17.01.2013 Views

Kinetic Resolutions - The Stoltz Group

Kinetic Resolutions - The Stoltz Group

Kinetic Resolutions - The Stoltz Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

N<br />

Me<br />

N<br />

<strong>Kinetic</strong> <strong>Resolutions</strong><br />

Episode III: Non-Enzymatic Alcohol, Alkene, and Epoxide <strong>Resolutions</strong><br />

O<br />

O P NMe 2<br />

N N<br />

M<br />

R O O<br />

R<br />

t-Bu<br />

t-Bu<br />

H<br />

N<br />

OH 2-naphthyl<br />

H<br />

N<br />

(±)-S Cat.<br />

Me 2 N<br />

Ph<br />

Ph<br />

Ph<br />

Ph<br />

Ph<br />

Presented by David Ebner<br />

<strong>Stoltz</strong> <strong>Group</strong> Literature Seminar<br />

Wednesday, June 4, 9 am (Before <strong>Group</strong> Meeting)<br />

N<br />

(+)-S + P<br />

Outline: Non-Enzymatic <strong>Kinetic</strong> <strong>Resolutions</strong><br />

I. Quick KR Review<br />

II. Alcohols<br />

A. Acylation<br />

B. S N2<br />

III. Allylic Alcohols<br />

A. Epoxidation<br />

B. Reduction<br />

IV. Alkenes<br />

A. Epoxidation<br />

B. Dihydroxylation<br />

V. Epoxides<br />

A. Nucleophilic Opening<br />

B. Hydrolytic Opening<br />

VI. Other KR<br />

Reviews:<br />

Fe<br />

N<br />

N<br />

N<br />

N<br />

H<br />

Boc<br />

Keith, Larrow, and Jacobsen, Adv. Synth. Catal, 2001, 343, 5<br />

Spivey and Maddaford, Org. Prep. Proced. Int. 2000, 32(4), 331<br />

Somfai, Peter, Angew. Chem. Int. Ed. Engl. 1997, 36, 2731<br />

Pfenninger, A. Synthesis, 1986, 89<br />

Cook, Gregory R., Current Organic Chemistry, 2000, 4, 869<br />

Kagan and Fiaud. Topics in Stereochemistry, Wiley, New York, 1988, Vol 18, 249-331<br />

O<br />

H<br />

O<br />

P<br />

N<br />

H<br />

O<br />

Ph 2<br />

P<br />

Ph 2<br />

H<br />

O<br />

N<br />

P<br />

Ru<br />

O<br />

H<br />

OMe<br />

Ar<br />

O<br />

O<br />

O<br />

Bn<br />

1


Requirements<br />

- Enantioselective reaction (some chiral influence)<br />

- Significant difference in reaction rate<br />

- Incomplete conversion to product<br />

Preferable<br />

Quick Review of KR<br />

<strong>Kinetic</strong> Resolution - "A process in which one of the enantiomer constituents of a racemic mixture is more readily<br />

transformed into a product than is the other." (Fiaud and Kagan, 251)<br />

- Enantioenriched product and starting materials are easily separable<br />

- Conversion near 50% returns high ee's for both starting material and product<br />

