XIX Sympozjum Srodowiskowe PTZE - materialy.pdf

XIX Sympozjum Srodowiskowe PTZE - materialy.pdf XIX Sympozjum Srodowiskowe PTZE - materialy.pdf

17.01.2013 Views

u1 i1 N1 u2 i2 N2 um i m Nm XIX Sympozjum PTZE, Worliny 2009 144 Φ 2 u1 u2 i1 i2 N1 N2 Fig. 1: Single-phase shell-type transformer Φ 2 Nm m i For determination of the magnetically nonlinear characteristic of iron core in form of the flux linkage characteristic [3], the numerical integration of measurement voltage and current waveforms must be conducted: t ( t) = ( u( ) −Ri( ) ) d ( 2) ∫ ψ τ τ τ 0 The measured voltage u1(t) and responding current i1(t) recorded during tests are shown in Fig. 2 a) and b). The calculated flux linkage and corresponding nonlinear hysteresis-loop characteristics ψ 1 = f ( i1) for different supplied voltages are shown in Fig. 3a. A uniform nonlinear magnetic characteristic determined from peaks of hysteresis-loops is shown in Fig. 3b. u[V] 200 150 100 50 0 -50 -100 -150 -200 0 100 200 300 400 t[s] 500 600 700 800 i[A] 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 um -0.4 0 100 200 300 400 t[s] 500 600 700 800 Fig. 2a: Time waveform of primary voltage u1(t) Fig. 2b: Time waveform of primary current i1(t) Ψ[Vs] 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.4 -0.3 -0.2 -0.1 0 i[A] 0.1 0.2 0.3 0.4 Ψ[Vs] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 i[A] 3 3.5 4 4.5 5 Fig. 3a: Hysteresis-loop characteristics ψ1 (i1) Fig. 3b: Nonlinear magnetic characteristics ψ1 (i1)

XIX Sympozjum PTZE, Worliny 2009 The whole family of hysteresis-loop characteristics f ( i ) ψ 1 = 1 presented in Fig. 3a was experimentally determined at 10 different voltages. Taking into account the modeling of the secondary winding nonlinear characteristic ψ 2 = f ( i2) together with the nonlinear characteristics ψ 2 = f ( i1, i2) and ψ 1 = f ( i1, i2) , the complete magnetically nonlinear dynamic model can be developed. The modeling method for the primary and for the secondary winding considering real coefficient of coupling and the simulation results obtained by the developed nonlinear dynamic transformer model will be presented in the full paper for different transient phenomena. References [1] M. Hadžiselimović, G. Štumberger, T. Marčič, B. Štumberger, I. Zagradišnik, Magnetically nonlinear dynamic model of synchronous motor with permanent magnets. J. magn. magn. mater. 2007, vol. 316, pp. e257-e260. [2] M. Hadžiselimović, B. Štumberger, P. Virtič, P. Pišek, T. Marčič, G. Štumberger. Determining parameters of a two-axis permanent magnet synchronous motor dynamic model by finite element method. Prz. Elektrotech., 2008, vol. 84, no. 1, pp. 77-80. [3] M. Hadžiselimović, G. Štumberger, T. Marčič, B. Štumberger, I. Zagradišnik, Measurement of magnetic nonlinear characteristics of DC electromagnetic brake. Prz. Elektrotech., 2006, vol. 82, no. 12, pp. 76-79. 145

<strong>XIX</strong> <strong>Sympozjum</strong> <strong>PTZE</strong>, Worliny 2009<br />

The whole family of hysteresis-loop characteristics f ( i )<br />

ψ 1 = 1 presented in Fig. 3a was<br />

experimentally determined at 10 different voltages. Taking into account the modeling of the<br />

secondary winding nonlinear characteristic ψ 2 = f ( i2)<br />

together with the nonlinear<br />

characteristics ψ 2 = f ( i1, i2)<br />

and ψ 1 = f ( i1, i2)<br />

, the complete magnetically nonlinear dynamic<br />

model can be developed. The modeling method for the primary and for the secondary winding<br />

considering real coefficient of coupling and the simulation results obtained by the developed<br />

nonlinear dynamic transformer model will be presented in the full paper for different transient<br />

phenomena.<br />

References<br />

[1] M. Hadžiselimović, G. Štumberger, T. Marčič, B. Štumberger, I. Zagradišnik, Magnetically<br />

nonlinear dynamic model of synchronous motor with permanent magnets. J. magn. magn.<br />

mater. 2007, vol. 316, pp. e257-e260.<br />

[2] M. Hadžiselimović, B. Štumberger, P. Virtič, P. Pišek, T. Marčič, G. Štumberger.<br />

Determining parameters of a two-axis permanent magnet synchronous motor dynamic model<br />

by finite element method. Prz. Elektrotech., 2008, vol. 84, no. 1, pp. 77-80.<br />

[3] M. Hadžiselimović, G. Štumberger, T. Marčič, B. Štumberger, I. Zagradišnik, Measurement of<br />

magnetic nonlinear characteristics of DC electromagnetic brake. Prz. Elektrotech., 2006, vol.<br />

82, no. 12, pp. 76-79.<br />

145

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!