16.01.2013 Views

Explanatory notes to the digital geological map of the Rax ... - KATER

Explanatory notes to the digital geological map of the Rax ... - KATER

Explanatory notes to the digital geological map of the Rax ... - KATER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>KATER</strong> II (KArst waTER research program)<br />

Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-Region<br />

<strong>Explana<strong>to</strong>ry</strong> <strong>notes</strong> <strong>to</strong> <strong>the</strong><br />

<strong>digital</strong> <strong>geological</strong> <strong>map</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-Region<br />

Gerhard W. Mandl<br />

Vienna, December 2006<br />

Geologische Bundesanstalt Wien<br />

im Rahmen d. Teilrechtsfähigkeit gem § 18 Abs.5 FOG, BGBl Nr. 341/1981 i.d.g.F.<br />

Neulinggasse 38, A - 1030 Wien Tel.: 712 56 74 / 0 www.geologie.ac.at


<strong>KATER</strong> II (Karst waTER research program)<br />

Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-Region<br />

<strong>Explana<strong>to</strong>ry</strong> <strong>notes</strong> <strong>to</strong> <strong>the</strong><br />

<strong>digital</strong> <strong>geological</strong> <strong>map</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-Region<br />

Gerhard W. Mandl<br />

Vienna, Dezember 2006<br />

Geological Survey <strong>of</strong> Austria


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

CONTENT<br />

Abstract ............................................................................................................................... 3<br />

Introduction ............................................................................................................................... 5<br />

1 STRATIGRAPHY ............................................................................................................... 7<br />

1.1 Noric-Tyrolic Nappe System ............................................................................................ 7<br />

Greywacke Zone (95) – (91) .............................................................................. 7<br />

Werfen Imbricates Zone (90) – (85) ..................................................................... 7<br />

1.2 Meliaticum (84) ................................................................................................................. 8<br />

1.3 Juvavic Nappe System ....................................................................................................... 8<br />

Permian – Lower Triassic (83) – (79).................................................................... 8<br />

Middle Triassic <strong>to</strong> Lower Carnian (78) – (61) ...................................................... 8<br />

Upper Carnian <strong>to</strong> Rhaetian (60) – (52)................................................................. 11<br />

1.4 Tyrolic Nappe System (Göller Nappe) ............................................................................... 14<br />

Triassic (51) – (44) ................................................................................................ 14<br />

Jurassic (43) – (34)................................................................................................ 14<br />

1.5 Gosau Group .................................................................................................................... 15<br />

Cretaceous <strong>to</strong> Paleocene (33) – (24) ................................................................................ 15<br />

1.6 Inneralpine Molasse, Vienna Basin ................................................................................... 16<br />

Palaeogene – Neogene (22) – (20) ...................................................................... 16<br />

1.7 Quaternary.......................................................................................................................... 16<br />

Pleis<strong>to</strong>cene (20) - (13)........................................................................................... 16<br />

Late Pleis<strong>to</strong>cene <strong>to</strong> Holocene (12) - (1) ................................................................ 17<br />

2 TECTONIC ......................................................................................................................... 18<br />

2.1 Principles <strong>of</strong> NCA structural evolution ................................................................................ 18<br />

2.2 Structural frame <strong>of</strong> <strong>the</strong> <strong>Rax</strong>/Schneeberg aquifer system ................................................... 21<br />

Schneeberg Nappe................................................................................................ 21<br />

Mürzalpen Nappe ................................................................................................ 23<br />

Göller Nappe ......................................................................................................... 23<br />

Werfen Imbricates Zone ....................................................................................... 24<br />

Acknowledgements ......................................................................................................................... 25<br />

References ............................................................................................................................... 25<br />

Attachments: Geological <strong>map</strong> and cross-sections 1:25.000<br />

2


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Abstract<br />

Within <strong>the</strong> karst water system <strong>the</strong> <strong>geological</strong> setting is responsible for <strong>the</strong> collection, filtering,<br />

s<strong>to</strong>rage and distribution <strong>of</strong> karst water on its way down from <strong>the</strong> surface through permeable<br />

rocks <strong>to</strong> <strong>the</strong> spring. The <strong>geological</strong> setting provides boundary conditions <strong>to</strong> apply general<br />

models on specific aquifers as well as <strong>to</strong> interpret measurements <strong>of</strong> water parameters (e.g.<br />

discharge curves, water chemistry, iso<strong>to</strong>pes and o<strong>the</strong>rs).<br />

Due <strong>to</strong> <strong>the</strong> complex <strong>geological</strong> genesis <strong>of</strong> <strong>the</strong> project area <strong>the</strong> <strong>geological</strong> <strong>map</strong>ping had <strong>to</strong> be<br />

accompanied by additional investigations in lithostratigraphy, biostratigraphy, micropalaen<strong>to</strong>logy,<br />

carbonate facies (lateral transitions) and tec<strong>to</strong>nics.<br />

Mesozoic carbonates are <strong>the</strong> dominant rock type within <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps,<br />

whereas siliciclastic sediments are restricted <strong>to</strong> a few stratigraphic levels and act as layers <strong>of</strong><br />

reduced permeability. The following sedimentary succession forms <strong>the</strong> Schneeberg/<strong>Rax</strong> area<br />

(<strong>the</strong> mentioned thicknesses may vary considerable due <strong>to</strong> tec<strong>to</strong>nic cutting):<br />

The sedimentary succession starts with Permian continental red beds (Prebichl-Fm.; 0-150<br />

meters), transgressing discordant over Early Paleozoic rocks <strong>of</strong> <strong>the</strong> Greywacke Zone. A<br />

marine clay-evaporite association is locally developed and may affect <strong>the</strong> water quality with<br />

sulfates. The Early Triassic is characterized by deposition <strong>of</strong> some 100 meters <strong>of</strong> marine<br />

shallow shelf siliciclastics (Werfen-Fm.). They represent <strong>the</strong> main layer <strong>of</strong> low permeability.<br />

In Middle Triassic times carbonate sedimentation became prevailing with well bedded<br />

(Gutenstein-Formation; 150 m) and massive limes<strong>to</strong>nes and dolomites (Steinalm-Formation;<br />

80-100 m). During <strong>the</strong> Middle Anisian a rapid deepening <strong>of</strong> <strong>the</strong> marin environment was<br />

associated with blockfaulting. This has generated a pronounced relief <strong>of</strong> <strong>the</strong> sea-floor, which<br />

is <strong>the</strong> reason for <strong>the</strong> subsequent development <strong>of</strong> different sedimentary facies: shallow-water<br />

carbonate platforms (Wetterstein-Formation and lateral slope sediments) coexist with basins<br />

<strong>of</strong> different shape, water depth and circulation. Four types <strong>of</strong> basinal sediments occur in <strong>the</strong><br />

investigated area: black, thin bedded allodapic limes<strong>to</strong>nes (Grafensteig-Fm., 300 m), nodular<br />

limes<strong>to</strong>nes with chert (Reifling-Fm.; 20-30 m), light grey <strong>to</strong> reddish, nodular, bedded or<br />

massive limes<strong>to</strong>nes (Hallstatt Limes<strong>to</strong>nes; 40 m) and bedded <strong>to</strong> massive multicolored<br />

allodapic limes<strong>to</strong>nes (up <strong>to</strong> 250 m).<br />

In general, <strong>the</strong> Wetterstein platforms show a rapid progradation <strong>of</strong> reef and reef breccias<br />

over <strong>the</strong> adjacent basinal sediments. The thick platform carbonates (up <strong>to</strong> 1000 m) build <strong>the</strong><br />

main aquifer in <strong>the</strong> Hochschwab and Schneeberg/<strong>Rax</strong> region. The primary porosity <strong>of</strong> <strong>the</strong>se<br />

bioclastic sediments has been lost due <strong>to</strong> early diagenetic cementation. During diagenesis<br />

also parts <strong>of</strong> <strong>the</strong> Wetterstein limes<strong>to</strong>ne as well as parts <strong>of</strong> <strong>the</strong> adjacent basinal limes<strong>to</strong>nes<br />

became transformed in<strong>to</strong> dolomite. Extended bodies <strong>of</strong> dolomitic rocks within <strong>the</strong> aquifer are<br />

responsible for lower percolation rates and a more regular discharge <strong>of</strong> some springs.<br />

The prevailing carbonate producing organisms within <strong>the</strong> platform lagoon were calcareous<br />

green algae (dasycladaceans). The knowledge about <strong>the</strong>ir distinct evolution during Triassic<br />

Times has been proved recently by correlation with conodont zonation and can be used now<br />

as a powerfull <strong>to</strong>ol for biostratigraphic dating. Tec<strong>to</strong>nic <strong>of</strong>fset along fault zones within<br />

mono<strong>to</strong>nous platform carbonates could be recognized and sometimes quantified in this way.<br />

In <strong>the</strong> early Upper Triassic (Carnian) <strong>the</strong> platforms emerged and <strong>the</strong> basins received<br />

sands<strong>to</strong>nes and shales (10-30 m). In <strong>the</strong> Late Carnian a sea-level rise has initiated <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> Norian carbonate platform (up <strong>to</strong> 1000m) characterized by Dachstein<br />

limes<strong>to</strong>ne (reef and lagoonal facies) and Hauptdolomite (intertidal facies).<br />

Most <strong>of</strong> <strong>the</strong> following younger rocks are <strong>of</strong> minor significance for <strong>the</strong> lithological composition<br />

<strong>of</strong> <strong>the</strong> karst aquifer but relevant for revealing <strong>the</strong> structural his<strong>to</strong>ry.<br />