(Or, even better, all is converted to a single enantiomer --> Dynamic KR)<br />

- Inexpensive and stable reagents (Catalytic process)<br />

R 1<br />

R 1<br />

R 1<br />

R 1<br />

OH<br />

+<br />

OH<br />

OH<br />

+<br />

O<br />

R 2<br />

R 2<br />

Oxidation to<br />

Ketone<br />

(McFadden)<br />

Reduction of<br />

Allylic Alcohol<br />

R<br />

R<br />

s = k fast / k slow = ln((1-C)(1-ee)) / ln((1-C)(1+ee))<br />

C is conversion to product<br />

ee is enantiomeric excess of starting material<br />

Alcohol Resolution Approaches<br />

(±)-<br />

R 1<br />

Esterification<br />

R 1<br />

R 1<br />

O<br />

OH<br />

OH<br />

+<br />

O<br />

R 2<br />

R 2<br />

R 2<br />

R<br />

Epoxidation of<br />

Allylic Alcohol<br />

R 1<br />

R 1<br />

S N 2 Displacement /<br />

Mitsunobu<br />

R 1<br />

R 1<br />

OH<br />

+<br />

OH<br />

O<br />

OH<br />

+<br />

Nu<br />

R 2<br />

R 2<br />

R<br />

R<br />

2


(±)-<br />

Evans - Oxazolidinone Acylating Agent<br />

R 1<br />

OH<br />

10 eq<br />

R 2<br />

OH<br />

(±)-<br />

Ar Me<br />

O<br />

O<br />

O<br />

N Ph<br />

t-Bu<br />

1.1 eq MeMgBr<br />

CH2Cl2 R 1<br />

R 2<br />

+<br />

OH<br />

+<br />

Vedejs - Chiral DMAP Acylating Agent<br />

Wegler<br />

(±)-<br />

Horner<br />

(±)-<br />

2 eq<br />

OH<br />

1 eq<br />

Cl 3 C<br />

O<br />

NMe 2<br />

N<br />

Chiral Acylating Agent<br />

O<br />

OMe<br />

Cl -<br />

t-Bu<br />

2 eq ZnBr 2, 3 eq Et 3N<br />

OH<br />

Ar Me<br />

Ph<br />

O<br />

R 1<br />

O<br />

R 2<br />

Cl 3C<br />

Ester ee's:<br />

R 1 =Ph, R 2 =Me, ee=95%<br />

R 1 =Ph, R 2 =i-Pr, ee=65%<br />

R 1 =c-C 6H 11, R 2 =Me, ee=5%<br />

Evans, et. al., Tet. Lett. 1993, 34, 5563<br />

+<br />

Carbonate:<br />

Nucleophilic Activators for Acylation<br />

0.25 eq (-)-brucine<br />

0.53 eq Ac 2 O<br />

CCl 4 , 77 o C, 3h<br />

s ~ 3.5<br />

Also used other tertiary amines and acylating agents<br />

OH<br />

OH<br />

0.5 eq amine<br />

OH<br />

0.5 eq AcCl<br />

CH 2 Cl 2 , 12h<br />

-78 o C to r.t.<br />

Screened a variety of temperatures, amines,<br />

solvents, and acylating agents<br />

Vedejs unable to reproduce this result<br />

+<br />

+<br />

O<br />

O<br />

O<br />

Ar Me<br />

Ar = Ph, 25% conv, 93% ee, s = 38<br />

Ar = 1-Naphthyl, 28% conv, 94% ee, s = 44<br />

Ar = 2-Naphthyl, 24% conv, 94% ee, s = 45<br />

Vedejs, et. al, J. Am. Chem. Soc., 1996, 118, 1809<br />

OAc<br />

OAc<br />

68% ee<br />

??% conv.<br />

MeO<br />

MeO<br />

N<br />

N<br />

H<br />

H<br />

O<br />

(-)-brucine<br />

Wegler, Liebigs. Ann. Chem. 1932, 498, 62<br />

Liebigs. Ann. Chem., 1933, 506, 77<br />

Liebigs. Ann. Chem., 1934, 510, 72<br />

NMe 2<br />

Horner, et. al. Liebigs Ann. Chem., 1989, 533<br />

H<br />

H<br />

O<br />

3


(±)-<br />

R 1<br />

OH<br />

n<br />

n<br />

R 1<br />

R 2<br />

OCOR<br />

OH<br />

NHR<br />

OH<br />

5 mol% Catalyst 1<br />

(i-PrCO) 2O, r.t.<br />

OH<br />

OH<br />

OCOR<br />

R = i-Pr, t-Bu, Ph, p-NMe 2C 6H 4CO-<br />

NHR<br />

R = p-NMe 2C 6H 4CO-<br />

R 1<br />

Only anti- acyclic substrates were selective<br />

Acylation with DMAP Derivatives - Fuji<br />

OH<br />

R 1<br />

R 2<br />

OCOR<br />

OH<br />

NHR<br />

OH<br />

+<br />

R 1<br />

2-5 hours<br />

R 1<br />

~70% conv.<br />

54-99% ee<br />

R 2<br />

s = 2.4 to > 10.1<br />

9-44 hours<br />

58-73% conv.<br />

89-99% ee<br />

s = 10 to > 18<br />

OCOi-Pr<br />

H H<br />

N<br />

Me 2N<br />

H<br />

OH<br />

R<br />

N<br />

R<br />

OH 2-naphthyl<br />

H<br />

Catalyst 1<br />

N<br />

NH<br />

O<br />

N<br />

OH<br />

O<br />

Cl -<br />

Fuji, et. al. J. Am. Chem. Soc., 1997, 119, 3169<br />

Chem. Comm., 2001, 2700<br />

4


Cl<br />

(±)-<br />

R 1<br />

R 1 = Ar<br />

OH<br />

R 2<br />

R 2 = Alkyl, CH 2 Cl<br />

DMAP Derivatives as Catalysts for Acylation - Fu<br />

OH<br />

Me<br />

1 mol% Catalyst 2<br />

Ac 2 O<br />

Et 3 N<br />

t-amyl alcohol<br />

0 o C<br />

Acetate can also be recovered in high ee<br />

R 1<br />

OH<br />

MeO<br />

R 2<br />

+<br />

50-55% conversion<br />

96-99% ee (alcohol)<br />

s = 32 - 95<br />

Catalyst is air/moisture stable and easily recoverable/reusable<br />

Resolution can be performed on large (2 g) scale<br />

Propargylic alcohols could be resolved, though generally with lower selectivities (s = 8 - 20)<br />

R 1<br />

OAc<br />

Me<br />

R 2<br />

OH<br />

Me<br />

O<br />

Et<br />

Me 2 N<br />

Ph<br />

Ph<br />

N<br />

Fe<br />

Ph<br />

Catalyst 2<br />

Allylic alcohols, especially cinnamyl alcohols, generally worked (s = 5.4 - 80), and were used to synthesize<br />

