17.01.2013 Views

Extended CIM Model to WAMS - Epcc-workshop.net

Extended CIM Model to WAMS - Epcc-workshop.net

Extended CIM Model to WAMS - Epcc-workshop.net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Extended</strong> <strong>CIM</strong> <strong>Model</strong> <strong>to</strong> <strong>WAMS</strong><br />

Wenbin Qi<br />

qiwenbin@sf-au<strong>to</strong>.com<br />

Beijing Sifang Au<strong>to</strong>mation Co., Ltd.,CHINA


Introduction<br />

�In china , <strong>WAMS</strong> were established in the<br />

Regional \ Provincial control centers.<br />

� More than 700 substations or power plants have<br />

been equipped with PMU, that includes:<br />

– Nearly all 750kV, 500kV, 330kV substations in state grid and<br />

regional grids<br />

– Key 220kV and 110kV substations in provincial grids<br />

– All genera<strong>to</strong>rs with capacity of 600MW or above


�Sifang Au<strong>to</strong>mation Co., Ltd . has over 50% of<br />

the <strong>WAMS</strong> and PMU market share in China.<br />

Until May 13, 19,982 measuring points of<br />

PMU have been installed at 103 substations<br />

and power plants in North China grid.<br />

�Experience of using <strong>WAMS</strong> has been<br />

accumulated ,but the usage of its information<br />

is still a challenge.