3


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

The platform growth has been terminated in <strong>the</strong> latest Triassic. During Jurassic times marly<br />

and cherty limes<strong>to</strong>nes covered <strong>the</strong> subsiding seafloor. Locally <strong>the</strong>y are replaced by<br />

condensed red limes<strong>to</strong>nes. The deposition <strong>of</strong> radiolarite indicates <strong>the</strong> stage <strong>of</strong> greatest water<br />

depth. Due <strong>to</strong> plate tec<strong>to</strong>nic movements a first tec<strong>to</strong>nic event affected <strong>the</strong> sou<strong>the</strong>m part <strong>of</strong> <strong>the</strong><br />

NCA during Upper Jurassic. Sedimentation became controlled by tec<strong>to</strong>nic activity, which<br />

finally culminated in <strong>the</strong> Cretaceous nappe stacking.<br />

After a period <strong>of</strong> subaerial erosion, Upper Cretaceous <strong>to</strong> Eocene clastics <strong>of</strong> <strong>the</strong> Gosau-Group<br />

have been deposited on <strong>the</strong> nappe stack in a subsiding environment. Sedimentation has<br />

started with terrestric <strong>to</strong> shallow marine clastics, later on a strong subsidence has led <strong>to</strong><br />

turbiditic deep slope conditions. After <strong>the</strong> collision <strong>of</strong> <strong>the</strong> Austroalpin Units with <strong>the</strong><br />

accretionary wedge <strong>of</strong> <strong>the</strong> Rhenodanubian Flysch Zone <strong>the</strong> NCA became a dry land.<br />

The plateau character <strong>of</strong> several mountain areas in <strong>the</strong> NCA is <strong>the</strong> result <strong>of</strong> erosion during<br />

Oligocene. The NCA became a lowland, covered by fluvial deposits, which were delivered<br />

from <strong>the</strong> uplifting Central Alps in <strong>the</strong> south.<br />

Compressional deformation at <strong>the</strong> beginning <strong>of</strong> Miocene has caused large strike slip fault<br />

systems. These brittle tec<strong>to</strong>nic structures are crucial for <strong>the</strong> development <strong>of</strong> water<br />

permeability in <strong>the</strong> NCA sedimentary rocks and for <strong>the</strong> karstification <strong>of</strong> <strong>the</strong> uplifting carbonate<br />

plateaus.<br />

The youngest, Pleis<strong>to</strong>zän <strong>to</strong> Holocene sediments are only <strong>of</strong> minor influence on <strong>the</strong> karstic<br />

springs, due <strong>to</strong> <strong>the</strong> location <strong>of</strong> springs within <strong>the</strong> carbonatic bedrocks.<br />

The knowledge <strong>of</strong> <strong>the</strong> complex interaction <strong>of</strong> sedimentation, nappe tec<strong>to</strong>nics and faulting<br />

provides a useful <strong>to</strong>ol for understanding <strong>the</strong> hydrogeology <strong>of</strong> <strong>the</strong> karstic springs <strong>of</strong> <strong>the</strong> Vienna<br />

Water Supply. It <strong>of</strong>fers also a database for decision finding in a management system for a<br />

sustainable drinking water supply.<br />

4


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Introduction<br />

The inhabitants (about 1.65 million people) <strong>of</strong> <strong>the</strong> Austrian capital city Vienna become<br />

supplied with high quality drinking water from karstic springs. Up <strong>to</strong> 200.000 cbm per day are<br />

flowing via each <strong>of</strong> <strong>the</strong> two pipelines 150 resp. 180 kilometers from <strong>the</strong> Nor<strong>the</strong>rn Calcareous<br />

Alps <strong>to</strong>wards Vienna. The protected area around <strong>the</strong> springs comprises about 32.000 hectars<br />

<strong>of</strong> karstified mountain ranges, a sensible ecosystem with complex interactions between<br />

rocks, water, soil, vegetation, climate and human landuse.<br />

Water supply agencies permanently have <strong>to</strong> balance between saving water quality and<br />

quantity, economic requirements and moni<strong>to</strong>ring <strong>of</strong> environmental pollution. To maintain at<br />

least a minimum water supply in case <strong>of</strong> local pollution it is necessary <strong>to</strong> have a better<br />

understandig <strong>of</strong> <strong>the</strong> catchment areas <strong>of</strong> individual springs and <strong>of</strong> <strong>the</strong> potential subterranean<br />

water paths.<br />

About 1990 <strong>the</strong> government <strong>of</strong> Vienna has initiated a multidisciplinary “Karst Research<br />

Project”. Within this frame <strong>the</strong> Austrian Geological Survey has started a detailed <strong>geological</strong><br />

<strong>map</strong>ping <strong>of</strong> <strong>the</strong> catchment area <strong>of</strong> <strong>the</strong> Second Vienna Water Supply System. The final report<br />

2002 <strong>of</strong>fers a modern <strong>geological</strong> <strong>map</strong> <strong>of</strong> about 520 sq.km area <strong>of</strong> <strong>the</strong> Hochschwab mountain<br />

range in form <strong>of</strong> a <strong>digital</strong> database.<br />

In <strong>the</strong> meantime <strong>the</strong> Karst Research Project <strong>of</strong> <strong>the</strong> Government <strong>of</strong> Vienna has initiated a<br />

transnational and interdisciplinary project on European level, due <strong>to</strong> its fundamental<br />

significance for municipal water supply systems. The aim <strong>of</strong> <strong>KATER</strong> (KArst waTER research<br />

program in <strong>the</strong> frame <strong>of</strong> EU Interreg II c) was <strong>to</strong> form <strong>the</strong> basic <strong>to</strong>ols for a decision finding<br />

system in <strong>the</strong> field <strong>of</strong> regional policy, water supply and environment protection – basics like<br />

definition <strong>of</strong> metadata, car<strong>to</strong>graphic standards and GIS (Geographic Information Systems) -<br />

<strong>to</strong>ols.<br />

The following project <strong>KATER</strong> II (in <strong>the</strong> frame <strong>of</strong> EU Interreg III b CADSES) has <strong>the</strong> aim <strong>of</strong><br />

developing a GIS-based decision system <strong>to</strong> estimate or quantify <strong>the</strong> influences <strong>of</strong> land use<br />

activities on drinking water ressources in karstified areas.<br />

As a part <strong>of</strong> this project <strong>the</strong> geology <strong>of</strong> <strong>the</strong> catchment areas <strong>of</strong> <strong>the</strong> First Vienna Water Supply<br />

System has <strong>to</strong> be investigated in a similar way as in <strong>the</strong> former Hochschwab project. Data<br />

integration <strong>of</strong> available modern <strong>map</strong>s and additional <strong>geological</strong> <strong>map</strong>ping with a focus on <strong>the</strong><br />

Schneeberg area was done by <strong>the</strong> Austrian Geological Survey, starting in december 2003.<br />

The final report presents <strong>the</strong> results in form <strong>of</strong> a <strong>geological</strong> <strong>map</strong> 1:25.000, four <strong>geological</strong><br />

cross sections and explana<strong>to</strong>ry <strong>notes</strong>. The <strong>geological</strong> <strong>map</strong> is also available as a <strong>digital</strong><br />

database (ArcGis9/GeoDatabase).<br />

Within <strong>the</strong> karst water system <strong>the</strong> <strong>geological</strong> setting is responsible for <strong>the</strong> collection, filtering,<br />

s<strong>to</strong>rage and distribution <strong>of</strong> karst water on its way down from <strong>the</strong> surface through <strong>the</strong><br />

permeable rock <strong>to</strong> <strong>the</strong> spring. The petrography <strong>of</strong> rocks and <strong>the</strong> geometry <strong>of</strong> <strong>the</strong>ir structural<br />

features has influence on <strong>the</strong> water paths and <strong>the</strong> position <strong>of</strong> springs and <strong>the</strong> chemistry <strong>of</strong><br />

rocks may also affect water quality.<br />

The large karstified areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps are composed mainly <strong>of</strong> thick<br />

sequences <strong>of</strong> shallow water carbonates <strong>of</strong> seemingly mono<strong>to</strong>nous lithology. Only a very<br />

general overall fiew could be obtained from older <strong>geological</strong> <strong>map</strong>s. No detailed knowledge<br />

existed about structures like internal thrusts or fault systems and about <strong>the</strong> geometry <strong>of</strong><br />

internal lithological aquitards/aquicludes.<br />

5


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

A main task <strong>of</strong> re<strong>map</strong>ping such areas was <strong>the</strong>refore a detailed subdivision <strong>of</strong> <strong>the</strong> carbonate<br />

rocks. The <strong>geological</strong> <strong>map</strong>ping had <strong>to</strong> be accompanied by additional investigations in<br />

lithostratigraphy, biostratigraphy, micropalaeon<strong>to</strong>logy, carbonate facies (lateral transitions)<br />

and tec<strong>to</strong>nics.<br />

The <strong>geological</strong> setting provides boundary conditions <strong>to</strong> apply general models on specific<br />

aquifers as well as <strong>to</strong> interpret measurements <strong>of</strong> water parameters (e.g. discharge curves,<br />

water chemistry, iso<strong>to</strong>pes and o<strong>the</strong>rs).<br />

Parts <strong>of</strong> <strong>the</strong> catchment area <strong>of</strong> <strong>the</strong> First Vienna Water Supply have been <strong>map</strong>ped in such a<br />

detailed way, <strong>the</strong>y are available in printed form (scale 1:50.000) since several years:<br />

ÖK-sheet 75/Puchberg am Schneeberg (1991), ÖK-sheet 105/Neunkirchen (1992),<br />

ÖK-sheet 104/Mürzzuschlag (2001).<br />

The area <strong>of</strong> Kuhschneeeberg and its surrounding (ÖK-sheet 74/Hohenberg) has <strong>to</strong> be<br />

<strong>map</strong>ped additionally <strong>to</strong> obtain a modern view on <strong>the</strong> overall catchment area.<br />

All data have been integrated and partly actualized and refined <strong>to</strong> a <strong>digital</strong> data base,<br />

comparable with a printed <strong>map</strong> at a scale <strong>of</strong> 1:25.000.<br />