enantioenriched intermediates in several natural products:<br />

40% yield, 99.4% ee<br />

s = 37<br />

(-)-baclofen<br />

47% yield, 98.0% ee<br />

s = 107<br />

Ph<br />

Ph<br />

epothilone A<br />

Fu, et. al., J. Org. Chem., 1998, 63, 2794<br />

J. Am. Chem. Soc., 1999, 121, 5091<br />

Chem. Comm., 2000, 1009<br />

5


OH<br />

(±)-<br />

Nucleophilic Catalysts for Acylation - Oriyama<br />

R 1<br />

OH<br />

R 2<br />

N<br />

Me<br />

OH<br />

0.3 mol%<br />

Diamine Catalyst 3 or 4<br />

BzCl, Et 3N, CH 2Cl 2<br />

MS4A, -78 o C, 3 hr<br />

Me<br />

N<br />

Catalysts:<br />

Bn<br />

N<br />

R 1<br />

R<br />

n = 1, 2, 4<br />

s = 4 R = H, s = 9<br />

R = Ph, CO2Et, CO2i-Pr, Br<br />

R = Me, s = 20<br />

n s = 27 (esters) to 170<br />

R<br />

OH<br />

R 2<br />

3<br />

Me<br />

4<br />

N<br />

+<br />

Ph<br />

O<br />

R 1<br />

O<br />

R 2<br />

OH<br />

Oriyama, et. al., Chem. Lett. 1999, 265<br />

6


(±)-<br />

(±)-<br />

Et 3N<br />

Me<br />

(±)-<br />

Ph<br />

Ph<br />

OH<br />

n<br />

N<br />

H<br />

OH<br />

OH<br />

OH<br />

Proposed Oriyama Diamine Mechanism<br />

Et 3NHCl<br />

Cl -<br />

N R1<br />

R 2<br />

OH<br />

R<br />

R 1<br />

OBz<br />

n<br />

R 2<br />

N<br />

Me<br />

R 1<br />

N<br />

R 2<br />

R 1<br />

OH<br />

R 2<br />

Me<br />

Phosphines as Catalysts - Vedejs<br />

5-8 mol% Catalyst 5<br />

Ph<br />

Ph<br />

(R'CO) 2 O<br />

CH 2 Cl 2 , r.t.<br />

OH<br />

OAc<br />

OCOR'<br />

OH<br />

n = 1, s = 3.2<br />

n = 2, s = 4.3-5.1<br />

R' = CH 3, s = 1.2<br />

R' = Ph, s = 5.5<br />

OH<br />

R<br />

+<br />

N<br />

Ph<br />

O<br />

BzCl<br />

Cl -<br />

N R1<br />

R 2<br />

Oriyama, et. al. Synthesis, 1999, 1141<br />

OCOR'<br />

R<br />

R = CH 3 , R' = CH 3 , s = 2.7<br />

R = CH 3 , R' = m-Cl-Ph, s = 2.8<br />

R = t-Bu, R' = CH 3, s = 3.8<br />

R = t-Bu, R' = m-Cl-Ph, s = 12-15<br />

(10 days at room temp)<br />

Me<br />

P Ph<br />

Me<br />

Catalyst 5<br />

Vedejs, J. Org. Chem. 1996, 61, 430<br />

7


(±)-<br />

R 1<br />

OH<br />

R 2<br />

An Improved Phosphine Catalyst - Vedejs<br />

5 mol% Catalyst 6<br />

(RCO) 2 O<br />

-40 o C<br />

PhCH 3 / heptane<br />

R 1 = Ar, R 2 = Alkyl, R = Ph, i-Pr<br />

1-24 hours, s = 6.9 - 390<br />

Catalyst %ee important<br />

R 1<br />

OH<br />

R 2<br />

R 1<br />

OCOR<br />

r.t. to -40 o C decreases rate only 8-fold, but enantioselectivity is much higher<br />

Ph anhydride faster but less selective<br />

Catalyst Ar - Ph, 3,5-tBu 2Ph, 2,4,6-Me 3Ph : generally increasing selectivity<br />

heptane generally faster reactions - believed to be because of tighter ion pairing of carboxylate and<br />

carbonylated catalyst<br />

Allylic alcohols also worked (s = 4-82), but only when there was significant steric direction<br />

<strong>Resolutions</strong> based purely on sterics of R 1 and R 2 gave no selectivity<br />

+<br />

R 2<br />

H<br />

P<br />

H<br />

Catalyst 6<br />

Vedejs, et. al., Synlett, 2001, 10, 1499<br />

J. Am. Chem. Soc., 2003, 125, 4166<br />

Ar<br />

8


BocHN<br />

(±)-<br />

N<br />

N<br />

Tripeptides for Acylative KR - Miller<br />

O<br />

O<br />

OH<br />

NHAc<br />

Other examples had much lower selectivities<br />

N<br />

N<br />

H<br />

H<br />

Catalyst 7<br />

N<br />

O<br />

0.5 mol% Catalyst 7<br />

0.1 eq Ac 2O<br />

PhCH 3, 0 o C<br />

Ac 2O<br />

BocHN<br />

s = 12.6<br />

N<br />

O<br />

N<br />

O<br />

OAc<br />

NHAc<br />

N<br />

N<br />

H<br />

H<br />

N<br />

O<br />

Miller, et. al., J. Am. Chem. Soc., 1998, 120, 1629<br />

O<br />

9


(±)-<br />

NHAc<br />

Miller Peptide Catalyst - Round 2<br />

OH<br />

NHAc<br />

N<br />

N<br />

2 mol% Catalyst 8<br />

4.8 eq Ac 2 O<br />

PhCH 3 , 0 o C<br />

N<br />

Boc<br />

OH OH<br />

N<br />

H<br />

NHAc<br />

O<br />

O<br />

N<br />

H<br />

O<br />

Catalyst 8<br />

H<br />

N<br />

OMe<br />

O<br />

Bn<br />

OAc<br />

NHAc<br />

OH<br />

NHAc<br />

s = 28<br />

Miller has extended this hairpin turn structure to an octapeptide, which shows improved selectivities for<br />

this class of substrates:<br />

s = 51 s = 15 s = 27<br />

Miller, et. al., J. Am. Chem. Soc., 1999, 121, 11638<br />

10


CO2R PPh3 N N<br />

RO2C<br />

RO2C<br />

CO2R HN NH<br />

Mitsunobu-type KR of ROH<br />

Ph3P CO2R R<br />

N N<br />

RO2C<br />

2 CO2H Step 1 Step 2<br />

Ph3PO R 2 CO 2R 3<br />

Chiral recognition can be introduced at steps 3 and 4<br />

Step 4<br />

Ph 3 PO-R<br />

R 2 -<br />

CO2 Ph 3 P<br />

RO 2C<br />

RO2C<br />

CO2R N NH<br />

R 3 OH<br />

Step 3<br />

CO2R HN NH<br />

Chiral Phosphine, azodicarboxylate, or acid are possible means to induce chiral influence<br />

