17.01.2013 Views

Electrical Circuit Battery Modeling in Simplorer - Ansys

Electrical Circuit Battery Modeling in Simplorer - Ansys

Electrical Circuit Battery Modeling in Simplorer - Ansys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Electrical</strong> <strong>Circuit</strong> <strong>Battery</strong><br />

<strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>Simplorer</strong> ®<br />

<strong>Electrical</strong> <strong>Circuit</strong> <strong>Battery</strong><br />

<strong>Model<strong>in</strong>g</strong> <strong>in</strong> <strong>Simplorer</strong> ®<br />

Xiao Hu<br />

Eric L<strong>in</strong><br />

Zed Tang<br />

Scott Stanton<br />

ANSYS Inc<br />

October, 2009<br />

© 2009 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary


<strong>Circuit</strong> Model Motivation<br />

• Simple enough for system level analysis<br />

– Models based on detailed electrochemistry or detailed<br />

CFD analysis is too complex and/or too time<br />

consum<strong>in</strong>g for system level analysis<br />

• Accurate enough for virtual prototyp<strong>in</strong>g<br />

– Non-l<strong>in</strong>ear circuit voltage as a function of SOC<br />

– Transient I-V performance<br />

– Runtime prediction<br />

– Rate dependent capacity<br />

– Temperature effect<br />

– Accurate transient temperature prediction<br />

© 2009 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary


Outl<strong>in</strong>e of Models<br />

• Chen’s electrical model<br />

– Accurate if temperature and discharge rate is constant<br />

• Gao’s modification<br />

– Introduces temperature and discharge rate effect<br />

– Thermal network model <strong>in</strong>troduced<br />

• Foster network thermal model<strong>in</strong>g<br />

– As accurate as CFD or test<strong>in</strong>g<br />

• <strong>Battery</strong> system example<br />

© 2009 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary


Chen’s <strong>Electrical</strong> <strong>Battery</strong> Cell<br />

Model<br />

• Accounts for non-l<strong>in</strong>ear opencircuit<br />

voltage<br />

• Capable of predict<strong>in</strong>g runtime<br />

– Error less than 0.4%<br />

• Capable of predict<strong>in</strong>g<br />

transient I-V performance<br />

– Error less than 30-mV<br />

• Can be implemented easily <strong>in</strong><br />

Rself-Discharge = 0<br />

circuit simulator<br />

– Current implementation is<br />

done <strong>in</strong> <strong>Simplorer</strong> ® Reference: M. Chen, G. A. R<strong>in</strong>con-Mora, “Accurate electrical battery<br />

model capable of predict<strong>in</strong>g Runtime and I-V performance,”IEE<br />

Trans. On energy conversion, vol. 21, no. 2, June 2006<br />

© 2009 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary


Results – Comparison<br />

• Pulse discharge and charge.<br />

Results from <strong>Simplorer</strong> ®<br />

Results from Chen<br />

Reference: M. Chen, G. A. R<strong>in</strong>con-Mora, “Accurate electrical battery model capable of predict<strong>in</strong>g Runtime and I-V performance,”IEE Trans. On<br />

energy conversion, vol. 21, no. 2, June 2006<br />

© 2009 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary


Experimental Observation<br />

• Chen’s model works OK<br />

compared with test<strong>in</strong>g data.<br />

– Under constant temperature<br />

and discharge rate<br />

• Rate effect and temperature<br />

effect are important to<br />

consider<br />

Reference: L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for<br />

system simulation,” IEEE Trans, Compon. Packag. Technol., vol. 25, no. 3, pp. 495-<br />

505, Sep. 2002<br />

Impact of discharge rate<br />

Impact of temperature<br />

© 2009 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary


Suggested Modification by Gao<br />

• The discharge history is sensitized to rate of discharge and<br />

temperature through rate factor and temperature factor<br />

Chen’s model<br />

Gao’s model<br />

Rate factor Temperature factor<br />

Reference: L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Trans, Compon. Packag.<br />