Fig.1<br />

6


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

1 STRATIGRAPHY<br />

The Nor<strong>the</strong>rn Calcareous Alps (NCA) – as a prominent part <strong>of</strong> <strong>the</strong> Eastern Alps – extend for<br />

about 500 kilometers from <strong>the</strong> Rhine valley in <strong>the</strong> west <strong>to</strong> Vienna in <strong>the</strong> east, forming a 20 <strong>to</strong><br />

50 kilometer wide mountain belt. In <strong>the</strong> western and middle part <strong>the</strong> highest peaks reach<br />

altitudes <strong>of</strong> up <strong>to</strong> 3.000 meters and are locally glaciated, in <strong>the</strong> eastern part elevations are up<br />

<strong>to</strong> 2.000 meters (<strong>Rax</strong>, Schneeberg). At <strong>the</strong>ir eastern end <strong>the</strong> NCA are bounded by <strong>the</strong><br />

Vienna Basin, which subsided during Neogene times. In <strong>the</strong> basement <strong>of</strong> <strong>the</strong> Vienna Basin,<br />

however, <strong>the</strong> NCA continue in<strong>to</strong> equivalent units <strong>of</strong> <strong>the</strong> Western Carpathians even if <strong>the</strong><br />

details are still in discussion.<br />

The Grauwacken Zone, consisting mainly <strong>of</strong> Ordovician <strong>to</strong> Carboniferous Metasediments, is<br />

<strong>the</strong> basement <strong>of</strong> <strong>the</strong> NCA. The transgressive sedimentary sequence <strong>of</strong> <strong>the</strong> NCA begins in <strong>the</strong><br />

Permian and extends locally in<strong>to</strong> <strong>the</strong> Paleogene (Gosau Group). The Triassic carbonates are<br />

<strong>the</strong> most prevailing rocks. They are forming extended karstified landscapes, <strong>the</strong> catchment<br />

areas <strong>of</strong> several drinking water supply systems – <strong>the</strong> most importend one is <strong>the</strong> Vienna water<br />

supply.<br />

Due <strong>to</strong> <strong>the</strong> intense nappe tec<strong>to</strong>nic during <strong>the</strong> Alpine orogenesis <strong>the</strong> originally succession <strong>of</strong><br />

sedimentary rocks has been dissected in<strong>to</strong> several nappes with different stratigraphic<br />

content. Therefore <strong>the</strong> legend <strong>of</strong> <strong>the</strong> <strong>map</strong> as well as <strong>the</strong> explana<strong>to</strong>ry <strong>notes</strong> are grouping <strong>the</strong><br />

formations according <strong>to</strong> <strong>the</strong> main tec<strong>to</strong>nic units and <strong>the</strong>n according <strong>to</strong> <strong>the</strong>ir sedimentary age,<br />

beginning with <strong>the</strong> oldest one.<br />

Overviews as well as detailed data and fur<strong>the</strong>r literature <strong>to</strong> this <strong>to</strong>pic are given by BÖHM<br />

1992, FAUPL & WAGREICH 1996, FLÜGEL 1981, LEIN 1987, LOBITZER, MANDL,<br />

MAZZULLO & MELLO 1990, MANDL 2000, MANDL & ONDREJICKOVA 1993, NEUBAUER<br />

et al. 1994, SCHLAGINTWEIT & EBLI 1999, TOLLMANN 1976, 1985, 1986, WAGREICH &<br />

FAUPL 1994, ZANKL 1971.<br />

A schematic representation <strong>of</strong> <strong>the</strong> Triassic sedimentary sequences is shown in Figs. 2 and 3.<br />

1.1 Noric-Tyrolic Nappe System<br />

Greywacke Zone (95) – (91)<br />

The palaeozoic metasediments <strong>of</strong> <strong>the</strong> Greywacke Zone are separated in<strong>to</strong> three nappes, two<br />

<strong>of</strong> <strong>the</strong>m can be found in <strong>the</strong> project area:<br />

# <strong>the</strong> Silbersberg Nappe contains remnants <strong>of</strong> a crystalline basement („Vöstenh<strong>of</strong>-<br />

Crystalline”) and transgreding siliciclastics <strong>of</strong> <strong>the</strong> Silbersberg-Group (95).<br />

# <strong>the</strong> Noric Nappe is built by phyllits and greenschists (94), Ordovician volcanic rocks <strong>of</strong><br />

<strong>the</strong> “Blasseneck Porphyroid” (93), Silurian sandy grey shale “Radschiefer” (92) with<br />

lydites and Devonian carbonate rocks (91).<br />

Werfen Imbricates Zone (90) – (85)<br />

The sedimentary sequence <strong>of</strong> <strong>the</strong> NCA starts in <strong>the</strong> Permian with continental red beds,<br />

conglomerates, sands<strong>to</strong>nes and shales <strong>of</strong> <strong>the</strong> Prebichl Formation (90, 89), transgressing<br />

on<strong>to</strong> Lower Palaeozoic rocks <strong>of</strong> <strong>the</strong> Greywacke Zone. The Permian age is assumes due <strong>to</strong><br />

local intercalations <strong>of</strong> acid tuffs and pebbles <strong>of</strong> quartz porphyry, which are widespread in <strong>the</strong><br />

7


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

European Permian. Locally occurs a body <strong>of</strong> Quartz porphyry (88), tec<strong>to</strong>nically embedded<br />

in Werfen shales.<br />

The Lower Triassic is characterized by uniform shallow shelf siliciclastics <strong>of</strong> <strong>the</strong> Werfen<br />

Formation (87), containing limes<strong>to</strong>ne beds (86) in its uppermost part with a poor fauna<br />

including Scythian ammonoids.<br />

Tec<strong>to</strong>nized Anisian dolomites form elongated bodies <strong>of</strong> Rauwacke (85) within and on <strong>to</strong>p <strong>of</strong><br />

<strong>the</strong> siliciclastics.<br />

1.2 Meliaticum (84)<br />

Along one <strong>of</strong> <strong>the</strong> main thrust planes we find two Klippen <strong>of</strong> sedimentary rocks <strong>of</strong> a deep<br />

water origin, unknown elsewhere in <strong>the</strong> NKA, but well known as Meliaticum in <strong>the</strong> Western<br />

Carpathians. These rocks represent <strong>the</strong> transition from <strong>the</strong> Triassic Hallstatt carbonatic<br />

depositional realm in<strong>to</strong> oceanic conditions with radiolarites. We have hints on <strong>the</strong> existence<br />

<strong>of</strong> such an oceanic realm only in form <strong>of</strong> olis<strong>to</strong>lites <strong>of</strong> Ladinian red radiolarite in <strong>the</strong> Middle<br />

Jurassic silicious shales <strong>of</strong> Florianikogel Formation (84) - see MANDL & ONDREJICKOVA<br />

1991, 1993, KOZUR & MOSTLER 1992.<br />

1.3 Juvavic Nappe System<br />

Within a distinct zone <strong>of</strong> tec<strong>to</strong>nic disturbance several partly recrystallized carbonate rocks<br />

occure, which have been assigned in older <strong>map</strong>s <strong>to</strong> <strong>the</strong> Carnian Opponitz Formation. No<br />

fossils have been found until now; lithology and discordant position do not confirm this<br />

opinion. Therefore <strong>the</strong>se rocks are summarized here as carbonates <strong>of</strong> unknown<br />

stratigraphic origin (83).<br />

PERMIAN – LOWER TRIASSIC (83) – (79)<br />

A marine facies <strong>of</strong> Permian sediments is <strong>the</strong> so called Haselgebirge (82), a sands<strong>to</strong>ne-clayevaporite<br />

association, containing gypsum and salt. This facies is frequent in <strong>the</strong> Juvavic<br />

units, exposed for example in <strong>the</strong> Pfenningbach gypsum open pit mine east <strong>of</strong> village<br />

Puchberg. The Upper Permian age is proved paleon<strong>to</strong>logically by pollen/spores at several<br />

localities in <strong>the</strong> NCA and confirmed by sulfur iso<strong>to</strong>pes.<br />

The Lower Triassic is represented again by siliciclastics <strong>of</strong> Werfen Formation (81, 80),<br />

accompanied by Anisian Rauwacke (79) - see also above.<br />

MIDDLE TRIASSIC TO LOWER CARNIAN (78) – (61)<br />

Beginning with <strong>the</strong> Middle Triassic carbonate sedimentation became dominant.<br />

The dark Gutenstein Limes<strong>to</strong>ne (76) and Dolomite (77) is present in most <strong>of</strong> <strong>the</strong> NCA<br />

nappes. A local variety is a multicolored Flaser Limes<strong>to</strong>ne (78).<br />

The Gutenstein carbonates can be laterally replaced in <strong>the</strong> upper part by light dasycladacean<br />

bearing carbonates, <strong>the</strong> Steinalm Limes<strong>to</strong>ne/Dolomite (75, 74).<br />

During <strong>the</strong> Middle Anisian a rapid deepening and contemporary block faulting <strong>of</strong> <strong>the</strong> so<br />

called Reifling Event has caused a sea floor relief, responsible for <strong>the</strong> following differentiation<br />

in<strong>to</strong> shallow carbonate platforms (Wetterstein Formation and lateral slope sediments) and<br />

8


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

basinal areas.The basins can be distinguished in<strong>to</strong> <strong>the</strong> wide spread Reifling basins, local<br />

intraplattform basins <strong>of</strong> Grafensteig type and <strong>the</strong> Hallstatt deeper shelf, <strong>the</strong> latter one was<br />

bordering <strong>the</strong> open Tethys.<br />

Rocks <strong>of</strong> transitional nature between Middle Triassic platforms and basins are relatively rare<br />

in <strong>the</strong> NCA due <strong>to</strong> structural complexities. Basinal facies <strong>of</strong>ten are tec<strong>to</strong>nically isolated from<br />

formerly contiguous platform deposits. In general within <strong>the</strong> project area we know four<br />

different types <strong>of</strong> Anisian <strong>to</strong> Lower Carnian carbonatic slope <strong>to</strong> basinal sediments, <strong>the</strong><br />