Kellogg<br />

Tang<br />

(±)-<br />

(±)-<br />

Ar<br />

Ar<br />

OH<br />

OH<br />

1-2 eq Catalyst 9<br />

O<br />

R +<br />

NH<br />

Catalyst 9<br />

1-2 eq ArCO 2H<br />

DIAD, PhH<br />

1 eq 1 eq<br />

Chiral Phosphines for Mitsunobu KR<br />

O<br />

O<br />

O P NMe 2<br />

Ar<br />

OH<br />

+<br />

1) 1 eq Catalyst 9<br />

DEAD, THF<br />

Reflux<br />

2) NH 2 NH 2<br />

DIAD, PhH<br />

Ar<br />

Ar<br />

OCOAr<br />

OH<br />

40-50%<br />

R<br />

13-30% ee<br />

R 2 -<br />

CO2 Chandrasekhar, Tet. Asym. 2002, 13, 615<br />

Ar = Ph, 2-Naphthyl<br />

14-73% conv.<br />

11-39% ee<br />

+<br />

Ar<br />

NH 2<br />

55-62%<br />

R<br />

26-45% ee<br />

Me2N O<br />

P<br />

O<br />

O<br />

N N<br />

CO 2i-Pr<br />

Oi-Pr<br />

Kellogg, et. al., J. Chem. Soc., Perkin Trans. 1, 1995, 2961<br />

Tang, et. al., Tet. Asym., 2002, 13, 145<br />

11


(±)-ROH +<br />

O<br />

EtO 2 C<br />

O<br />

N<br />

H<br />

HO 2C O<br />

O<br />

PPh 3<br />

N<br />

CO 2 Et<br />

ROH<br />

More Mitsunobu KR - Chandrasekhar<br />

PPh 3 , DEAD<br />

CH 2 Cl 2 , -23 o C<br />

O<br />

O<br />

RO<br />

O<br />

PPh3<br />

(-)-ROH +<br />

KOH<br />

EtOH<br />

(-)-ROH +<br />

RO2C O<br />

ROH = Arylalkylalcohol, (-)-ROH from Mitsunobu: ~40% yield, 70-90% ee<br />

(-)-ROH after saponification: ~80% yield, ~80% ee<br />

M<br />

O<br />

L<br />

H<br />

O<br />

O<br />

O<br />

PPh 3<br />

HO 2C O<br />

RO 2 C<br />

Chandrasekhar, Kulkarni, Tet. Asym., 2002, 13, 615<br />

O<br />

12


Nishiyama, Sekar (our very own!)<br />

n<br />

<strong>Kinetic</strong> Resolution through S N2 Displacement<br />

OH<br />

R<br />

0.3-0.9 eq BINAP<br />

n = 2; R = Ph, 4-CH 3OPh, 2-CH 3Ph, 3-CH 3Ph, 4-CH 3Ph, 1-Naphthyl, 2-Naphthyl, Cyclohexyl<br />

