violation requires TX output power back-off for the affected<br />

channel.<br />

8340A-AVR-10/10


8340A-AVR-10/10<br />

<strong>AVR2038</strong><br />

In this example, assuming conducted measurements and taking no band-edge spur<br />

margin into account, a duty cycle and/or back-off is required for a few channels. The<br />

required duty cycle and/or back-off depend on the final implementation, in detail the<br />

achieved TX output power.<br />

Conducted band-edge measurements, resulting in a certain duty-cycle and/or backoff<br />

requirements as shown in Figure 7-13, are derived following FCC<br />

recommendations published in FCC public notice DA00-705, also known as marker<br />

delta method.<br />

Figure 7-13. <strong>AT86RF231</strong> <strong>Range</strong> <strong>Extension</strong> Duty-Cycle and PA Back-Off.<br />

Maximum TX Output Power [dBm]<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

3.6 V<br />

40<br />

16<br />

3.0 V<br />

2.7 V<br />

30<br />

15<br />

3.6 V (DC)<br />

20<br />

14<br />

3.0 V (DC)<br />

2.7 V (DC)<br />

10<br />

13<br />

0<br />

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

Channel<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Maximum Duty Cycle [%]<br />

17


Appendix A – Design<br />

A.1 - Schematic<br />

18 <strong>AVR2038</strong><br />

Figure A.1-1. RCB231LPA – RF Front-End Section.<br />

8340A-AVR-10/10


8340A-AVR-10/10<br />

Figure A. 1-2. RCB231LPA – Transceiver Section.<br />

<strong>AVR2038</strong><br />

19


20 <strong>AVR2038</strong><br />

8340A-AVR-10/10<br />

Figure A. 1-3. RCB231LPA – MCU Section.<br />

1<br />

3<br />

2<br />

Q101<br />

CSTCC3.68G-A<br />

C101<br />

100n<br />

C102<br />

100n<br />

C103<br />

100n<br />

C104<br />

10p<br />

C105<br />

10p<br />

C106<br />

22p<br />

C107<br />

22p<br />

R101<br />

10k<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

EXT0<br />

SFM-115-L2-S-D-LC<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

EXT1<br />

SFM-115-L2-S-D-LC<br />

D1<br />

rot<br />

D2<br />

rot<br />

D3<br />

rot<br />

T1<br />

Knitter TSS31N<br />

R102 NC<br />

R4<br />

470<br />

R5<br />

470<br />

R6<br />

470<br />

Batt1<br />

AAAx2<br />

C108<br />

100n<br />

L101<br />

Wuerth74279266<br />

VCC<br />

VCC<br />

VCC<br />

R103 NC<br />

R104 NC<br />

SW1<br />

Eao09.10201.02<br />

(32kHz)<br />

R105 0R<br />

VCC<br />

C109<br />

10n<br />

L102<br />

Wuerth74279266<br />

VCC<br />

C110<br />

100n<br />

L103<br />

Wuerth74279266<br />

PG5(OC0B)<br />

1<br />

PE0(RXD0/PCINT8/PDI)<br />

2<br />

PE1(TXD0/PDO)<br />

3<br />

PE2(XCK0/AIN0)<br />

4<br />

PE3(OC3A/AIN1)<br />

5<br />

PE4(OC3B/INT4)<br />

6<br />

PE5(OC3C/INT5)<br />

7<br />

PE6(T3/INT6)<br />

8<br />

PE7(ICP3/CLKO/INT7)<br />