Reifling Limes<strong>to</strong>ne, <strong>the</strong> Hallstatt Limes<strong>to</strong>ne and multicolored allodapic limes<strong>to</strong>nes and <strong>the</strong><br />

dark allodapic Grafensteig Limes<strong>to</strong>ne.<br />

The Reifling Limes<strong>to</strong>ne (73) is <strong>the</strong> characteristic basinal facies in <strong>the</strong> Bajuvaric and Tyrolic<br />

nappes, locally also occuring in <strong>the</strong> Juvavic nappes. It consists <strong>of</strong> grey well bedded nodular<br />

limes<strong>to</strong>ne with thin yellowish <strong>to</strong> greenish clay intercalations <strong>of</strong> partial tuffitic origin. A silica<br />

content <strong>of</strong>ten is concentrated in chert-nodules or -layers. Micr<strong>of</strong>acies shows (pel-) micrites<br />

with abundant radiolarians and „filaments” (thin shells <strong>of</strong> planc<strong>to</strong>nic bivalves) and conodonts,<br />

<strong>the</strong> macr<strong>of</strong>auna consists <strong>of</strong> ammonites, molluscs (Daonella) and local brachiopods.<br />

The Hallstatt Limes<strong>to</strong>ne (72) comprises a lot <strong>of</strong> different lithologies, mostly <strong>of</strong> multicolored<br />

micritic limes<strong>to</strong>nes with abundant pelagic fauna like conodonts and ammonites. Hallstatt<br />

Limes<strong>to</strong>nes are restricted almost <strong>to</strong> <strong>the</strong> uppermost respectively sou<strong>the</strong>rnmost tec<strong>to</strong>nic units<br />

<strong>of</strong> <strong>the</strong> Juvavic Nappe System, representing <strong>the</strong> sediment <strong>of</strong> areas <strong>of</strong> low deposition.<br />

Sometimes a secundary dolomitization has transformed <strong>the</strong> Hallstatt limes<strong>to</strong>nes and<br />

allodapic slope limes<strong>to</strong>nes in<strong>to</strong> multicolored Dolomites (71).<br />

Along <strong>the</strong> Wetterstein platform margins locally multicolored allodapic limes<strong>to</strong>nes (70)<br />

became deposited, mixtures <strong>of</strong> reddish hemipelagic carbonat ooze and finegrained<br />

carbonate debris <strong>of</strong> platform origin.<br />

The Grafensteig Limes<strong>to</strong>ne (68) is characterized by darkgrey <strong>to</strong> black well bedded<br />

limes<strong>to</strong>nes, mainly with even bedding planes, more oder less abundant chert-nodules or -<br />

layers and - as a main feature - with intercalated allodapic beds <strong>of</strong> platform origin. It is<br />

overlain in <strong>the</strong> nor<strong>the</strong>rn Schneebergarea by grossoolite-breccia facies <strong>of</strong> an upper slope<br />

environment. The Grafensteig facies represents a restricted intraplatform-basin with only<br />

minor connection <strong>to</strong> open marine conditions. Pelagic faunal elements like conodonts seem <strong>to</strong><br />

be restricted <strong>to</strong> sporadic beds and are in general poor. The Grafensteig Limes<strong>to</strong>ne comprises<br />

a maximal time span from Middle Anisian <strong>to</strong> Lowermost Carnian in <strong>the</strong> basin interior. At <strong>the</strong><br />

basin-margins it ends earlier according <strong>to</strong> <strong>the</strong> prograding Wetterstein platform. Greenish<br />

layers <strong>of</strong> very fine grained material without carbonate content are interpreted as volcanic<br />

tuffite (69).<br />

Wetterstein reef and reef debris facies (67)<br />

The most intensely studied part <strong>of</strong> <strong>the</strong> Wetterstein Limes<strong>to</strong>ne is by far <strong>the</strong> reefal facies.<br />

These builtups are composed <strong>of</strong> diverse biotic assemblages <strong>of</strong> calcisponges, corals and<br />

hydrozoans, tubiphytes, bryozoans, codiacean and solenoporacean algae, brachiopods,<br />

molluscs and ra<strong>the</strong>r rare foraminifers. Rock textures <strong>of</strong> reefal deposits generally are<br />

wackes<strong>to</strong>nes and packs<strong>to</strong>nes. Bounds<strong>to</strong>nes resulting mainly from syndepositional marine<br />

cementation are also very common. It seems that a biogenic reef framework in <strong>the</strong> sense <strong>of</strong><br />

a wave-breaking structure did not exist in <strong>the</strong> Wetterstein reefs <strong>of</strong> <strong>the</strong> eastern NCA.<br />

Practically all reef-organisms are <strong>of</strong> small dimensions <strong>of</strong> several centimeters only. Coralbuildups<br />

<strong>of</strong> large dimensions are missing as well as o<strong>the</strong>r potential wave-breaking<br />

organisms. It seems that a rigid framework could have been constructed by a combination <strong>of</strong><br />

pervasive submarine early diagenetic cementation and various encrusting organisms. The<br />

9


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

fact <strong>of</strong> immediate interfingering <strong>of</strong> <strong>the</strong> „reef” with lagoonal birdseye limes<strong>to</strong>nes is considered<br />

as a prove for platform-edge reefs and not an upper slope situation. Typical assemblages <strong>of</strong><br />

a deeper water slope (ammonites, radiolarians, silicisponges) are missing. Such biota<br />

occures only in very rare small lenses <strong>of</strong> Hallstatt-type within <strong>the</strong> reef <strong>of</strong> Heukuppe (summit<br />

<strong>of</strong> <strong>Rax</strong>-plateau).<br />

A conspicuous feature <strong>of</strong> platform-edge facies in <strong>the</strong> Wetterstein Limes<strong>to</strong>ne is <strong>the</strong><br />

development <strong>of</strong> coarse breccias. The term „Grossoolite” refers <strong>to</strong> thick, laminated,<br />

isopachous coatings <strong>of</strong> radiaxial-fibrous calcite cement and calcite-replacive dolomite around<br />

lithoclasts and skeletal particles. Although initially interpreted as being <strong>of</strong> organic origin<br />

(“Evinospongia”), <strong>the</strong>se coatings are now regarded as inorganic or microbial initiated<br />

cements. The component clasts are commonly angular and <strong>of</strong>ten poorly sorted, ranging in<br />

size from a few centimeters <strong>to</strong> several decimeters in diameter. They are mainly composed <strong>of</strong><br />

reefal lithologies. In places <strong>the</strong> grossoolitic breccias are <strong>the</strong> only remaining evidence <strong>of</strong> <strong>the</strong><br />

former existence <strong>of</strong> in-situ shelf-margin reefs. Syndepositional tec<strong>to</strong>nism, oversteepening <strong>of</strong><br />

<strong>the</strong> platform margin, slope instability, or a combination <strong>of</strong> <strong>the</strong>se processes must have been<br />

causative fac<strong>to</strong>rs in <strong>the</strong> formation <strong>of</strong> such widespread breccia deposits.<br />

Wetterstein lagoonal facies (66)<br />

Rocks <strong>of</strong> this facies are generally massive <strong>to</strong> thick bedded, locally bioturbated limes<strong>to</strong>nes<br />

with a diverse biota <strong>of</strong> various dasycladacean, solenoporacean and codiacean algae,<br />

molluscs (mainly gastropods), echinoderms, rare framebuilding organisms, brachiopods,<br />

foraminifers and ostracodes. Textures vary from wackes<strong>to</strong>nes <strong>to</strong> grains<strong>to</strong>nes. Patch reefs<br />

inside <strong>the</strong> lagoon are very rare. The immediate transitional area behind <strong>the</strong> reef - <strong>the</strong> nearreef<br />

lagoon - is <strong>of</strong>ten characterized by bounds<strong>to</strong>nes or birdseye-limes<strong>to</strong>nes with mixed biota<br />

consisting <strong>of</strong> reef debris and <strong>the</strong> dasycladacean Teutloporella herculea, which one is <strong>the</strong><br />

dominant algal species in <strong>the</strong> <strong>Rax</strong>-Schneeberg area. In <strong>the</strong> uppermost part <strong>of</strong> <strong>the</strong> lagoon<br />

additionally Poikiloporella duplicata occurs and indicates an Early Carinan age.<br />

Wetterstein dolomite (65)<br />

Parts <strong>of</strong> <strong>the</strong> Wetterstein limes<strong>to</strong>ne have been affected by a secondary dolomitization. In <strong>the</strong><br />

<strong>Rax</strong> and Schneeberg area a local dolomitization <strong>to</strong>ok place mainly within <strong>the</strong> reef and reef<br />

breccia facies. These dolomites form bodies <strong>of</strong> irregular size, which cannot be assigned <strong>to</strong><br />

distinct stratigraphic levels. Prediction <strong>of</strong> <strong>the</strong> extent <strong>of</strong> subsurface dolomite bodies can be<br />

given only schematic – see cross sections.<br />

In <strong>the</strong> Schneealpe <strong>the</strong> dolomitization has affected <strong>the</strong> Wetterstein platform nearly complete.<br />

Also adjacent slope sediments <strong>of</strong> Grafensteig limes<strong>to</strong>ne have been partly dolomitized.<br />