The Architecture of Master station of<br />

firewall<br />

switch<br />

comunication<br />

server<br />

WEB<br />

Server<br />

PMU<br />

Application<br />

Server<br />

Mag<strong>net</strong>ic<br />

disk panel<br />

Communicatio<br />

server<br />

Data Server<br />

EMS<br />

SAN<br />

exchanger<br />

<strong>WAMS</strong><br />

Workstation of dispatching<br />

modes and maintenance<br />

I/O Node Ser ver<br />

Administrative<br />

ser ver<br />

Parallel<br />

Computer


Network model and<br />

parameters check<br />

Synchronous machine<br />

parameters check<br />

Load model identification<br />

data integration and<br />

state estimation<br />

PMU SCADA<br />

System Function<br />

Low-frequency oscillations<br />

in real-time alarm<br />

Voltage stability in real-time alarm<br />

power angle stability Real-time<br />

Alarm<br />

Frequency stability Real-time Alarm<br />

Heat stability Real-time Alarm<br />

Auxiliary services Assessment<br />

Disturbance identification<br />

Transient stability assessment<br />

Voltage stability assessment<br />

transmission power limit Calculation<br />

Dynamic Stability Assessment<br />

Static stability assessment<br />

Dispatch Decision<br />

Supporting<br />

Security Stability<br />

Control


The Main Functions Achieved<br />

� Application<br />

– Disturbance identification<br />

– An FM Unit features assessment<br />

– Small disturbance oscillation<br />

statistics<br />

– Low-frequency oscillations<br />

detection<br />

– The relative phase angle Moni<strong>to</strong>r<br />

– The characteristics of Wind<br />

moni<strong>to</strong>ring and analysis<br />

– <strong>Model</strong> parameters analysis<br />

– State Estimation<br />

� Dispatching moni<strong>to</strong>r and control<br />

– Power flow distribution diagram<br />

– Power angle distribution diagram<br />

– Frequency / voltage moni<strong>to</strong>r<br />

– Wind power output moni<strong>to</strong>r plan<br />

– Genera<strong>to</strong>r run status moni<strong>to</strong>r<br />

– Plant Main wiring diagram<br />

– Master / sub-station operating<br />

conditions


Coherent bus grouping for low<br />

� Besides mode frequency,<br />

amplitude and damping<br />

coefficient.<br />

� Provide coherent bus<br />

grouping function.<br />

� Identify the oscillation<br />

interface or oscillation<br />

center.<br />

� Calculate oscillation power<br />

contribution of each nodes.<br />

frequency oscillation<br />

Nearly in the same phase<br />

Nearly in opposite phase


Coherent bus grouping and oscillation<br />

power contribution in con<strong>to</strong>ur map


The mode frequency distribution of oscillations<br />

satisfying statistic conditions in a Shandong power grid<br />

(1) Online scan all the active power PMU measurement and make fast<br />

frequency spectrum analysis<br />

(2) If an oscillation power has amplitude greater than 10MW and lasts at<br />

least for 5 periods, then one oscillation with such mode frequency is<br />

recorded<br />

(3) The above figure is a oscillation statistics for one month<br />

(4) For the found dangerous mode, an oscillation instance can be selected<br />

<strong>to</strong> make further analysis(e.g. <strong>to</strong> get coherent bus groups and oscillation<br />

center)