Technol., vol. 25, no. 3, pp. 495-505, Sep. 2002<br />

© 2009 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary


Complete <strong>Circuit</strong> Model for Li-ion <strong>Battery</strong>: 1 Cell<br />

• <strong>Electrical</strong> circuit and thermal<br />

circuit are coupled<br />

• <strong>Electrical</strong> circuit provides<br />

power to thermal circuit<br />

• Thermal circuit provides<br />

temperature to electrical<br />

circuit<br />

• Includes Positive<br />

Temperature Coefficient<br />

(PTC)<br />

© 2009 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary<br />

Rconv<br />

<strong>Electrical</strong>/thermal <strong>in</strong>teraction<br />

Rcond Rcond<br />

T1 T2 Tptc<br />

Ambient<br />

Rconv Rconv


<strong>Simplorer</strong> ® Implementation of Gao’s<br />

Model with PTC and 3 T Nodes<br />

Implemented<br />

us<strong>in</strong>g VHDL-AMS<br />

© 2009 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary


Results –Rate/Temperature Effect<br />

Added<br />

Impact of rate<br />

Impact of temperature<br />

© 2009 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary


Results – No Overload<strong>in</strong>g<br />

• Discharge with a resistor of 10 Ohm.<br />

• Temperature close to ambient<br />

Voltage PTC and <strong>Battery</strong> Temperature<br />

© 2009 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary


Results – Overload<strong>in</strong>g<br />

• Discharge with a resistor of 2 Ohm.<br />

• Temperature of PTC goes high<br />

Voltage PTC and <strong>Battery</strong> Temperature<br />

© 2009 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary


From Thermal Network to Foster<br />

Network<br />

• Even though the thermal network method works OK, the model<br />

has limited accuracy due to the fact that it has only a limited<br />

number of thermal nodes, two <strong>in</strong> the example<br />

• A Foster network can be used to replace the thermal network<br />

• Foster network is as accurate as CFD or test<strong>in</strong>g<br />

• A Foster network is a ladder of RC<br />

network shown<br />

• The response of the Foster network<br />

system is a sum of several<br />

exponentially decay<strong>in</strong>g terms.<br />

© 2009 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary<br />

0<br />

R1<br />

C1 C2<br />

R2 R3<br />

R4<br />

Foster network<br />

R5<br />

R6<br />

C3 C4 C5 C6


What is an LTI system?<br />

• A LTI system is a L<strong>in</strong>ear Time Invariant (LTI) system<br />

• L<strong>in</strong>ear means that it satisfies superposition<br />

• Time <strong>in</strong>variant means the behavior will not change if you test it tomorrow<br />

• The Foster network is a LTI system<br />

• <strong>Battery</strong> cool<strong>in</strong>g problem can be treated like a system, <strong>in</strong> which the<br />

<strong>in</strong>puts are the power generated by <strong>in</strong>dividual batteries and the<br />

outputs are temperatures at user specified locations<br />

• Under certa<strong>in</strong> conditions, such a system is a LTI system<br />

<strong>Battery</strong>1 Power<br />

<strong>Battery</strong>2 Power<br />

<strong>Battery</strong>3 Power<br />

© 2009 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary<br />

LTI<br />

Temperature1<br />

Temperature2<br />

Temperature3


Characteristics of LTI Systems<br />

• Impulse (or step) response completely characterize such<br />

systems<br />

• The Laplace transform of the impulse response is the transfer<br />

function of such a system<br />

• Any transient response of the system is the convolution of <strong>in</strong>put<br />

and the impulse response<br />

• If two LTI systems have the same impulse (or step) response (or<br />

transfer function), then the two systems have identical<br />

behavior.<br />

• The output of the two systems are the same provided that the<br />

<strong>in</strong>put to the two systems are the same – one can replace one<br />