Nor<strong>the</strong>rn Alpine Raibl-Group ( 64) - (61)<br />

The Wetterstein platforms in general show a platform progradation over <strong>the</strong> adjacent basinal<br />

sediments until <strong>the</strong> Earliest Carnian ("Cordevolian"). Then carbonate production decreased<br />

rapidly due <strong>to</strong> a sealevel lowstand. The platforms emerged, <strong>the</strong> remainig basins received<br />

siliciclastics from <strong>the</strong> European hinterland in form <strong>of</strong> marine black shales, <strong>the</strong> Reingraben<br />

shale (64). The shales are interbedded with dark cherty limes<strong>to</strong>nes (63), dolomites (61)<br />

and dark biodetrital limes<strong>to</strong>ne (62), derived from small surviving reef mounds at <strong>the</strong> basin<br />

margins.<br />

10


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

UPPER CARNIAN TO RHAETIAN (60) - (52)<br />

As sealevel started rising up again in <strong>the</strong> Upper Carnian, ra<strong>the</strong>r slowly in <strong>the</strong> beginning,<br />

carbonate production increased, locally filling a relief in <strong>the</strong> drowning platforms with <strong>the</strong><br />

dasycladacean bearing lagoonal Waxeneck Limes<strong>to</strong>ne (60). The relief (several 10th up <strong>to</strong><br />

about 100 meters) may have been caused by erosion during <strong>the</strong> lowstand time and /or by<br />

tec<strong>to</strong>nic movements.<br />

A transgressive pulse just below <strong>the</strong> Carnian/Norian boundary caused an onlap <strong>of</strong> pelagic<br />

limes<strong>to</strong>nes over <strong>the</strong> shallow water carbonates and initiated <strong>the</strong> rapid growth <strong>of</strong> <strong>the</strong> Norian<br />

carbonate platform. Due <strong>to</strong> local differences in platform growth conditions we can distinguish<br />

two different developments:<br />

In <strong>the</strong> central part <strong>of</strong> <strong>the</strong> NCA (Hochkönig, Tennengebirge, Dachstein area etc.) <strong>the</strong> pelagic<br />

onlap represents only a short time interval and became covered by <strong>the</strong> prograding Dachstein<br />

carbonate platform – in <strong>the</strong>se areas <strong>the</strong> Upper Triassic reefs approximately are situated<br />

above <strong>the</strong> Middle Triassic ones.<br />

Ano<strong>the</strong>r situation characterizes <strong>the</strong> eastern sec<strong>to</strong>r <strong>of</strong> <strong>the</strong> NCA. There <strong>the</strong> Uppermost Carnian<br />

pelagic transgression continues until <strong>the</strong> Upper Norian and has been termed Mürztal Type <strong>of</strong><br />

Hallstatt facies. Dachstein reefs are only known from <strong>the</strong> Upper Norian and <strong>the</strong>se ones are<br />

situated above <strong>the</strong> former platform interior, several kilometers behind <strong>the</strong> former Wetterstein<br />

reef front. This "backstepped" reefs show transitions in<strong>to</strong> <strong>the</strong> partly restricted basinal facies <strong>of</strong><br />

<strong>the</strong> Aflenz Limes<strong>to</strong>ne (59), a bedded black limes<strong>to</strong>ne with chert layers or nodules.<br />

In contrary <strong>the</strong> "Sou<strong>the</strong>rn Marginal Reefs" <strong>of</strong> central NCA are connected by <strong>the</strong> allodapic<br />

Gosausee Limes<strong>to</strong>ne <strong>to</strong> <strong>the</strong> Pötschen Limes<strong>to</strong>ne (58), a bedded grey limes<strong>to</strong>ne with chert,<br />

representing <strong>the</strong> basinal realm <strong>of</strong> Hallstatt deep shelf.<br />

The Hallstatt-Group (57) - (54) shows a great variability <strong>of</strong> multicolored limes<strong>to</strong>nes <strong>of</strong>ten<br />

with rapidly changing sedimentary features due <strong>to</strong> <strong>the</strong> mobile basement:<br />

The Hallstatt Limes<strong>to</strong>ne at Nasswald (57) consists <strong>of</strong> massive <strong>to</strong> bedded grey pelagic<br />

limes<strong>to</strong>nes with a Norian fauna.<br />

Hallstatt Limes<strong>to</strong>ne <strong>of</strong> Mürztal facies (55)<br />

The grey, pink and reddish, more or less massive limes<strong>to</strong>nes represent sediments on a<br />

„pelagic plateau“ above <strong>the</strong> drowned Waxeneck limes<strong>to</strong>ne and Wetterstein platform. The<br />

uppermost part, consisting <strong>of</strong> well bedded dark limes<strong>to</strong>ne (56), is shown separately on <strong>the</strong><br />

<strong>map</strong>.<br />

Hallstatt Limes<strong>to</strong>ne <strong>of</strong> Salzberg facies (54)<br />

At Losenheim <strong>the</strong>re occurs massive white limes<strong>to</strong>ne (“Massiger Hellkalk”) und well bedded<br />

red limes<strong>to</strong>ne (“Hangend Rotkalk”). It is comparable <strong>to</strong> <strong>the</strong> Salzberg facies <strong>of</strong> <strong>the</strong> classical<br />

Hallstatt area in <strong>the</strong> Salzkammergut, representing <strong>the</strong> reduced sedimentation above local<br />

uplifts due <strong>to</strong> diapirism <strong>of</strong> Permian evaporites.<br />

Zlambach Formation (53, 52)<br />

In <strong>the</strong> Triassic basinal realms Zlambach marls (53) and bedded black limes<strong>to</strong>nes (53)<br />

have been deposited. Along <strong>the</strong> basin margins <strong>the</strong>y onlap and interfinger with <strong>the</strong> <strong>the</strong><br />

Dachstein platform slope sediments.<br />

11


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

12<br />

Fig. 2:


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

13<br />

Fig. 3


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

1.4 Tyrolic Nappe System (Göller Nappe)<br />

TRIASSIC ROCKS (51) – (44)<br />

In <strong>the</strong> sou<strong>the</strong>rnmost parts <strong>of</strong> <strong>the</strong> Göller Nappe only a few occurences <strong>of</strong> Wetterstein<br />

dolomite (51) are preserved due <strong>to</strong> tec<strong>to</strong>nic dissection. In this area <strong>the</strong>y are mainly <strong>of</strong><br />

lagoonal origin.<br />

According <strong>to</strong> <strong>the</strong> Early Carnian regression <strong>the</strong> marin <strong>to</strong> brackish Lunz Sands<strong>to</strong>ne (50) has<br />

filled up <strong>the</strong> basins between <strong>the</strong> Wetterstein platforms. In areas outside <strong>the</strong> project area <strong>the</strong>y<br />

locally contain coal seams. A subsequent following transgression has lead <strong>to</strong> partly<br />

hypersalinar conditions, causing <strong>the</strong> deposition <strong>of</strong> limes<strong>to</strong>nes and dolomites with local<br />

evaporites (gypsum) - <strong>the</strong> Opponitz Formation (49) .<br />

Far behind <strong>the</strong> Dachstein reef barrier a large lagoonal environment extended all over <strong>the</strong><br />

NCA with <strong>the</strong> intertidal Hauptdolomit (48) in distal parts, “Plattenkalk” (47) as a transitional<br />

facies and thick bedded Dachstein limes<strong>to</strong>ne (46) in <strong>the</strong> subtidal lagoon.<br />

In <strong>the</strong> Uppermost Triassic ("Rhaetian") once again increasing terrigenious influx has reduced<br />

<strong>the</strong> carbonate platforms. The Hauptdolomit area and parts <strong>of</strong> <strong>the</strong> Dachstein lagoon became<br />

covered by <strong>the</strong> marly Kössen Formation (45) borderd by Rhaetian reefs. A local recurrence<br />

<strong>of</strong> carbonatic sedimentation has lead <strong>to</strong> <strong>the</strong> deposition <strong>of</strong> an “Upper” Dachstein limes<strong>to</strong>ne<br />

(44).<br />

JURASSIC ROCKS (43) – (34)<br />

At <strong>the</strong> beginning <strong>of</strong> Jurassic <strong>the</strong> Austroalpine shelf drowned completely, basinal conditions<br />

prevailed until <strong>the</strong> Early Cretaceous with <strong>the</strong> only exception <strong>of</strong> local Plassen carbonate<br />

platforms (Late Jurassic - Earliest Cretaceous) in sou<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> NCA, especially in <strong>the</strong><br />

realm <strong>of</strong> Juvavic nappes.<br />

Parts <strong>of</strong> <strong>the</strong> Hettangian are <strong>of</strong>ten missing at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Jurassic limes<strong>to</strong>nes. The reason<br />

- subaereal exposure or submarine non-deposition - is still in discussion. Neptunian sills and<br />

dykes filled with red or grey Liassic limes<strong>to</strong>nes are known, cutting down several meters in<strong>to</strong><br />

<strong>the</strong> Norian shallow water carbonates.<br />

Irregular drowning and synsedimentary faulting has caused a complex seafloor <strong>to</strong>pography<br />

with reddish/grey crinoidal limes<strong>to</strong>nes (Hierlatz Limes<strong>to</strong>ne, 43) and red ammonoid<br />

limes<strong>to</strong>nes (Adnet Limes<strong>to</strong>ne, 42) mainly above subsided former shallow carbonate<br />

platforms. Grey marly/cherty limes<strong>to</strong>nes <strong>of</strong> Allgäu Formation (40) have been deposited in<br />

<strong>the</strong> deeper troughs between.<br />

Very thin condensed sequences <strong>of</strong> <strong>the</strong>se and o<strong>the</strong>r Jurassic red limes<strong>to</strong>nes are summarized<br />

as Jurassic condensed limes<strong>to</strong>nes in general (41). Jurassic red limes<strong>to</strong>nes are bioclastic<br />

wackes<strong>to</strong>nes, mainly made <strong>of</strong> nannoplank<strong>to</strong>n (Schizosphaerella, coccoliths) and very<br />

finegrained biodetritic material. After globigerinids had evolved in <strong>the</strong> Middle Jurassic, <strong>the</strong>y<br />

also became a major component <strong>of</strong> <strong>the</strong>se sediments along with <strong>the</strong> tiny shells ("filaments") <strong>of</strong><br />