n = 4; R = Ph<br />

0.9-1.0 eq NCS<br />

THF<br />

48-63% conversion, 69-99% ee, s = 13-118<br />

-10 o C overnight or 10 min at r.t.<br />

BINAP-bisoxide could be reduced back to (S)-BINAP<br />

H<br />

(±) -<br />

OH<br />

OH<br />

H<br />

(±) -<br />

OH<br />

Ph<br />

0.3 eq BINAP<br />

1 eq NCS<br />

THF, 12 h<br />

-74 o C to r.t.<br />

OH<br />

R<br />

+<br />

Cl<br />

R<br />

OH<br />

Ph<br />

+<br />

s = 253<br />

Cl<br />

Ph<br />

(S)-(-)-BINAP<br />

PPh 2<br />

PPh 2<br />

Nishiyama, Sekar, J. Am. Chem. Soc., 2001, 123, 3603<br />

Epoxidation of Allylic Alcohols - Sharpless!!!<br />

Made kinetic resolution a practical technique for synthesis<br />

Most widely used kinetic resolution technique<br />

Bulkier tartrate esters work better<br />

1.2 : 1 tartrate to titanium ratio is best<br />

Can use catalytic amount of tartrate,<br />

though reactions are much slower<br />

(S)-fast<br />

(R)-slow<br />

Ti(Oi-Pr) 4, TBHP<br />

L-(+)-DIPT<br />

CH 2Cl 2, -20 o C<br />

O<br />

H<br />

O<br />

H<br />

H<br />

H<br />

OH<br />

H<br />

OH<br />

H<br />

+<br />

O<br />

H<br />

erythro : threo<br />

98 : 2<br />

+<br />

O<br />

H<br />

R 3<br />

erythro : threo<br />

62 : 38<br />

R 2<br />

H<br />

H<br />

H<br />

OH<br />

H<br />

OH<br />

R 1<br />

OH<br />

D-(-)-(S,S)-Dialkyltartrate<br />

L-(+)-(R,R)-Dialkyltartrate<br />

HO CO 2i-Pr<br />

HO<br />

CO 2i-Pr<br />

(+)-(R,R)-L-Diisopropyltartrate<br />

Sharpless, et. al., J. Am. Chem. Soc., 1981, 103, 6237<br />

13


Worked well (typically ~60% conv., > 80% ee, s > 15)<br />

Me 3 Si<br />

OH<br />

R<br />

OH<br />

OH<br />

OH<br />

Ph<br />

Sharpless Epoxidations - Examples<br />

OH<br />

OH<br />

OH<br />

R<br />

OH<br />

SiMe3<br />

OH<br />

OH<br />

R<br />

OH OH<br />

Ph OH Ph OH t-Bu<br />

Sometimes selectivities up to "700" were observed (determined by measuring k fast and k slow separately)<br />

Did not work so well:<br />

H<br />

•<br />

H<br />

OH<br />

OH<br />

OH<br />

OH<br />

Sharpless, et. al., J. Am. Chem. Soc., 1981, 103, 6237<br />

J. Am. Chem. Soc., 1987, 109, 5565<br />

J. Am. Chem. Soc., 1988, 110, 2978<br />

14


t-Bu<br />

R 3<br />

OH<br />

R 1<br />

R 1<br />

R 1<br />

(±)- + +<br />

R 2<br />

N N<br />

Mn<br />

MeO O Cl O<br />

OMe<br />

t-Bu<br />

Epoxidation of Allylic Alcohols - Salen too! (Adam)<br />

(R,R)-10<br />

10 mol% Catalyst 10 or 11<br />

t-Bu<br />

20 mol% PPNO<br />

60 mol% PhIO<br />

CH 2Cl 2, r.t.<br />

Enantiomer of alcohol depends on catalyst used (10 and 11 give opposite enantioenrichment)<br />

Epoxide ee's 50-80%, Alcohol ee's < 50% (10 -50% conv.), s = 1.5-12.9<br />

Oxidation of alcohol to ketone over epoxidation often problematic<br />

R 3<br />

OH<br />

R 2<br />

N N<br />

Mn<br />

O<br />

R 3<br />

OH<br />

R 2<br />

t-Bu O Cl O<br />

t-Bu<br />

t-Bu<br />

(S,S)-11<br />

t-Bu<br />

R 3<br />

O<br />

R 2<br />

PPNO<br />

R 1<br />

N O<br />

Adam, et. al., J. Org. Chem., 2001, 66, 5796<br />

Selectivity in Salen Epoxidations of Allylic Alcohols<br />

O<br />

t-Bu<br />

N<br />

O<br />

Mn<br />

2<br />

N<br />

HO<br />

O<br />

t-Bu<br />

Ph<br />

3<br />

1 - A 1,3 Interaction<br />

1<br />

2 - Hydrogen Bonding<br />

3 - Katsuki Trajectory<br />

H<br />

Me<br />

t-Bu<br />

Me<br />

Ph<br />

H<br />

OH<br />

Katsuki Trajectory<br />

O<br />

Mn<br />

O<br />

R L is forced away from the bulky salen tert-butyl groups, especially when R L is aromatic<br />

1, 2, and 3 require that the (S)-enantiomer be the more reactive (when the catalyst is derived from the (S,S)-salen<br />