9<br />

PB0(/SS/PCINT0)<br />

10<br />

PB1(SCK/PCINT1)<br />

11<br />

PB2(MOSI/PCINT2)<br />

12<br />

PB3(MISO/PCINT3)<br />

13<br />

PB4(OC2A/PCINT4)<br />

14<br />

PB5(OC1A/PCINT5)<br />

15<br />

PB6(OC1B/PCINT6)<br />

16<br />

PB7(OC0A/OC1C/PCINT7)<br />

17<br />

PG3(TOSC2)<br />

18<br />

PG4(TOSC1)<br />

19<br />

RESET<br />

20<br />

Vcc<br />

21<br />

GND<br />

22<br />

XTAL2<br />

23<br />

XTAL1<br />

24<br />

PD0(SCL/INT0)<br />

25<br />

PD1(SDA/INT1)<br />

26<br />

PD2(RXD1/INT2)<br />

27<br />

PD3(TXD1/INT3)<br />

28<br />

PD4(ICP1)<br />

29<br />

PD5(XCK1)<br />

30<br />

PD6(T1)<br />

31<br />

PD7(T0)<br />

32<br />

PG0(/WR)<br />

33<br />

PG1(/RD)<br />

34<br />

PC0(A8)<br />

35<br />

PC1(A9)<br />

36<br />

PC2(A10)<br />

37<br />

PC3(A11)<br />

38<br />

PC4(A12)<br />

39<br />

PC5(A13)<br />

40<br />

PC6(A14)<br />

41<br />

PC7(A15)<br />

42<br />

PG2(ALE)<br />

43<br />

PA7(AD7)<br />

44<br />

PA6(AD6)<br />

45<br />

PA5(AD5)<br />

46<br />

PA4(AD4)<br />

47<br />

PA3(AD3)<br />

48<br />

PA2(AD2)<br />

49<br />

PA1(AD1)<br />

50<br />

PA0(AD0)<br />

51<br />

Vcc<br />

52<br />

GND<br />

53<br />

PF7(ADC7/TDI)<br />

54<br />

PF6(ADC6/TDO)<br />

55<br />

PF5(ADC5/TMS)<br />

56<br />

PF4(ADC4/TCK)<br />

57<br />

PF3(ADC3)<br />

58<br />

PF2(ADC2)<br />

59<br />

PF1(ADC1)<br />

60<br />

PF0(ADC0)<br />

61<br />

AREF<br />

62<br />

AGND<br />

63<br />

AVcc<br />

64<br />

GND<br />

65<br />

U5<br />

ATMEGA_1281<br />

(RS-204-7871)<br />

Q102<br />

CFPX-157<br />

AVcc<br />

AREF<br />

Plug1<br />

AMP 2-331677-2<br />

Plug2<br />

AMP 2-331677-2<br />

A<br />

2<br />

K<br />

1<br />

D4<br />

BAS140W<br />

VCC<br />

PE7<br />

PE5<br />

PE3<br />

PE0<br />

PE2<br />

PE4<br />

PE6<br />

AREF<br />

PF0<br />

PF1<br />

PF2<br />

PF3<br />

PF4<br />

PF5<br />

PF6<br />

PF7<br />

PA0<br />

PA1<br />

PA2<br />

PA3<br />

PA4<br />

PA5<br />

PA6<br />

PA7<br />

PB1<br />

PE1<br />

PE0<br />

PE1<br />

PE3<br />

PE6<br />

PE2<br />

PE4<br />

PE5<br />

PE7<br />

PA1<br />

PB1<br />

PA0<br />

PA2<br />

PA3<br />

PA4<br />

PA5<br />

PA6<br />

PA7<br />

PF0<br />

PF1<br />

PF2<br />

PF3<br />

PF4<br />

PF5<br />

PF6<br />

PF7<br />

AGND<br />

AGND<br />

#RESET<br />

XTAL1<br />

XTAL2<br />

PB6<br />

PB7<br />

PD0<br />

PD2<br />

PD4<br />

PD6<br />

PG0<br />

PC0<br />

PC2<br />

PC4<br />

PC6<br />

PD1<br />

PD3<br />

PD5<br />

PD7<br />

PG1<br />

PC1<br />

PC3<br />

PC5<br />

PC7<br />

PG2<br />

PC0<br />

PC1<br />

PC2<br />

PC3<br />

PC4<br />

PC5<br />

PC6<br />

PC7<br />

PG2<br />

PG0<br />

PG1<br />

XTAL1<br />

XTAL2<br />

PD4<br />

PD0<br />

PD5<br />

PD6<br />

PD7<br />

PD6<br />

XTAL_1<br />