<strong>the</strong> probably planc<strong>to</strong>nic juvenile forms <strong>of</strong> <strong>the</strong> bivalve Bositra. The macr<strong>of</strong>auna mainly consists<br />

<strong>of</strong> crinoids and in some places brachiopods and ammonites. Ferromanganese hardgrounds<br />

and nodules are frequent.<br />

Less condensed sequences are composed <strong>of</strong> grey limes<strong>to</strong>nes with chert (39), with<br />

limes<strong>to</strong>ne breccias (38) and red limes<strong>to</strong>nes with chert nodules or intercalated layers <strong>of</strong><br />

thin bedded red radiolarite (37).<br />

14


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

The greatest water depth has been reached in Oxfordian, characterized by <strong>the</strong> Ruhpolding<br />

radiolarite (36). Contemporaneous breccias, olis<strong>to</strong>lites and large sliding blocks occure as a<br />

consequence <strong>of</strong> <strong>the</strong> Juvavic gravitational nappe movements. This first pulse <strong>of</strong> alpine<br />

orogeny has caused a new seafloor <strong>to</strong>pography during Late Jurassic. Pelagic Oberalm<br />

Limes<strong>to</strong>ne (35) became deposited in <strong>the</strong> remaining basins whereas above local uplifted<br />

areas new platform growth produced <strong>the</strong> Plassen and Tressenstein Limes<strong>to</strong>ne (34). This<br />

carbonate production has persisted in<strong>to</strong> <strong>the</strong> early Cretaceous.<br />

In <strong>the</strong> more nor<strong>the</strong>rn tec<strong>to</strong>nic units increasing terrigenous input and synorogenic clastic<br />

deposits represent <strong>the</strong> Lower Cretaceous, caused by <strong>the</strong> Alpine orogenetic movements and<br />

crustal shortening within <strong>the</strong> Austroalpine basement. This tec<strong>to</strong>nic process caused an uplift<br />

<strong>of</strong> sou<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> NCA, overthrusting <strong>of</strong> NCA nappes and metamorphism in <strong>the</strong><br />

Austroalpine crystalline nappes below.<br />

1.5 Gosau Group<br />

CRETACEOUS TO PALEOCENE ROCKS (33) – (24)<br />

During <strong>the</strong> Cretaceous orogeny <strong>the</strong> sedimentary succession <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps<br />

and <strong>the</strong>ir Palaeozoic substratum (Greywacke Zone) had been sheared <strong>of</strong>f from <strong>the</strong>ir<br />

crystalline basement. North-verging folds, thrusts and nappe structures developed. The<br />

unconformable deposition <strong>of</strong> <strong>the</strong> Gosau-Group began after this tec<strong>to</strong>nic event, sealing folds<br />

and thrust structures. A second phase <strong>of</strong> compressive deformation affected <strong>the</strong> NCA latest at<br />

<strong>the</strong> end <strong>of</strong> Eocene, terminating <strong>the</strong> sedimentation.<br />

Today only relatively small remnants <strong>of</strong> <strong>the</strong> formerly widespread Late Cretaceous <strong>to</strong><br />

Palaeogene sedimentary cover <strong>of</strong> <strong>the</strong> NCA are still preserved. As a consequence <strong>of</strong> <strong>the</strong><br />

complex deformation his<strong>to</strong>ry <strong>the</strong> paleogeographic relationships between individual Gosau<br />

occurences are <strong>of</strong>ten obscured.<br />

Despite <strong>the</strong> very early knowledge <strong>of</strong> rich macr<strong>of</strong>aunas (SUMMESBERGER, 1985) in <strong>the</strong><br />

sediments <strong>of</strong> <strong>the</strong> Gosau-Group <strong>the</strong> biostratigraphic framework for modern investigation is<br />

mainly based on plank<strong>to</strong>nic foraminifera and calcareous nannoplank<strong>to</strong>n. A comprehensive<br />

description <strong>of</strong> stratigraphy and facies was given by WAGREICH & FAUPL (1994), FAUPL &<br />

WAGREICH (1996), also including paleogeographic <strong>map</strong>s and geodynamic/palaeotec<strong>to</strong>nic<br />

conclusions.<br />

After a periode <strong>of</strong> non deposition or erosion sedimentation has started diachronously from<br />

<strong>the</strong> Late Turonian onwards.<br />

A succession <strong>of</strong> breccias, sands<strong>to</strong>ne and rauhwacke (33) south <strong>of</strong> Schneealpe is assigned<br />

with questionmarks <strong>to</strong> <strong>the</strong> Gosau-Group (no fossil pro<strong>of</strong>).<br />

The basal Kreuzgraben Formation (32) consists <strong>of</strong> reddish breccias, conglomerates and<br />

subordinate sands<strong>to</strong>nes and pelitic sediments <strong>of</strong> an alluvial fan environment. Locally it can<br />

be replaced be marine red marls with conglomerate layers (31) <strong>of</strong> Early Campanian age.<br />

The Grünbach Formation (30) is a clastic succession with several coal seams, worked at<br />

<strong>the</strong> former coal mines <strong>of</strong> Grünbach.<br />

Occurrences <strong>of</strong> biodetritic limes<strong>to</strong>ne with rudists (29) point <strong>to</strong> local carbonate production<br />

during Campanian times.<br />

15


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Widespread is <strong>the</strong> finegrained, carbonatclastic Orbi<strong>to</strong>id sands<strong>to</strong>ne (28). It is superimposed<br />

by and lateral interfingering with marly sands<strong>to</strong>nes <strong>of</strong> <strong>the</strong> Piesting Formation (27), bearing<br />

inoceramid shells and few ammonoids <strong>of</strong> Late Campanian <strong>to</strong> Maastrichtian age.<br />

Mainly south <strong>of</strong> <strong>the</strong> NCA area a carbonatic shallow-marine shelf facies was developed,<br />

serving as a source <strong>of</strong> bio- and lithoclasts during Maastrichtian <strong>to</strong> Paleocene. Only a few<br />

examples <strong>of</strong> this bioherms are preserved within <strong>the</strong> sou<strong>the</strong>rmost parts <strong>of</strong> NCA. The project<br />

area contains <strong>the</strong> type locallity <strong>of</strong> <strong>the</strong> Kambühel Limes<strong>to</strong>ne (26), a red and white colored<br />

bioclastic limes<strong>to</strong>ne with coralls, corallinacean alges, high diverse dasycladacean alges and<br />

several more reef building and reef inhabiting organisms <strong>of</strong> Early Paleocene age (Danian).<br />

A turbiditic sands<strong>to</strong>ne (25) marks a renewed subsidence from <strong>the</strong> shelf <strong>to</strong> greater depth<br />

during <strong>the</strong> earliest Paleocene. It contains debris from <strong>the</strong> Kambühel bioherms and is<br />

superimposed by coarse grained <strong>to</strong> blocky olis<strong>to</strong>stromatic clastics (24), which are also<br />

dominated by clasts <strong>of</strong> Kambühel limes<strong>to</strong>ne. These are <strong>the</strong> youngest rocks which are<br />

affected by <strong>the</strong> last, <strong>to</strong>ward south directed thrusting in sou<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> NCA.<br />

1.6 Inneralpine Molasse, Vienna Basin<br />

PALAEOGENE – NEOGENE (23) – (21)<br />

At <strong>the</strong> NCA karstified plateau mountains fluviatile gravel or individual “Augenstein” pebbles<br />

(23) <strong>of</strong> metamorphic rocks can be found, <strong>of</strong>ten <strong>to</strong>ge<strong>the</strong>r with red clay/soil (22). These are<br />

multiple redeposited remnants <strong>of</strong> wea<strong>the</strong>ring products and fluviatil sediments <strong>of</strong> Paleogene<br />

(?Oligocene) age, which had covered <strong>the</strong> NCA before <strong>the</strong> final uplift. The metamorphic<br />

debris came from erosional uncovered metamorphic areas in <strong>the</strong> earlier uplifted Central Alps.<br />

The Early Pliocene fluviatile Rohrbach conglomerate (21) belongs <strong>to</strong> <strong>the</strong> final stage <strong>of</strong> <strong>the</strong><br />

sedimentary filling <strong>of</strong> <strong>the</strong> Vienna basin.<br />

1.7 Quaternary<br />

PLEISTOCENE (20) - (13)<br />

The oldest preserved quaternary sediment is a conglomerate (20) south <strong>of</strong> Klostertaler<br />

Gscheid which is superimposed by significant cemented slope breccias (19) from <strong>the</strong><br />

Mindel/Riss interglacial time. The only remnant <strong>of</strong> Riss-Glacial is a ground moraine (18)<br />

west <strong>of</strong> Altenberg. It contains components <strong>of</strong> <strong>the</strong> former mentioned slope breccia.<br />

Ano<strong>the</strong>r slope breccias /old slope debris (17) is only partly cemented and must be <strong>of</strong><br />

younger origin. Due <strong>to</strong> superposition and morphology it is clearly separated from <strong>the</strong> older<br />

one and from <strong>the</strong> recent slope debris.<br />

A thick sequence <strong>of</strong> fluviatle gravel (16), deposited in front <strong>of</strong> <strong>the</strong> prograding Würm glacier,<br />

is preserved at Klostertal Gscheid and superimposed by Würm-Glacial moraine (14) and<br />

terminal moraine circles (15).<br />

Along <strong>the</strong> Schwarza valley as well as in <strong>the</strong> Puchberg area fluviatile gravel <strong>of</strong> Würm-Glacial<br />

is forming terraces up <strong>to</strong> 20 meters above <strong>the</strong> recent valley floor – “Niederterrasse” (13).<br />