with another even though two systems may have completely<br />

different <strong>in</strong>ternal structure<br />

• <strong>Electrical</strong> analogy works for mechanical/thermal systems<br />

• Both the Foster network and battery system are LTI<br />

systems<br />

• If we can f<strong>in</strong>d resistance and capacitance of the Foster network<br />

such that it has the same impulse (or step) response as the<br />

battery thermal system, the transient behavior of the battery<br />

system can be represented by the Foster network.<br />

© 2009 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary


<strong>Electrical</strong> Model Plus LTI Foster<br />

Network<br />

• <strong>Electrical</strong> circuit part is unchanged<br />

• Thermal network model is replaced with the Foster<br />

network<br />

– The Foster network is curve fitted to have the same<br />

impulse (or step) response as the battery thermal<br />

system us<strong>in</strong>g CFD.<br />

• <strong>Battery</strong> circuit model provides power to Foster<br />

network and Foster network returns temperature to<br />

battery circuit model<br />

– This aspect is similar to the thermal network approach<br />

© 2009 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary


Complete <strong>Circuit</strong> Model for Li-ion <strong>Battery</strong>: 1<br />

Pack<br />

• <strong>Electrical</strong> circuit and Foster<br />

network are coupled<br />

• <strong>Electrical</strong> circuit provides<br />

power to Foster network<br />

• Foster network provides<br />

temperature to electrical<br />

circuit<br />

<strong>Battery</strong>1 Power<br />

<strong>Battery</strong>2 Power<br />

<strong>Battery</strong>3 Power<br />

<strong>Electrical</strong>/thermal <strong>in</strong>teraction<br />

Foster LTI<br />

Temperature1<br />

Temperature2<br />

Temperature2<br />

© 2009 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary


Example<br />

• The thermal model is replaced by a LTI Foster network<br />

• The Foster network is curve fitted to have the same<br />

impulse response as CFD.<br />

• Us<strong>in</strong>g step response for curve fitt<strong>in</strong>g is also OK.<br />