XTAL_2<br />

#RESET<br />

#RESET<br />

PB0<br />

PB2<br />

PB3<br />

PB4<br />

PB5<br />

PB6<br />

PD4<br />

PB7<br />

XTAL_1<br />

VCC<br />

PB1<br />

PB3<br />

PB2<br />

PB0<br />

VCC<br />

VCC<br />

PB5<br />

PB4<br />

PD0<br />

PD1<br />

PD2<br />

PD3<br />

VCC<br />

AREF<br />

AGND<br />

AVcc<br />

RSTN<br />

SLP_TR<br />

CLKM<br />

SCK<br />

MISO<br />

MOSI<br />

SEL<br />

IRQ<br />

ICP1<br />

Transceiver<br />

Transceiver Section<br />

VDD


A.2 – Assembly Drawing<br />

8340A-AVR-10/10<br />

Figure A. 2-4. RCB231LPA – Assembly Drawing.<br />

<strong>AVR2038</strong><br />

21


A.3 – Bill of Material (BoM)<br />

22 <strong>AVR2038</strong><br />

Quantity Comment Description Designator Footprint<br />

1 WE_748421245 Balun Wuert 748421245 B1 BALUN0805<br />

1 AAAx2 Battery Batt1 BH-421-3<br />

1 47uF/6V Electrolytic Capacitor C1 TANTAL_C<br />

14 22p Capacitor C3, C8, C15, C17, C19,<br />

C20, C21, C23, C24, C25,<br />

C26, C27, C106, C107<br />

0402<br />

4 1uF Capacitor C4, C11, C12, C14 0603<br />

8 100n Capacitor C5, C6, C7, C101, C102,<br />

C103, C108, C110<br />

0402<br />

4 10p Capacitor C9, C10, C104, C105 0402<br />

2 1nF Capacitor C13, C16 0402<br />

1 1p5 Capacitor C22 0402<br />

1 0p5 Capacitor C28 0402<br />

1 0p5 Capacitor C29 0402<br />

1 10n Capacitor C109 0402<br />

3 rot D1, D2, D3 LED0603<br />

1 BAS140W Schottky Diode D4 SOD-323<br />

1 SFM-115-L2-S-D-LC Connector 15x2-pol. EXT0 SFM15<br />

1 SFM-115-L2-S-D-LC EXT1 SFM15<br />

1 2450LP14B100S F1 0603-6<br />

1 Si1563DH MOSFET IC1 SOT-SC70/6-Dual Co<br />

1 39nH Inductor L1 0603<br />

1 1,5nH Inductor L2 0402<br />

1 4.7nH Inductor L3 0402<br />

2 4.7nH Inductor L4, L5 0603<br />

4 Wuerth74279266 L12, L101, L102, L103 0603<br />

1 Logo 1 LG1 LOGO solder<br />

1 Logo 2 LG2 LOGO solder<br />

1 Nut NT1<br />

1 M2,5x8 NT2<br />

2 AMP 2-331677-2 Plug1, Plug2<br />

1 16MHz / CL=10pF Crystal Siward A207-011 Q1 XTAL_4X2_5_small<br />

1 CSTCC3.68G-A Q101 CSTCC<br />

1 CFPX-157 Crystal Q102 CFPX<br />

2 1M Resistor R1, R2 0402<br />

3 n.b. Resistor R3, R8, R11 0402<br />

4 470 Resistor R4, R5, R6, R7 0402<br />

3 0R Resistor R9, R10, R105 0402<br />

4 1k Resistor R12, R13, R14, R15 0402<br />

1 100k Resistor R16 0402<br />

2 10k Resistor R17, R101 0402<br />

3 NC Resistor R102, R103, R104 0402<br />

1 Shield_BMIS SH1 LT08AD4303F<br />

1 Eao09.10201.02 Switch 1W SW1 EAO1XUM<br />

1 Knitter TSS31N Pushbutton 1P T1 Taster_ITT<br />

1 <strong>AT86RF231</strong> 802.15.4 2.4GHz TRX U1 MLF-32<br />

1 NC7WV04 2x 2 Input Inverter U2 SC-70-6<br />

1 AT25010A U3 Mini-Map-8<br />

1 NC7WP32 2x 2 Input OR Gatter U4 SC-70-8<br />

1 ATMEGA_1281 8-<strong>bit</strong> AVR uC U5 MLF64-M2<br />

1 uPG2314T5N U6 TSON-6<br />

2 AS222-92 U7, U8 SC-70/6<br />