16


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

LATE PLEISTOCENE TO HOLOCENE (12) - (1)<br />

Within <strong>the</strong> terminal moraine circle at Tränkwiese (north <strong>of</strong> Schneeberg) a completely flat area<br />

is supposed <strong>to</strong> represent late Pleis<strong>to</strong>cene lake deposits (12). Also <strong>of</strong> late Pleis<strong>to</strong>cene ages<br />

are two fluviatile fans (11) at Klostertaler Gscheid, which belong <strong>to</strong> an older drainage<br />

system. The recent one has changed its direction and is crosscutting <strong>the</strong> fans.<br />

Late Pleis<strong>to</strong>cene <strong>to</strong> recent mass movements have created typical features like tension<br />

cracks (10), landslide scars (9), creeping soil/debris (8) and blocky debris (7) <strong>of</strong> rock<br />

fall.<br />

Recent deposits are slope debris and debris fans (6) at <strong>the</strong> foot <strong>of</strong> steep mountain slopes,<br />

fluviatile fans (5) from tributary valleys, swamp/moor deposits (4) and recent fluviatile<br />

gravel (2) and erosional features (3).<br />

Anthropogene deposits (1) are mainly caused by former mining activities (Iron ores).<br />

17


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

2 TEKTONIK<br />

2.1 Principles <strong>of</strong> NCA structural evolution<br />

The sequence <strong>of</strong> Mesozoic sediments <strong>of</strong> <strong>the</strong> NCA has lost its former crustal basement during<br />

Alpidic Orogeny. During Upper Jurassic <strong>to</strong> Tertiary times several events <strong>of</strong> folding,<br />

gravitational gliding, thrusting and final faulting have created a complex pile <strong>of</strong> nappes which<br />

rests in <strong>the</strong> north with overthrust contact on <strong>the</strong> Rhenodanubian Flysch Zone and in <strong>the</strong><br />

south with a tec<strong>to</strong>nically disturbed transgressiv contact on <strong>the</strong> Greywacke Zone.<br />

The following nappe scheme <strong>of</strong> Nor<strong>the</strong>rn Calcareous Alps can be given <strong>to</strong>day:<br />

The nor<strong>the</strong>rn (=frontal) part <strong>of</strong> <strong>the</strong> NCA (outside <strong>of</strong> <strong>the</strong> project area) is built by <strong>the</strong> Bajuvaric<br />

nappes, which one show narrow synclines and anticlines. They dip down <strong>to</strong>ward <strong>the</strong> south<br />

below <strong>the</strong> overthrusted Tyrolic nappe system. Due <strong>to</strong> <strong>the</strong>ir widespread rigide dolomitic<br />

lithology <strong>the</strong> Tyrolic nappes exhibit internal thrusting and faulting and only minor folding. The<br />

sou<strong>the</strong>rnmost nappe is <strong>the</strong> Göller Nappe with a stratigraphic succession from Triassic<br />

shallow water carbonates <strong>to</strong> Jurassic red limes<strong>to</strong>nes, marls and radiolarite.<br />

The Juvavic Nappe System represent <strong>the</strong> uppermost tec<strong>to</strong>nic element, overlying Mesozoic<br />

rocks (Tyrolic Göller Nappe) in <strong>the</strong> north and <strong>the</strong> Greywacke Zone and its transgressiv<br />

Permoscythian cover (Werfen Imbricates Zone) in <strong>the</strong> south. It can be subdivided in<strong>to</strong> a few<br />

large units (up <strong>to</strong> tens <strong>of</strong> kilometers), <strong>the</strong> Mürzalpen Nappe, Schneeberg Nappe, Hohe Wand<br />

Nappe and several smaller ones (hundreds <strong>of</strong> meters <strong>to</strong> about a kilometer), forming Klippen<br />

below or outliers above <strong>the</strong> larger ones.<br />

The contact between NCA and Greywacke Zone was a matter <strong>of</strong> long lasting controversial<br />

discussions: on <strong>the</strong> one hand <strong>the</strong>re is a transgressive contact <strong>of</strong> Permo-Skythian clastics<br />

over Lower Palaeozoic rocks <strong>of</strong> <strong>the</strong> Greywacke Zone visible; on <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> Skythian<br />

clastics (Werfen Fm.) are followed by Middle Triassic carbonates. Many authors have seen<br />

here an undisturbed sedimentary sequence. Local missing members <strong>of</strong> <strong>the</strong> sequence have<br />

been explained by only minor thrusting. O<strong>the</strong>r authors claimed that this sedimentary contact<br />

is only a virtual one. They postulated a major overthrust, separating <strong>the</strong> Permoscythian <strong>of</strong> a<br />

Tyrolic nappe system from carbonates <strong>of</strong> <strong>the</strong> Juvavic Nappe System – see PLÖCHINGER<br />

1996, TOLLMANN 1985. This question is crucial for prediction <strong>of</strong> <strong>the</strong> deep subsurface<br />

structures, especially <strong>of</strong> <strong>the</strong> position <strong>of</strong> <strong>the</strong> aquifer/aquiclude boundary. New <strong>map</strong>ping <strong>of</strong> this<br />

sou<strong>the</strong>rn margin has revealed a clear evidence for <strong>the</strong> overthrust concept. The thrust plane is<br />

marked by slices and small Klippen-like bodies <strong>of</strong> tec<strong>to</strong>nized Middle <strong>to</strong> Upper Triassic rock<br />

sequences <strong>of</strong> <strong>the</strong> Hallstatt realm and <strong>of</strong> <strong>the</strong> Meliata realm - see MANDL & ONDREJICKOVA<br />

1993, KOZUR & MOSTLER 1992.<br />

In this sense <strong>the</strong> Noric-Tyrolic Nappe System consists <strong>of</strong> <strong>the</strong> former Palaeozoic basement<br />

(Greywacke Zone) and <strong>the</strong> relictic preserved transgressiv Permotriassic (Werfen Imbricates<br />

Zone) <strong>of</strong> <strong>the</strong> Tyrolic Nappes. In <strong>the</strong> eastern NCA it has been left behind several kilometers in<br />

<strong>the</strong> south during <strong>the</strong> nappe movements.<br />

Today <strong>the</strong>re is a common agreement that <strong>the</strong> NCA depositional realm during <strong>the</strong><br />

Permotriassic was a passive continental margin between Variscian (=Hercynian)<br />

consolidated Pangäa and <strong>the</strong> Tethys ocean – see HAAS et al. 1995.<br />

Beginning in <strong>the</strong> Jurassic <strong>the</strong> Austroalpine realm (including <strong>the</strong> NCA) became separated<br />

from its European hinterland by <strong>the</strong> birth <strong>of</strong> <strong>the</strong> transtensional basin <strong>of</strong> <strong>the</strong> Penninic Ocean,<br />

which was linked by large transform faults <strong>to</strong> <strong>the</strong> opening <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Atlantic Ocean.<br />

18


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Fig. 4: Tec<strong>to</strong>nic sketch <strong>of</strong> <strong>the</strong> south-eastern part <strong>of</strong> <strong>the</strong> NCA.<br />

19


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Contemporaneous compressional tec<strong>to</strong>nics has affected <strong>the</strong> Tethyan Ocean and <strong>the</strong><br />

adjacent shelf <strong>of</strong> <strong>the</strong> Austroalpine realm, causing <strong>the</strong> first displacements <strong>of</strong> <strong>the</strong> Juvavic<br />

Nappe System. The concept <strong>of</strong> Jurassic gravitational nappe movements, which was<br />

developed in <strong>the</strong> central NCA, seems <strong>to</strong> be also useful in <strong>the</strong> eastern NCA - see<br />

TOLLMANN 1987. The stratigraphic sequence <strong>of</strong> <strong>the</strong> Göller nappe ends with <strong>the</strong> Jurassic<br />

Allgäu Formation and red limes<strong>to</strong>nes and chert and dips down below <strong>the</strong> Schneeberg Nappe,<br />

also visible in <strong>the</strong> Hengst- and Ödenh<strong>of</strong> Window. Unfortunately transgressiv Upper Jurassic<br />

sediments, sealing <strong>the</strong> Jurassic movements like in <strong>the</strong> Salzkammergut, or Lower Cretaceous<br />

syntec<strong>to</strong>nic clastics are not preserved. Therefore <strong>the</strong> Jurassic or Early Cretaceous age <strong>of</strong> <strong>the</strong><br />

oldest transversal movements cannot be proven directly.<br />

Subduction processes at <strong>the</strong> sou<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Penninic Ocean have started during <strong>the</strong><br />

Early Cretaceous, accompanied by heating and crustal shortening within <strong>the</strong> Austroalpine<br />

crystalline basement and by wide spread synorogenic clastics and thrust movements in its<br />

sedimentary cover, forming <strong>the</strong> Bajuvaric, Tyrolic and Noric Nappe Systems - DECKER et al.<br />

1987, FAUPL & WAGREICH 2000.<br />

For details <strong>of</strong> metamorphic evolution <strong>of</strong> <strong>the</strong> Eastern Alps and controversial discussions see<br />

FRANK 1987. Apart from slightly metamorphosed beds at <strong>the</strong> basal parts - mainly within <strong>the</strong><br />

siliciclastic Permoscythian rocks - it was assumed that most parts <strong>of</strong> <strong>the</strong> NCA do not exhibit<br />

any metamorphic overprint - see KRALIK et al. 1987. Investigations <strong>of</strong> Conodont Color<br />

Alteration Index during <strong>the</strong> last years have revealed a considerable <strong>the</strong>rmal event in parts <strong>of</strong><br />

<strong>the</strong> Juvavic nappes, predating <strong>the</strong> oldest (presumed Late Jurassic) transversal movements -<br />

GAWLICK et al. 1994, KOZUR & MOSTLER 1992 , MANDL 1996.<br />

Upper Cretaceous clastic sediments <strong>of</strong> <strong>the</strong> Gosau-Group transgressed after a periode <strong>of</strong><br />

erosion over <strong>the</strong> NCA nappe stack. The sediments <strong>of</strong> <strong>the</strong> Gosau-Group show a facies<br />

change in time from shallow water clastics <strong>to</strong> flysch-like deep water sediments, WAGREICH<br />

