XIX Sympozjum Srodowiskowe PTZE - materialy.pdf

XIX Sympozjum Srodowiskowe PTZE - materialy.pdf XIX Sympozjum Srodowiskowe PTZE - materialy.pdf

17.01.2013 Views

XIX Sympozjum PTZE, Worliny 2009 dla zastosowań komercyjnych. Największe zastosowanie znalazła w handlu, motoryzacji oraz logistyce. W logistyce wspomaga zarządzanie, usprawnia działanie organizacji a przede wszystkim znacznie zmniejsza straty. Przykładem bardzo dobrze funkcjonujących urządzeń RFID jest np.: • obsługa przekazywania bagażu na lotnisku w Hong Kongu • usprawnienie procesu wchodzenia i wychodzenia kibiców na teren obiektów sportowych podczas igrzysk w Pekinie 2008 roku. Jednocześnie organizatorzy ograniczyli możliwość sfałszowania biletów • lokalizacja wielu obiektów (dzieci) na dużym obszarze w jednym z największych Legolandów dla dzieci w Danii, itp. W niniejszym artykule przedstawiamy możliwości zastosowania technologii RFID w medycynie. Brana jest pod uwagę infrastruktura medyczna (poprawa zarządzania wyposażeniem, kontrola zaopatrzenia i dostaw), jak również opieka nad pacjentem. W ostatnich latach pojawiła się odmiana znaczników RFID tzw. implanty RFID, które mogą być umieszczane w postaci miniaturowej ampułki pod skórą człowieka. Umożliwiają automatyczną identyfikacje pacjenta, szybki dostęp do historii choroby i udzielenie natychmiastowej pomocy. Przykład implantu RFID pokazano na Rys. 2. Rys. 2. Implant RFID w porównaniu do ziarna ryżu. Źródło [4] Oczywiście stosowanie tego rodzaju implantów u ludzi rodzi bardzo wiele pytań zarówno natury medycznej, prawnej, jak i etycznej. W pracy wskazujemy na zagrożenia stosowanej technologii RFID w medycynie. Jednak, jak się wydaje, badania w tym zakresie powinny być kontynuowane. Obecnie sektor medyczny, jak podaje [3], jest drugim, co do wielkości rynkiem wdrożeń rozwiązań technologii identyfikacji radiowej. Bibliografia [1] RFID for dummies, Patrick J.Sweeney II, Wiley Publishing Inc. Indiana 2005. [2] RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, [wyd.2], Klaus Finkenzeller, John Wiley & Sons, 2003. [3] www.kaloramainformation.com/RFID-Opportunities-Healthcare-1432856. [4] http://earthhopenetwork.net/RFID_hand.jpg. 52

XIX Sympozjum PTZE, Worliny 2009 LIMITATION OF USAGE OF RELAXATION TIME OF LOW-CONDUCTING MATERIALS FOR ESTIMATION OF ELECTROSTATIC CHARGE DISSIPATION TIME Introduction Zygmunt J. Grabarczyk Central Institute for Labour Protection – National Research Institute Laboratory of Electrostatics Electrostatic discharges (ESD) constitute serious problems in the plants and other organization, in which the explosive atmospheres or explosives are used or can appear unexpectedly. The energy of ESDs can excess the ignition energy of the explosive media. In case of ESD the available amount of the electric charge (cumulated on the surface of electrified solid body or inside the volume of bulk or liquid materials) and the energy cumulated in the electrostatic field is finite. Energy is usually limited up to the order of 1 J or less. For that ESDs are short current pulses in the thin plasma channels. The plasma can be generated only if the electric field intensity E is high enough to start the air ionization. The ESD in the normal atmospheric conditions can occur if the electric field intensity E locally achieves at least (at the surface of one or both electrodes) approximate value 3 MV/m. The most of electrostatic discharges like spark, brush, cone or propagating brush, are able to ignite almost all mixture of flammable gases and vapours and, excluding brush – a wide range of dusts. For that reason, the possibility of fast dissipation of electrostatic charge is of a great importance in the explosion prevention. A lot of guidance and technical standards (e.g. Britton, PN-E-05204) demand to let electrified bulk or liquid materials for charge relaxation during a time not less than a few relaxation time constants. As it was shown in the paper, the real time of charge dissipation can be significantly longer than simple material relaxation time constant. Method It is well known charge decay rate relation: d Q Q = − , dt τ (1) where Q = Q(t) is a electrostatic charge and τ is a relaxation time constant of the material, usually defined as τ = ε/γ, where ε = ε0 εr and γ is the volume conductivity of material. It must be take under consideration, that the real time constant of the charge decay in real system equals to material relaxation time constant τ only if all electric flux vector (D) from 53

<strong>XIX</strong> <strong>Sympozjum</strong> <strong>PTZE</strong>, Worliny 2009<br />

LIMITATION OF USAGE OF RELAXATION TIME<br />

OF LOW-CONDUCTING MATERIALS FOR ESTIMATION<br />

OF ELECTROSTATIC CHARGE DISSIPATION TIME<br />

Introduction<br />

Zygmunt J. Grabarczyk<br />

Central Institute for Labour Protection – National Research Institute<br />

Laboratory of Electrostatics<br />

Electrostatic discharges (ESD) constitute serious problems in the plants and other<br />

organization, in which the explosive atmospheres or explosives are used or can appear<br />

unexpectedly. The energy of ESDs can excess the ignition energy of the explosive media.<br />

In case of ESD the available amount of the electric charge (cumulated on the surface of<br />

electrified solid body or inside the volume of bulk or liquid materials) and the energy<br />

cumulated in the electrostatic field is finite. Energy is usually limited up to the order of 1 J or<br />

less. For that ESDs are short current pulses in the thin plasma channels. The plasma can be<br />

generated only if the electric field intensity E is high enough to start the air ionization. The<br />

ESD in the normal atmospheric conditions can occur if the electric field intensity E locally<br />

achieves at least (at the surface of one or both electrodes) approximate value 3 MV/m. The<br />

most of electrostatic discharges like spark, brush, cone or propagating brush, are able to ignite<br />

almost all mixture of flammable gases and vapours and, excluding brush – a wide range of<br />

dusts. For that reason, the possibility of fast dissipation of electrostatic charge is of a great<br />

importance in the explosion prevention.<br />

A lot of guidance and technical standards (e.g. Britton, PN-E-05204) demand to let electrified<br />

bulk or liquid materials for charge relaxation during a time not less than a few relaxation time<br />

constants. As it was shown in the paper, the real time of charge dissipation can be<br />

significantly longer than simple material relaxation time constant.<br />

Method<br />

It is well known charge decay rate relation:<br />

d Q<br />

Q = − ,<br />

dt τ<br />

(1)<br />

where Q = Q(t) is a electrostatic charge and τ is a relaxation time constant of the material,<br />

usually defined as τ = ε/γ, where ε = ε0 εr and γ is the volume conductivity of material.<br />

It must be take under consideration, that the real time constant of the charge decay in real<br />

system equals to material relaxation time constant τ only if all electric flux vector (D) from<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!