1 SMA 50Ohm X1 SMA_BU<br />

8340A-AVR-10/10


Appendix B – Abbreviation<br />

8340A-AVR-10/10<br />

ADC - Analog-to-digital converter<br />

BB - Base Band<br />

CRC - Cyclic redundancy check<br />

FCC - Federal Communication Commission<br />

FFD - Full Functional Device<br />

ISM - Industrial, Scientific, and Medical<br />

LNA - Low Noise Amplifier<br />

MAC - Medium Access Control<br />

PA - Power Amplifier<br />

PHR - PHY Header<br />

PHY - Physical Layer<br />

PSDU - PHY Service Data Unit<br />

RCB - Radio Controller Board<br />

PWM - Pulse Width Modulation<br />

RF - Radio Frequency<br />

RFD - Reduced Functional Device<br />

RX - Receiver<br />

TWI - 2-wire Serial Interface<br />

TX - Transmitter<br />

USART - Universal Asynchronous Receiver Transmitter<br />

<strong>AVR2038</strong><br />

23


Appendix C – EVALUATION BOARD/KIT IMPORTANT NOTICE<br />

24 <strong>AVR2038</strong><br />

This evaluation board/kit is intended for use for FURTHER ENGINEERING,<br />

DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY. It is<br />

not a finished product and may not (yet) comply with some or any technical or legal<br />

requirements that are applicable to finished products, including, without limitation,<br />

directives regarding electromagnetic compatibility, recycling (WEEE), FCC, CE or UL<br />

(except as may be otherwise noted on the board/kit). <strong>Atmel</strong> supplied this board/kit<br />

“AS IS,” without any warranties, with all faults, at the buyer’s and further users’ sole<br />

risk. The user assumes all responsibility and liability for proper and safe handling of<br />

the goods. Further, the user indemnifies <strong>Atmel</strong> from all claims arising from the<br />

handling or use of the goods. Due to the open construction of the product, it is the<br />

user’s responsibility to take any and all appropriate precautions with regard to<br />

electrostatic discharge and any other technical or legal concerns.<br />

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER<br />

USER NOR ATMEL SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT,<br />

SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.<br />

No license is granted under any patent right or other intellectual property right of<br />

<strong>Atmel</strong> covering or relating to any machine, process, or combination in which such<br />

<strong>Atmel</strong> products or services might be or are used.<br />

Mailing Address: <strong>Atmel</strong> <strong>Corporation</strong>, 2325 Orchard Parkway, San Jose, CA 95131<br />

Copyright © 2010, <strong>Atmel</strong> <strong>Corporation</strong><br />

8340A-AVR-10/10


References<br />

8340A-AVR-10/10<br />

<strong>AVR2038</strong><br />

[1] <strong>AT86RF231</strong>; Low Power, 2.4 GHz Transceiver for ZigBee, IEEE 802.15.4,<br />