Unit Frequency Characteristics<br />

Assessment


The Assessment of Unit FM<br />

Characteristics<br />

� Studies have shown that a unit<br />

characteristic frequency shows a great<br />

dynamic characteristics ,steady-state<br />

results have a larger deviation, therefore,<br />

only once time unit of data can’t reflect<br />

the capacity of a frequency modulation ,<br />

it must be accumulated with the longterm<br />

real-time data which reflect an FM<br />

unit functional contribution <strong>to</strong> the<br />

system, also as a basis for assessment.<br />

� using high-precision and synchronization<br />

measurement of unit frequency and<br />

power of <strong>WAMS</strong>, the energy<br />

contribution of unit FM can be<br />

calculated, if it is positive, shown unit<br />

contribution <strong>to</strong> the grid frequency<br />

modulation.<br />

� Day \ Month\ Quarter power of unit<br />

output.<br />

t1+ δ+<br />

Tmax<br />

i = ∑<br />

sgn( ) × (<br />

t= t + δ<br />

t−<br />

0)<br />

Δ<br />

H x P P T<br />

0


Evaluation of An FM Unit


Parameter Identification and<br />

Verification<br />

Figure<br />

5 .3 the typical model and the parameters of the<br />

simulation curve and the measured curves<br />

� <strong>WAMS</strong> parameter<br />

identification and<br />

verification, tell us:<br />

� <strong>Model</strong> parameters<br />

accurate or not.<br />

� How much error ?<br />

– Active error is not<br />

Serious<br />

– Reactive error is<br />

Serious<br />

� <strong>Model</strong> accurate?<br />

– no!<br />

no


Real-time Stability Moni<strong>to</strong>r


The Critical Phase Angle and Transmission<br />

Power Moni<strong>to</strong>r


System Layout


<strong>CIM</strong> <strong>Model</strong> in Database<br />

�Tables and it’s corresponding column<br />

(Attributes ) follow <strong>CIM</strong> standard.<br />

�Terminal attributes are introduced


HostControlArea<br />

SubControlArea<br />

Substation<br />

VoltageLevel<br />

Basic Table<br />

Bay<br />

PowerTransformer<br />

BusbarSection<br />

Breaker<br />

Disconnec<strong>to</strong>r<br />

SynchronousMachine<br />

EnergyConsumer<br />

Compensa<strong>to</strong>r<br />

TransformerWinding<br />

GroundDisconnec<strong>to</strong>r<br />

TapChanger


PowerSystem Resource<br />

(from C o re)<br />

Equipm ent<br />

(from C o re)<br />

ConductingEquipm ent<br />

(from C o re)<br />

Switch<br />

Jum per<br />

EquivalentSource<br />

Ground<br />

RegulatingCondEq<br />

Fuse<br />

Equipm entContainer<br />

( from C o re)<br />

P ow e rTra ns form e r<br />

ProtectionEquipm ent<br />

(from Protection)<br />

Transform erWinding<br />

Breaker<br />

VoltageControlZone<br />

LoadArea<br />

(from LoadM odel)<br />

H eatExchanger<br />

GeneratingUnit<br />

(from Production)<br />

Connec<strong>to</strong>r<br />

Conduc<strong>to</strong>r<br />

EnergyC onsumer<br />

RectifierInverter<br />

StaticVarCom pensa<strong>to</strong>r<br />

TapChanger<br />

Line<br />

Com positeSwitch<br />

Bay<br />

(fro m C o re )<br />

Disconnec<strong>to</strong>r LoadBreakSwitch<br />

S u b s ta tio n<br />

(fro m C o re )<br />

VoltageLevel<br />

(fro m C o re )<br />

DCLineSegm ent<br />

ACLineSegm ent<br />

Cus<strong>to</strong>merMeter<br />

(from Load Mode l)<br />

StationSupply<br />

(from LoadM odel)<br />

EquivalentLoad<br />

(from LoadM odel)<br />

InductionMo<strong>to</strong>rLoad<br />

(from LoadM odel)<br />

BusbarSection<br />

Junction<br />

SynchronousMachine<br />

Compensa<strong>to</strong>r<br />

GroundDisconnec<strong>to</strong>r


Struc BREAKER<br />

{<br />

int m_ID;<br />

char m_name[32];<br />

char m_description[64];<br />

char m_phases[4];<br />

int m_terminal0_id;<br />

int m_terminal1_id;<br />

SF_Byte m_normalOpen;<br />

SDateTime m_switchOnDate;<br />

int m_basevoltage_id;<br />

int m_equipmentcontainer_id;<br />

……<br />

};<br />

Table Example 1


Table Example 2<br />

struct BUSBARSECTION<br />

{<br />

int m_ID;<br />

char m_name[32];<br />

char m_description[64];<br />

char m_phases[4];<br />

int m_terminal0_id;<br />

int m_basevoltage_id;<br />

int m_equipmentcontainer_id;<br />

……<br />

};