ligand, as shown)<br />

N<br />

R S<br />

R L<br />

Adam, et. al., J. Org. Chem., 2001, 66, 5796<br />

Katsuki, et. al., J. Mol. Cat. A, 1996, 113, 87<br />

15


(±)-<br />

R<br />

R 1<br />

OH<br />

R 2<br />

OH<br />

KR Through Hydrogenation of Allylic Alcohols - Noyori<br />

R 3<br />

MeO<br />

0.05-0.5 mol% 12<br />

H2 (1-100 atm)<br />

O<br />

MeOH<br />

Typically done in 1-3 hours at 25 o C<br />

OH<br />

R 1<br />

OH<br />

(R)-12 also used to yield other enantiomer of allylic alcohol<br />

R = H, s = 62<br />

R = Me, s = 76<br />

R 2<br />

OH<br />

R 3<br />

+<br />

R 1<br />

OH<br />

R 2<br />

R 3<br />

OH<br />

OH<br />

Ph 2<br />

P<br />

O<br />

Ru<br />

P<br />

Ph2O<br />

(S)-12<br />

s = 16 s = 11 s = 1.7 s = 20 s = 11<br />

Increasing the H 2 pressure tends to decrease selectivity<br />

Lowering the temperature slightly improves the selectivity<br />

(±)-<br />

Jacobsen<br />

(±)-<br />

Katsuki<br />

R<br />

O R<br />

R = i-Bu, i-Pr, n-Hexyl, prenyl<br />

R = Me, i-Pr, s = 2.6-7.5<br />

Epoxidation of Alkenes and Allenes - Salen<br />

4 mol% Catalyst 13a<br />

MCPBA, NMO<br />

CH 2Cl 2, -78 o C<br />

< 10 min<br />

2 mol% 13b or 14<br />

NaOCl, PPNO<br />

CH 2Cl 2, -20 o C<br />

< 10 min<br />

cis and trans epoxides recovered in >80% ee<br />

R<br />

O<br />

O R<br />

s = 4.5-9.3<br />

R<br />

R<br />

O<br />

O<br />

O<br />

OH<br />

Noyori, et. al., J. Org. Chem., 1988, 53, 708<br />

N N<br />

Mn<br />

R O Cl O<br />

R<br />

t-Bu<br />

N N<br />

Mn<br />

O O<br />

Ph Ph<br />

- OAc<br />

t-Bu<br />

(S,S)-13<br />

a: R = OTIPS<br />

b: R = t-Bu<br />

Velde, Jacobsen, J. Org. Chem., 1995, 60, 5380<br />

14<br />

Katsuki, et. al., Tet. Lett., 1996, 37(26), 4533<br />

O<br />

16


(±)-<br />

Gardiner<br />

(±)-<br />

(±)-<br />

MeO 2C<br />

Ph<br />

Ph<br />

Ph<br />

Ph<br />

CO 2Me<br />

Other Epoxidation Examples with Salen<br />

Catalyst 15<br />

MCPBA, NMO<br />

CH 2Cl 2, -78 o C<br />

Ph<br />

CO 2Me<br />

Ph<br />

H<br />

Ph<br />

O<br />

41% conv., 38% ee, s = 5.2<br />

Anti- compound also in reaction, but no epoxidation of it was observed<br />

(±)-<br />

Matched<br />

(R,R)-15<br />

4 mol% (S,S)- or (R,R)-15<br />

MCPBA, NMO<br />

CH 2Cl 2, -78 o C<br />

Mismatched Matched<br />

(S,S)-15<br />

OR<br />

Ph<br />

O<br />

O<br />

O<br />

Ph<br />

O<br />

O O<br />

O<br />

OR<br />

Mismatched<br />

OR<br />

Ph<br />

Ph<br />

s = 6.3-9.1<br />

CO 2 Me<br />

N N<br />

Mn<br />

t-Bu O Cl O<br />

t-Bu<br />

t-Bu<br />

Ph<br />

O<br />

t-Bu<br />

Catalyst (R,R)-15<br />

Gardiner, et. al., Tet. Lett., 1996, 37(46), 8447<br />

+<br />

CO 2 Me<br />

Linker, Toth, Bringmann, Chem. Eur. J., 1998, 4 (10), 1944<br />

An Alternate Method to Epoxidation KR - Shi<br />

25-75 mol% Catalyst 16<br />

2.3 eq Oxone<br />

9.5 eq K 2CO 3<br />

CH 3CN / DMM<br />

Na 2B 4O 7 in EDTA (aq)<br />

-10 or 0 o C<br />

R = TMS Me COMe CO 2 Et<br />

s = >100 16 39 70<br />

vs.<br />

O<br />

O<br />

OR<br />

O<br />

Ph<br />

O<br />

Ph<br />

O<br />

O O<br />

Favored enantiomer Disfavored enantiomer<br />

+<br />

O<br />

OR<br />

O<br />

O O<br />

Shi, et. al., J. Am. Chem. Soc., 1999, 121, 7718<br />

O<br />

Catalyst 16<br />

O<br />

O<br />

17


(±)-<br />

(±)-<br />

R S<br />

RL<br />

O<br />

R 1<br />

O<br />

R 2<br />

O<br />

R 2<br />