6LoWPAN, RF4CE, SP100, WirelessHART and ISM Applications; Datasheet;<br />

Rev. 8111B-MCU Wireless-02/09; <strong>Atmel</strong> <strong>Corporation</strong>.<br />

[2] ATmega1281/V; 8-<strong>bit</strong> Microcontroller with 128K Bytes In-System Programmable<br />

Flash; Datasheet; Rev. 2549L–AVR–08/07; <strong>Atmel</strong> <strong>Corporation</strong>.<br />

[3] IEEE Std 802.15.4-2006: Wireless Medium Access Control (MAC) and<br />

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area<br />

Networks (LR-WPANs).<br />

[4] <strong>AT86RF231</strong>; Software Programming Model; Rev.2.0; <strong>Atmel</strong> <strong>Corporation</strong>.<br />

[5] FCC Code of Federal Register (CFR); Part 47; Section 15.35, Section 15.205,<br />

Section 15.209, Section 15.231, Section 15.247, and Section 15.249. United<br />

States.<br />

[6] ETSI EN 300 328, Electromagnetic Compatibility and Radio Spectrum Matters<br />

(ERM); Wideband Transmission Systems; Data transmission equipment<br />

operating in the 2.4 GHz ISM band and using spread spectrum modulation<br />

techniques; Part 1-3.<br />

[7] ARIB STD-T66, Second Generation Low Power Data Communication<br />

System/Wireless LAN System 1999.12.14 (H11.12.14) Version 1.0.<br />

25


Disclaimer<br />

<strong>Atmel</strong> <strong>Corporation</strong><br />

2325 Orchard Parkway<br />

San Jose, CA 95131<br />

USA<br />

Tel: (+1)(408) 441-0311<br />

Fax: (+1)(408) 487-2600<br />

www.atmel.com<br />

<strong>Atmel</strong> Asia Limited<br />

Unit 01-5 & 16, 19F<br />

BEA Tower, Milennium City 5<br />

418 Kwun Tong Road<br />

Kwun Tong, Kowloon<br />

HONG KONG<br />

Tel: (+852) 2245-6100<br />

Fax: (+852) 2722-1369<br />

© 2010 <strong>Atmel</strong> <strong>Corporation</strong>. All rights reserved. / Rev.: CORP072610<br />

<strong>Atmel</strong> Munich GmbH<br />

Business Campus<br />

Parkring 4<br />

D-85748 Garching b. Munich<br />

GERMANY<br />

Tel: (+49) 89-31970-0<br />

Fax: (+49) 89-3194621<br />

<strong>Atmel</strong> Japan<br />

9F, Tonetsu Shinkawa Bldg.<br />

1-24-8 Shinkawa<br />

Chou-ku, Tokyo 104-0033<br />

JAPAN<br />

Tel: (+81) 3523-3551<br />

Fax: (+81) 3523-7581<br />

<strong>Atmel</strong> ®<br />

, logo and combinations thereof, and others are registered trademarks of <strong>Atmel</strong> <strong>Corporation</strong> or its subsidiaries. Other terms and<br />

product names may be trademarks of others.<br />

Disclaimer: The information in this document is provided in connection with <strong>Atmel</strong> products. No license, express or implied, by estoppel or otherwise, to<br />

any intellectual property right is granted by this document or in connection with the sale of <strong>Atmel</strong> products. EXCEPT AS SET FORTH IN THE ATMEL<br />

TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS<br />

ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED<br />

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE<br />

LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,<br />

DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO<br />

USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. <strong>Atmel</strong> makes no representations or<br />

warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and<br />

product descriptions at any time without notice. <strong>Atmel</strong> does not make any commitment to update the information contained herein. Unless specifically<br />

provided otherwise, <strong>Atmel</strong> products are not suitable for, and shall not be used in, automotive applications. <strong>Atmel</strong> products are not intended, authorized, or<br />

warranted for use as components in applications intended to support or sustain life.<br />

8340A-AVR-10/10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!