Naming<br />

(f rom C ore)<br />

Measurement <strong>Model</strong><br />

+ValueAliasSet<br />

ValueAliasSet 1<br />

+Values<br />

1..n<br />

ValueToAlias<br />

va lu e : N u m e ric<br />

+ValueAliasSet<br />

0..1<br />

0..1<br />

+ValueAliasSet<br />

0..n<br />

Measurem ent<br />

0 ..n<br />

+Measurem ents<br />

+Controls<br />

Control<br />

value : Num eric<br />

positiveFlowIn : Boolean<br />

tim e S ta m p : Ab s o lu te D a te Tim e<br />

+MeasuredBy_Measurem ent<br />

m axValue : Num eric<br />

0..1<br />

operationInProgress : Boolean<br />

m inValue : Num eric<br />

dataType : Num ericType<br />

m axValue : Num eric<br />

0..1<br />

+ControlledBy_ControlminValue<br />

: Num eric<br />

normalValue : Num eric<br />

dataType : Num ericType<br />

+Measurem ents<br />

normalValue : Num eric<br />

1<br />

0..n<br />

0..n +Meas urem ents 0..n<br />

+Controls 0..n<br />

+Controls<br />

+Measurements +Mem berOf_Measurem ent<br />

1 1+Measurem<br />

entType<br />

0..n<br />

1 +ControlType<br />

ControlType<br />

MeasurementValue<br />

+Measurem entValue<br />

value : Num eric<br />

+Measurem entValueQuality<br />

tim e S ta m p : Ab s o lu te D a te T im e<br />

sensorAccuracy : PerCent 1<br />

1<br />

0..n<br />

+Measurem entValues<br />

1<br />

+Measurem entValueSource<br />

0 ..n<br />

+L im itSe ts<br />

Lim itSet<br />

isPercentageLim its : Boolean<br />

1..n<br />

+Contain_Measurem entValues<br />

Measurem entType<br />

Measurem entValueSource<br />

+Lim itSet<br />

1<br />

+Unit<br />

1<br />

+Unit<br />

+Limits<br />

Unit<br />

(f rom C ore)<br />

0..n<br />

1<br />

Limit<br />

val ue : N u m e ric<br />

Measurem entValueQuality


<strong>Extended</strong> <strong>Model</strong> for PMU Data<br />

Table Object<br />

{<br />

ID;<br />

NAME;//<br />

DESCRIPTION;//<br />

TERMINAL0_ID;// ID<br />

TERMINAL1_ID;// ID<br />

EQUIPMENTCONTAINER_ID;// ID<br />

EQUIPMENTCONTAINER_TABLEID;// ID<br />

measId;<br />

measIdx;<br />

}<br />

TABLE MEASUREMENT<br />

{<br />

ID;// ID<br />

TERMINAL_ID; //<br />

MEASUREMENTTYPE_ID; //<br />

POWERSYSTEMRESOURCE_ID; // ID<br />

POWERSYSTEMRESOURCE_TABLEID; // ID<br />

POINTID0; //<br />

POINTTABLEID0; //<br />

POINTID1; //Pmu_DataCfg ID<br />

POINTTABLEID1; //Pmu_DataCfg_ID 1006<br />

POINTID2; //<br />

POINTTABLEID2; //<br />

ObjLinkNext<br />

}


PMU data model<br />

� Continuous uploading PMU data, Its own time scale, interval<br />

20ms.<br />

� Changing in SCADA(RTU) data transmission, No time scale,<br />

interval 1s.<br />

� Using fast Database design :<br />

– the entire Seconds data of SCADA and PMU cache in Database , <strong>to</strong> meet<br />

the data requirements of second-class update of Man-machine interface.<br />

– PMU data cache in the fast database with time scales <strong>to</strong> meet the<br />

dynamic curves of MS-level display and advanced applications.<br />

� Human-machine interface through <strong>CIM</strong> model , achieve the<br />

multi-source data access of SCADA and PMU.


RTDB mixed PMU data and<br />

PMU Real-time DataBase<br />

time<br />

time0<br />

time1<br />

time2<br />

point0<br />

Point1:SCADA data<br />

SCADA Data<br />

point1 point2 point3<br />

mixed Data<br />

from SCADA or PMU<br />

data from PMU at<br />

1ms period<br />

Quick Data service<br />

Point1:PMU data point2:SCADA data Point 2:PMU data<br />

Slow data service<br />

In second<br />

<strong>WAMS</strong> APP<br />

Dynamic Curve in ms


PMU/SCADA relation table<br />

Real-time DataBase<br />

SCADA<br />

PMU


Analog Table


Time stamp of PMU data<br />

PMU Table


Multi-source Data Display


SVG Data<br />

<br />

<br />

<br />

<br />


<strong>CIM</strong> DATA<br />

<br />

<br />

<br />

<br />

<br />


Relation <strong>to</strong> <strong>CIM</strong> and SVG files<br />


Five Steps for <strong>WAMS</strong> Implementation<br />

� Import <strong>CIM</strong> data from EMS<br />

� Import the SVG graphics of EMS<br />

� Upload the PMU configuration files from PMU substation<br />

� Au<strong>to</strong>matically map the Measurement record <strong>to</strong> PMU point.<br />

� draw some display pictures for <strong>WAMS</strong><br />

<strong>WAMS</strong><br />

IEC 61970 <strong>CIM</strong> file<br />

SVG Vec<strong>to</strong>r graphic<br />

file<br />

SCADA Telemetry、Remote (104)<br />

EMS


Online Lossless Compression<br />

� Online Lossless<br />

Compression;<br />

� high-density non-<br />

destructive<br />

preservation, the<br />

compression ratio of<br />

30%;<br />

� Quick search;<br />

of <strong>WAMS</strong> Data<br />

1000G


The His<strong>to</strong>ry of Data S<strong>to</strong>rage of<br />

<strong>WAMS</strong> Master Station


Summary<br />

� Using the <strong>CIM</strong> model and SVG from EMS, the<br />

<strong>WAMS</strong> modeling becomes a much easier task.


Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!