O<br />

25-75 mol% Catalyst 16<br />

O O<br />

O<br />

2.3 eq Oxone<br />

9.5 eq K 2 CO 3<br />

CH 3CN / DMM<br />

Na 2 B 4 O 7 in EDTA (aq)<br />

-20 to 0 o C<br />

R 1<br />

More Shi Epoxidation<br />

R<br />

TMS<br />

1 = Alkyl, OMe, OTBS, OTMS<br />

R 2 = Ph, OPiv,<br />

s = 11-61<br />

vs.<br />

O<br />

R 1<br />

O<br />

O<br />

R 2<br />

O<br />

R 2<br />

O O<br />

Favored enantiomer Disfavored enantiomer<br />

R M<br />

H<br />

R L<br />

RS<br />

H<br />

R S<br />

R L<br />

RM<br />

R M<br />

R S<br />

H R L<br />

OH OH<br />

H<br />

R M<br />

O<br />

+<br />

R 1<br />

R 1<br />

O<br />

R 2<br />

O<br />

O O<br />

Shi, et. al., J. Am. Chem. Soc., 1999, 121, 7718<br />

Alkenes and Allenes - Sharpless Dihydroxylation<br />

Top (!)- attack<br />

Bottom (")- attack<br />

AD-mix<br />

AD-mix contains:<br />

Cinchona alkaloid PHAL ligand<br />

K 2 OsO 2 (OH) 4<br />

K 3 Fe(CN) 6<br />

K 2 CO 3<br />

+<br />

N N<br />

O<br />

O<br />

Catalyst 16<br />

Et<br />

Et<br />

N<br />

N N N<br />

H<br />

O<br />

O<br />

H<br />

MeO OMe<br />

Et<br />

MeO<br />

H<br />

N<br />

N<br />

O<br />

(DHQD) 2PHAL<br />

(In AD-mix-!)<br />

N<br />

N<br />

O<br />

(DHQ) 2 PHAL<br />

(In AD-mix-")<br />

N<br />

N<br />

H<br />

Et<br />

O<br />

OMe<br />

Sharpless, et. al., J. Org. Chem., 1992, 57, 2768<br />

18


Sharpless<br />

Et<br />

t-Bu<br />

Proposed Asymmetric Dihydroxylation Mechanisms<br />

O<br />

O<br />

Os<br />

O<br />

O<br />

L*<br />

O O<br />

O Os<br />

O<br />

N<br />

N<br />

R<br />

O<br />

R = Ph, s = 9.7<br />

R = CO 2Et, s = 32<br />

R<br />

R<br />

N<br />

[2+2]<br />

N<br />

O<br />

N<br />

Et<br />

Sharpless, J. Am. Chem. Soc., 1993, 115, 7864<br />

OAc<br />

R 1<br />

R = Me, 80% conv., 95% ee<br />

N<br />

R = Ph, 70% conv., >98% ee<br />

Alkene: 47% Yield<br />

Ph Ph<br />

>99% ee<br />

Diol: 40% conv.<br />

>95% ee<br />

s = 51.1<br />

O<br />

O<br />

Os<br />

O<br />

O<br />

L*<br />

[3+2]<br />

R 2<br />

OAc<br />

Ph<br />

Corey<br />

N<br />

Et<br />

O<br />

O<br />

Os<br />

O<br />

O<br />

L*<br />

OMe<br />

R<br />

O<br />

H Os O<br />

O N<br />

N<br />

O<br />

O<br />

Resolution of Alkenes Via AD<br />

(unreactive)<br />

Gardiner, et. al., Chem. Comm., 1996, 2709<br />

R = Me, 90% conv., >98% ee<br />

R = Ph, 90% conv., 33% ee<br />

MeO<br />

R<br />

H<br />

N<br />

O<br />

N<br />

Corey, et. al., J. Am. Chem. Soc., 1995, 117, 10827<br />

Sharpless, et. al., J. Am. Chem. Soc., 1996, 118, 35<br />

C 8 H 17<br />

OAc<br />

O R<br />

O<br />

R = Me, s = 3.1<br />

R = Ph, s = 1.6<br />

O<br />

O O<br />

With modified chiral ligand<br />

N<br />

Ph<br />

(anthryl instead of quinuclidine)<br />

R = Me, s = 20<br />

R = Ph, s = 79<br />

25-30% Yield<br />

95-98% ee<br />

Corey, et. al., J. Am. Chem. Soc., 1995, 117, 10827<br />

Ph<br />

Jefford, et. al., Tet. Lett., 1994, 35, 6275<br />

90% conv., >98% ee<br />

Lohray, et. al., Tet. Asym., 1992, 3(11), 1317<br />

19


N3<br />

O<br />

O<br />

O<br />

Epoxide <strong>Kinetic</strong> Resolution<br />

While asymmetric epoxidation is much more practical for many compounds, some cannot be accessed in high ee<br />

through current methods<br />

In particular, terminal epoxides are difficult to get enantiopure, although the racemic epoxides are often<br />