• The LTI Foster network is then as accurate as CFD<br />

<strong>Battery</strong>3<br />

<strong>Battery</strong>4<br />

<strong>Battery</strong>0<br />

<strong>Battery</strong>5<br />

<strong>Battery</strong>1<br />

<strong>Battery</strong>2<br />

Fluid Flow<br />

Region<br />

© 2009 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary


LTI Foster Network Model – <strong>Simplorer</strong> ®<br />

Implementation of One Pack<br />

• The LTI Foster network model is with<strong>in</strong> a sub-circuit<br />

Ccapacity<br />

C1<br />

C4<br />

C7<br />

C10<br />

C13<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

IBatt<br />

I7<br />

I8<br />

I9<br />

I10<br />

I11<br />

0<br />

VOC<br />

E1<br />

E2<br />

E3<br />

E4<br />

E5<br />

Rseries<br />

R1<br />

R5<br />

R9<br />

R13<br />

R17<br />

CT_S<br />

RT_S<br />

R2<br />

CT_L<br />

C2 C3<br />

R6<br />

C5 C6<br />

RT_L<br />

R3<br />

R7<br />

R10 R11<br />

C8 C9<br />

R14<br />

C11 C12<br />

R15<br />

R18 R19<br />

C14 C15<br />

RLoad<br />

CONST1<br />

CONST<br />

CONST2<br />

CONST<br />

CONST3<br />

CONST<br />

CONST4<br />

CONST<br />

CONST5<br />

CONST<br />

CONST6<br />

CONST<br />

Y1<br />

37.50<br />

25.00<br />

12.50<br />

I1<br />

I2<br />

I3<br />

I4<br />

I5<br />

I6<br />

Port1<br />

Port2<br />

Port3<br />

Port4<br />

Port5<br />

Port6<br />

Port7<br />

Port8<br />

Port9<br />

Port10<br />

Port11<br />

Port12<br />

LTI <strong>Circuit</strong><br />

U1<br />

<strong>Simplorer</strong>2<br />

© 2009 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary<br />

T00<br />

T01<br />

T02<br />

T03<br />

T04<br />

T05<br />

Curve Info<br />

U1.T00<br />

TR<br />

U1.T01<br />

TR<br />

U1.T02<br />

TR<br />

U1.T03<br />

TR<br />

U1.T04<br />

TR<br />

U1.T05<br />

TR<br />

0.00<br />

0.00 200.00 400.00 600.00<br />

Time [s ]<br />

800.00 1000.00 1200.00<br />

batt00_P_<strong>in</strong>put<br />

batt01_P_<strong>in</strong>put<br />

batt02_P_<strong>in</strong>put<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

+<br />

V<br />

VM1<br />

+<br />

V<br />

VM2<br />

+<br />

V<br />

VM4<br />

+<br />

V<br />

VM3<br />

+<br />

V<br />

VM5<br />

+<br />

V<br />

VM6<br />

R1 R2 R4 R5<br />

R8 R7 R6 R3<br />

R9 R10 R11 R12<br />

R16 R15 R14 R13<br />

R17 R18 R19 R20<br />

R24 R23 R22 R21<br />

C1 C2 C4 C5<br />

C8 C7 C6 C3<br />

C9 C10 C11 C12<br />

C16 C15 C14 C13<br />

C17 C18 C19 C20<br />

C24 C23 C22 C21<br />

+<br />

V<br />

VM24<br />

+<br />

V<br />

VM23<br />

+<br />

V<br />

VM21<br />

+<br />

V<br />

VM22<br />

+<br />

V<br />

VM20<br />

+<br />

V<br />

VM19<br />

+<br />

V<br />

+<br />

V<br />

R48 R47 R46 R45<br />

R41 R42 R43 R44<br />

R40 R39 R38 R37<br />

R33 R34 R35 R36<br />

R32 R31 R30 R29<br />

R25 R26 R27 R28<br />

C48 C47 C46 C45<br />

C41 C42 C43 C44<br />

C40 C39 C38 C37<br />

C33 C34 C35 C36<br />

C32 C31 C30 C29<br />

C25 C26 C27 C28<br />

+<br />

V<br />

VM25<br />

+<br />

V<br />

VM26<br />

+<br />

V<br />

VM28<br />

+<br />

V<br />

VM27<br />

+<br />

V<br />

VM29<br />

+<br />

V<br />

VM30<br />

R49 R50 R51 R52<br />

R56 R55 R54 R53<br />

R57 R58 R59 R60<br />

R64 R63 R62 R61<br />

R65 R66 R67 R68<br />

R72 R71 R70 R69<br />

C49 C50 C51 C52<br />

C56 C55 C54 C53<br />

C57 C58 C59 C60<br />

C64 C63 C62 C61<br />

C65 C66 C67 C68<br />

C72 C71 C70 C69<br />

batt03_P_<strong>in</strong>put<br />

batt04_P_<strong>in</strong>put<br />

batt05_P_<strong>in</strong>put<br />

+<br />

V<br />

VM48<br />

+<br />

V<br />

VM47<br />

+<br />

V<br />

VM45<br />

+<br />

V<br />

VM46<br />

+<br />

V<br />

VM44<br />

+<br />

V<br />

VM43<br />

+<br />

V<br />

+<br />

V<br />

R96 R95 R94 R93<br />

R89 R90 R91 R92<br />

R88 R87 R86 R85<br />

R81 R82 R83 R84<br />

R80 R79 R78 R77<br />

R73 R74 R75 R76<br />

C96 C95 C94 C93<br />

C89 C90 C91 C92<br />

C88 C87 C86 C85<br />

C81 C82 C83 C84<br />

C80 C79 C78 C77<br />

C73 C74 C75 C76<br />

+<br />

V<br />

VM49<br />

+<br />

V<br />

VM50<br />

C97 C98 C99 C100<br />

+<br />

V<br />

VM52<br />

C104 C103<br />

+<br />

V<br />

VM51<br />

+<br />

V<br />

VM53<br />

+<br />

V<br />

VM54<br />

R97 R98 R99 R100<br />

R104 R103 R102 R101<br />

R105 R106 R107 R108<br />

R112 R111 R110 R109<br />

R113 R114 R115 R116<br />

R120 R119 R118 R117<br />

+<br />

V<br />

VM72<br />

+<br />

V<br />

VM71<br />

+<br />

V<br />

VM69<br />

C102 C101<br />

C105 C106 C107 C108<br />

+<br />

V<br />

VM70<br />

+<br />

V<br />

VM68<br />

+<br />

V<br />

VM67<br />

+<br />

V<br />

VM8<br />

VM17<br />

VM32<br />

VM41<br />

VM56<br />

C112 C111<br />

C136 C135 C134 C133<br />

C129 C130 C131 C132<br />

+<br />

V<br />

VM65<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

VM7<br />

VM18<br />

VM31<br />

VM42<br />

VM55<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

VM9<br />

VM16<br />

VM33<br />

VM40<br />

VM57<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

VM10<br />

VM15<br />

VM34<br />

VM39<br />

VM58<br />

C110 C109<br />

C113 C114 C115 C116<br />

+<br />

V<br />

VM66<br />

+<br />

V<br />

VM64<br />

C128 C127<br />

+<br />

V<br />

VM63<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

VM12<br />

VM13<br />

VM36<br />

VM37<br />

VM60<br />

C120 C119<br />

+<br />

V<br />

VM61<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

+<br />

V<br />

VM11<br />

VM14<br />

VM35<br />

VM38<br />

VM59<br />

C118 C117<br />

R144 R143 R142 R141<br />

R137 R138 R139 R140<br />

R136 R135 R134 R133<br />

R129 R130 R131 R132<br />

R128 R127 R126 R125<br />

R121 R122 R123 R124<br />

C144 C143<br />

C142 C141<br />

C137 C138 C139 C140<br />

+<br />

V<br />

VM62<br />

C126 C125<br />

C121 C122 C123 C124


LTI Foster Network Model Results<br />

• Results from the Foster network are so close to Fluent that they are on top of each<br />

other<br />

<strong>Battery</strong> 0 <strong>Battery</strong> 1 <strong>Battery</strong> 2<br />

<strong>Battery</strong> 3 <strong>Battery</strong> 4 <strong>Battery</strong> 5<br />

© 2009 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary


System Level <strong>Circuit</strong> Model for Li-ion <strong>Battery</strong><br />

• Cells connected <strong>in</strong> series and parallel<br />

comb<strong>in</strong>ations to form packs<br />

• Packs are then connected series and<br />

parallel comb<strong>in</strong>ations to form f<strong>in</strong>al<br />

configuration<br />

© 2009 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary


An Example of Sixty Cells <strong>in</strong> Serial and Parallel<br />

Five cells<br />

© 2009 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary


Results – Voltage and Current<br />

• The peak voltage is approximately 16 V<br />

– Result of serial connection of four batteries<br />

• The peak current drawn is approximately 3.25 Amp compared with 0.4<br />

Amp for s<strong>in</strong>gle battery case. And yet the runtime is almost doubled.<br />