commercially available.<br />

H2N<br />

O<br />

(±)-<br />

Yamamoto<br />

(±)-<br />

O<br />

15% recovered<br />

27% ee<br />

OTMS<br />

R<br />

R<br />

1. CSA, MeOH<br />

2. 10% Pd/C<br />

MeOH, H 2<br />

OH<br />

R<br />

(R,R)-18<br />

TMSN 3<br />

4.4 mol% 19<br />

ArOH<br />

TBME, 12-18 hr<br />

-30 to 25 o C<br />

O<br />

Catalyst 17<br />

CH 2Cl 2<br />

-30 o C, 5 h<br />

Ph<br />

O<br />

21% recovered<br />

52% ee<br />

R<br />

ArO<br />

PhO<br />

R<br />

OH<br />

R<br />

OH<br />

O<br />

O<br />

O<br />

20% epoxide recovered<br />

>95% ee<br />

TMSN 3<br />

R<br />

OTMS<br />

+<br />

O<br />

O<br />

(R)-(+)-17<br />

Epoxide <strong>Kinetic</strong> Resolution - Jacobsen<br />

+<br />

(S,S)-18<br />

R = alkyl, Bn, CH 2 Cl, c-C 6 H 11 , CH 2 OR,<br />

CH(OEt) 2 , CH 2 CN, (CH 2 ) 2 CH=CH 2<br />

2 mol% 18, 18-50 hr, 0 o C<br />

Yields > 80% (based on 1 eq TMSN 3 )<br />

ee > 90% (most > 97% ee)<br />

s = 48 - 280<br />

O<br />

O<br />

OBu<br />

Al<br />

Cl<br />

Li +<br />

Yamamoto, et. al., Tetrahedron, 1988, 44 (15), 4747<br />

N 3<br />

Wide range of Ar and R tolerated<br />

Yields usually > 95%<br />

(based on 1 eq ArOH)<br />

Typically > 90% ee<br />

Epibromohydrin (R = CH 2 Br) racemizes in presence of LiBr<br />

Dynamic <strong>Kinetic</strong> Resolution was possible!<br />

(±)-<br />

Br<br />

4 mol% 19<br />

PhOH<br />

4 mol% LiBr<br />

CH 3 CN, MS3A<br />

Br<br />

74% yield<br />

> 99% ee<br />

N N<br />

Cr<br />

t-Bu O O<br />

t-Bu<br />

t-Bu<br />

N 3<br />

N N<br />

Co<br />

t-Bu<br />

t-Bu O O<br />

t-Bu<br />

t-Bu<br />

(R,R)-18<br />

Jacobsen, et. al., J. Am. Chem. Soc., 1996, 118, 7420<br />

(R,R)-19<br />

t-Bu<br />

- OC(CF3 ) 3 + H 2 O<br />

Jacobsen, et. al., J. Am. Chem. Soc., 1999, 121, 6086<br />

20


R<br />

(CH2)3CH3<br />

CH 3<br />

(CH2)11CH3<br />

(CH 2 ) 2 CH=CH 2<br />

CH 2Ph<br />

c-C 6H 11<br />

t-Bu<br />

CH2Cl<br />

CH 2 F<br />

CF 3<br />

CH 2OBn<br />

CH 2OTBS<br />

CH2OPh<br />

CH 2 O(1-naphthyl)<br />

Resolution Through Epoxide Hydrolysis - Jacobsen<br />

(±)-<br />

R<br />

Epoxide<br />

% Yield<br />

(>99% ee)<br />

43<br />

46<br />

43<br />

43<br />

46<br />

44<br />

41<br />

43<br />

43<br />

43<br />

48<br />

47<br />

47<br />

38<br />

O<br />

R<br />

oxiranyl<br />

0.2-0.85 mol% 20<br />

0.55 eq H 2 O<br />

5-68 hr, r.t.<br />

CH 2 OCO(CH 2 ) 2 CH 3<br />

CH2CO2Et<br />

CO 2 Me<br />

COMe<br />

COEt<br />

CH=CH 2<br />

Ph<br />

(p-Cl)C 6 H 4<br />

(m-Cl)C 6 H 4<br />

(o-Cl)C6H4<br />

(m-OMe)C 6 H 4<br />

(m-NO2)C6H4<br />

TBS<br />

R<br />

Epoxide<br />

% Yield<br />

(>99% ee)<br />

Other <strong>Kinetic</strong> <strong>Resolutions</strong><br />

36<br />

46<br />

43<br />

43<br />

40<br />

41<br />

36<br />

44<br />

39<br />

40<br />

38<br />

41<br />

37<br />

41<br />

O<br />

+<br />

R<br />

OH<br />

OH<br />

N N<br />

Co<br />

t-Bu O O<br />

t-Bu<br />

t-Bu<br />

(R,R)-20<br />

t-Bu<br />

- OAc + H2 O<br />

Jacobsen, et. al., Science, 1997, 277, 936<br />

Beta-hydroxy amine resolution through N-oxide formation: Sharpless, J. Org. Chem., 1983, 48, 3608<br />

Epoxide to Allylic Alcohol Resolution: Andersson, Org. Lett., 2002, 4, 3777 and J. Am. Chem. Soc., 2000, 122, 6610<br />

Also, Feringa, Org. Lett., 2000, 2, 933<br />

Alpha-amino acid N-carboxyanhydrides to alpha-aryl amino acids: Deng, Org. Lett., 2002, 4, 3321<br />

Alpha-hydroxy epoxide resolution through semipinacol rearrangement: Tu, Tet. Asym., 2002, 13, 395<br />

Meso-diol desymmetrization through Dioxane acetal ring cleavage: Harada, J. Org. Chem., 2002, 67, 7080<br />

Dynamic <strong>Kinetic</strong> Resolution of alpha-halo acids to beta-amino alcohols: Durst, J. Org. Chem., 1998, 63, 3117<br />

Oxidative Sulfoxide: Uemura, J. Org. Chem., 1993, 58, 4529<br />

Baeyer-Villiger: (review) Bolm, Beckmann, Comprehensive Asymmetric Catalysis Vol II , Springer, NY, 1999, Ch. 22<br />

Carboxylic Acid Acylation: Najera, Tet. Asym., 1992, 3(11), 1455<br />

!-Allyl Pd - Many examples: Reetz, J. Organomet. Chem., 2000, 603, 105; Trost, JACS, 1999, 121, 3543<br />

Also, Gais, J. Am. Chem. Soc., 2003, 125 6066; Osborn, ACIEE, 1998, 37, 3118<br />

Metal-Mediated Cross-Coupling (Heck, MgR Coupling, etc.): Lloyd-Jones, Tetrahedron, 1998, 54, 901<br />

Also, Hayashi, J. Am. Chem. Soc., 1995, 117, 9101; Shibasaki, Tet. Lett., 1999, 40, 311<br />

Aziridine Carbonylation: Alper, J. Am. Chem. Soc., 1989, 111, 931<br />

Diazocyclization: Doyle, Russ. Chem. Bull., 1995, 44, 1729<br />

Anhydride Opening: Deng, J. Am. Chem. Soc., 2001, 123, 11302<br />

Ring-Closing Metathesis: Grubbs (of course!), J. Am. Chem. Soc., 1996, 118, 2499, and J. Org. Chem., 1998, 63, 824<br />

Also, Hoveyda and Schrock, J. Am. Chem. Soc., 1998, 120, 4041<br />

Cyclic Allylic Ether Resolution through Zr catalyzed MgR addition: Hoveyda, J. Org. Chem., 1999, 64, 9690<br />

Horner-Emmons-Wadsworth: Rein, Angew. Chem., Int. Ed. Engl., 1994, 33, 556<br />

Imine Resolution: Buchwald, J. Org. Chem., 2000, 65, 767<br />

Intramolecular Rh-catalyzed alkynyl ketone cyclization KR: Fu, J. Am. Chem. Soc., 2002, 124, 10296<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!