– Result of parallel connection of 15 batteries<br />

– Estimated to be 0.4/(3.25/15)x8000 sec without rate factor consideration<br />

Voltage Current<br />

© 2009 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary


<strong>Battery</strong> <strong>in</strong> a Control System with a Motor<br />

Controller<br />

<strong>Battery</strong><br />

© 2009 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary


2600.00<br />

2400.00<br />

2200.00<br />

2000.00<br />

1800.00<br />

1600.00<br />

Results – Motor Performance<br />

Ansoft LLC <strong>in</strong>duction_mach<strong>in</strong>e_DC_BusCap<br />

2800.00<br />

Curve Info<br />

Vel_com<br />

Velocity Command<br />

0.00 200.00 400.00 600.00 800.00 1000.00<br />

Time [s]<br />

Velocity Command<br />

TR<br />

Vel_com<br />

Ansoft LLC <strong>in</strong>duction_mach<strong>in</strong>e_DC_BusCap<br />

250.00<br />

Curve Info<br />

ASM_2.MI [NewtonMeter]<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

Torque<br />

Ansoft LLC <strong>in</strong>duction_mach<strong>in</strong>e_DC_BusCap<br />

2800.00<br />

Curve Info<br />

0.00 200.00 400.00 600.00 800.00 1000.00<br />

Time [s]<br />

Measured Rotor Speed<br />

Torque<br />

© 2009 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary<br />

ASM_2.N [rpm]<br />

2600.00<br />

2400.00<br />

2200.00<br />

2000.00<br />

1800.00<br />

1600.00<br />

ASM_2.MI<br />

TR<br />

0.00 200.00 400.00 600.00 800.00 1000.00<br />

Time [s]<br />

Measured Rotor Speed<br />

TR<br />

ASM_2.N


Results – <strong>Battery</strong> Performance<br />

Ansoft LLC <strong>in</strong>duction_mach<strong>in</strong>e_DC_BusCap<br />

200.00<br />

Curve Info<br />

VM2.V [V]<br />

175.00<br />

150.00<br />

125.00<br />

100.00<br />

75.00<br />

50.00<br />

25.00<br />

0.00<br />

<strong>Battery</strong> Voltage<br />

Rotor speed<br />

0.00 200.00 400.00 600.00 800.00 1000.00<br />

Time [s]<br />

<strong>Battery</strong> Voltage<br />

TR<br />

VM2.V<br />

Ansoft LLC <strong>in</strong>duction_mach<strong>in</strong>e_DC_BusCap<br />

300.00<br />

Curve Info<br />

0.00 200.00 400.00 600.00 800.00 1000.00<br />

Time [s]<br />

<strong>Battery</strong> Current<br />

© 2009 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary<br />

AM4.I [A]<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

<strong>Battery</strong> Current<br />

AM4.I<br />

TR


Conclusions<br />

• <strong>Electrical</strong> battery models implemented <strong>in</strong> <strong>Simplorer</strong> ® have<br />

demonstrated its capability to capture battery non-l<strong>in</strong>ear<br />

voltage, transient I-V performance, etc.<br />

• Models have been tested <strong>in</strong> system environment us<strong>in</strong>g a control<br />

system with a motor controller<br />

• <strong>Circuit</strong> model can be coupled with thermal network model to<br />

<strong>in</strong>clude temperature effects on battery performance<br />

• Foster network has demonstrated its capability to replace CFD<br />

for thermal analysis s<strong>in</strong>ce it is as accurate as CFD<br />

• Advantages of <strong>Simplorer</strong><br />

– <strong>Circuit</strong> simulator for the electrical and thermal circuits.<br />

– Customizable us<strong>in</strong>g VHDL-AMS<br />

– Multi-doma<strong>in</strong> system level simulation quite easy and efficient<br />

– Communicates with ANSYS CFD/Mechanical and Maxwell.<br />

– <strong>Simplorer</strong> 8.1 automatically extracts the Foster network parameters<br />

© 2009 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary


Appendix : list of papers<br />

• M. Chen, G. A. R<strong>in</strong>con-Mora, “Accurate electrical battery model<br />

capable of predict<strong>in</strong>g Runtime and I-V performance,” IEEE<br />

Trans. On energy conversion, vol. 21, no. 2, June 2006<br />

• L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery<br />

model for system simulation,” IEEE Trans, Compon. Packag.<br />

Technol., vol. 25, no. 3, pp. 495-505, Sep. 2002<br />

© 2009 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!