& FAUPL 1994. The latter ones are also typical for <strong>the</strong> adjacent Penninic trough, where<br />

beside o<strong>the</strong>r structural units (e.g. ophiolite-bearing metamorphic Bündnerschiefer-Group <strong>of</strong><br />

<strong>the</strong> Tauern-Window) <strong>the</strong> Rhenodanubian Flysch Zone originates from.<br />

Ongoing subduction <strong>of</strong> <strong>the</strong> Penninic realm <strong>to</strong>ward <strong>the</strong> south below <strong>the</strong> Austroalpine units led<br />

<strong>to</strong> <strong>the</strong> closure <strong>of</strong> <strong>the</strong> Penninic Ocean. The sediments <strong>of</strong> <strong>the</strong> Rhenodanubian Flyschzone<br />

became deformed, lost <strong>the</strong>ir oceanic basement (only preserved in form <strong>of</strong> some Klippen) and<br />

became partly overthrusted by <strong>the</strong> nappes <strong>of</strong> <strong>the</strong> NCA, beginning in <strong>the</strong> late Eocene. This<br />

tec<strong>to</strong>nic event is responsible for reactivation <strong>of</strong> older thrusts within <strong>the</strong> NCA, causing an<br />

incorporation <strong>of</strong> Gosau Group rocks in<strong>to</strong> <strong>the</strong> nappe stack by local thrusting <strong>to</strong>ward <strong>the</strong> north<br />

as well as backthrusting <strong>to</strong>ward <strong>the</strong> south.<br />

The remaining sea between <strong>the</strong> alpine orogenic front and <strong>the</strong> European foreland during<br />

Oligocene and Early Miocene has been <strong>the</strong> depositional site <strong>of</strong> <strong>the</strong> Molasse Zone, which<br />

one collected <strong>the</strong> erosional debris <strong>of</strong> <strong>the</strong> uplifting Alps – see KUHLEMANN & KEMPF 2002.<br />

The sou<strong>the</strong>rnmost part <strong>of</strong> <strong>the</strong> Molasse Zone became also incorporated in<strong>to</strong> <strong>the</strong> alpine<br />

orogeny due <strong>to</strong> <strong>the</strong> youngest subduction pulses.<br />

The uplift <strong>of</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> Eastern Alps during Miocene was accompanied by large<br />

strike slip movements on its nor<strong>the</strong>rn part (sinistral Salzach-Ennstal and Mur-Mürz fault<br />

systems; responsible also for <strong>the</strong> genesis <strong>of</strong> <strong>the</strong> Vienna Basin and also affecting <strong>the</strong> NCA) -<br />

see for example LINZER et al. 1995, DECKER et al. 1994.<br />

20


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

2.2 Structural frame <strong>of</strong> <strong>the</strong> <strong>Rax</strong>/Schneeberg aquifer system<br />

The karstified plateau mountains <strong>of</strong> <strong>Rax</strong> and Schneeberg are forming <strong>the</strong> catchment areas <strong>of</strong><br />

several springs <strong>of</strong> <strong>the</strong> Vienna Water Supply, for example <strong>the</strong> Kaiserbrunn-, Hölltal, Fronbachand<br />

Stixenstein spring.<br />

The aquifer is mainly built by Middle <strong>to</strong> Early Upper Triassic carbonate rocks <strong>of</strong> shallow water<br />

origin – <strong>the</strong> Gutenstein, Steinalm and Wetterstein limes<strong>to</strong>nes and dolomites. Limes<strong>to</strong>nes<br />

from slope <strong>to</strong> basinal depositional sites – <strong>the</strong> Grafensteig limes<strong>to</strong>nes – are <strong>of</strong> some relevance<br />

only in <strong>the</strong> nor<strong>the</strong>rn Schneeberg area, see stratigraphic scheme Figs. 2 and 3.<br />

SCHNEEBERG NAPPE<br />

During <strong>the</strong> alpine tec<strong>to</strong>nics this Wetterstein platform was detached from its basement and<br />

from adjacent basinal carbonate rocks and became a tec<strong>to</strong>nically isolated mass <strong>of</strong> rocks, <strong>the</strong><br />

Schneeberg Nappe.<br />

The Lower Triassic Werfen Formation, which may act as an aquitard or aquiclude, was used<br />

as a shear horizon during <strong>the</strong> nappe movements. Therefore only parts <strong>of</strong> it remained in <strong>the</strong><br />

stratigraphic succession <strong>of</strong> <strong>the</strong> Schneeberg Nappe, large parts got lost during thrusting. We<br />

cannot expect it anymore as a continous layer below <strong>the</strong> carbonates.<br />

The lateral boundaries <strong>of</strong> <strong>the</strong> Schneeberg Nappe can be drawn <strong>to</strong>day without any doubt:<br />

On <strong>the</strong> nor<strong>the</strong>rn side <strong>the</strong> Triassic rocks <strong>of</strong> <strong>the</strong> Schneeberg Nappe are thrusted over Early <strong>to</strong><br />

Middle Jurassic basinal sediments <strong>of</strong> <strong>the</strong> Göller Nappe. The same situation is visible within<br />

two tec<strong>to</strong>nic windows, <strong>the</strong> Ödenh<strong>of</strong>- and <strong>the</strong> Hengst-Window.<br />

On <strong>the</strong> western side <strong>the</strong> tec<strong>to</strong>nic contact shows two different situations. In <strong>the</strong> nor<strong>the</strong>rn part<br />

<strong>the</strong> Schneeberg Nappe again superimposes Middle Jurassic basinal sediments <strong>of</strong> <strong>the</strong> Göller<br />

Nappe. In <strong>the</strong> sou<strong>the</strong>rn part Middle Triassic <strong>to</strong> Carnian rocks <strong>of</strong> <strong>the</strong> Schneealpe (Mürzalpen<br />

Nappe) are dipping down <strong>to</strong>ward east below <strong>the</strong> Schneeberg nappe.<br />

On its sou<strong>the</strong>rn side <strong>the</strong>re is an overthrust contact <strong>to</strong> <strong>the</strong> Palaeozoic <strong>to</strong> Lower Triassic<br />

shales and siliciclastics <strong>of</strong> <strong>the</strong> underlying Werfen Imbricates Zone. The tec<strong>to</strong>nic nature <strong>of</strong> <strong>the</strong><br />

contact is proved by <strong>the</strong> intercalation <strong>of</strong> several slices <strong>of</strong> Middle <strong>to</strong> Upper Triassic rocks <strong>of</strong><br />

deep shelf and oceanic origin. An additional deformation has affected <strong>the</strong> sou<strong>the</strong>rn margin <strong>of</strong><br />

Schneeberg nappe subsequent <strong>to</strong> <strong>the</strong> deposition <strong>of</strong> <strong>the</strong> Gosau-Group, resulting in recumbant<br />

folds and backthrusting <strong>to</strong>ward south.<br />

On its eastern side <strong>the</strong> Schneeberg nappe is dipping down below transgressive Neogene<br />

sediments <strong>of</strong> <strong>the</strong> Vienna basin, where it continues in <strong>the</strong> subsurface (pro<strong>of</strong> by several oil<br />

drillings).<br />

21


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Fig. 5: Tec<strong>to</strong>nic sketch <strong>Rax</strong>-Schneeberg.<br />

Fig. 6: Schematic cross-section <strong>Rax</strong>-Schneeberg.<br />

22


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

INTERNAL THRUSTS<br />

An east-west directed compression has caused a synkline west <strong>of</strong> Heukuppe, which contains<br />

<strong>the</strong> tec<strong>to</strong>nic outlier <strong>of</strong> Hohe Gupf. Folding and westward directed thrusting in <strong>the</strong> adjacent<br />

Altenberg valley is also ascribed <strong>to</strong> this deformation act.<br />

Much more prominent for <strong>the</strong> hydrogeology <strong>of</strong> <strong>the</strong> Schneeberg-Nappe is a west directed<br />

internal thrust (Markgraben thrust) in <strong>the</strong> western Gahns plateau – see also cross section 4.<br />

The sou<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Schneeberg-Nappe has been affected by backthrusting after <strong>the</strong><br />

deposition <strong>of</strong> <strong>the</strong> Upper Cretaceous <strong>to</strong> Palaeocene Gosau-Group. This Gahnsleiten<br />

Imbricates contain slices <strong>of</strong> Wetterstein reef and slope deposits with transgressively<br />

connected Gosau formations, as well as lenticular bodies <strong>of</strong> Wetterstein limes<strong>to</strong>ne and<br />

Werfen shales. The main part <strong>of</strong> <strong>the</strong> Schneeberg-Nappe is following above, beginning with<br />

<strong>the</strong> Anisian Gutenstein Formation.<br />

FAULT SYSTEMS<br />

The Krummbach fault system seems <strong>to</strong> be a strike slip fault (local flower structures in<br />

Krummbach valley and at Brettschacher) combined with a vertical <strong>of</strong>fset: <strong>the</strong> Schneeberg<br />

side has been uplifted, exposing older rocks and <strong>the</strong> underlying Göller Nappe in tec<strong>to</strong>nic<br />

windows, while <strong>the</strong> <strong>Rax</strong> side exposes <strong>the</strong> youngest part <strong>of</strong> <strong>the</strong> Wetterstein Limes<strong>to</strong>ne near <strong>to</strong><br />

<strong>the</strong> Schwarza valley floor.<br />

A younger fault system shows extensional character:<br />

The Weichtal normal fault has caused a displacement <strong>of</strong> about 600 m between<br />

Hochschneeberg (hangingwall) and Kuhschneeberg (footwall). The faults in <strong>the</strong> Großes<br />

Höllental seem <strong>to</strong> be a direct continuation <strong>of</strong> <strong>the</strong> Weichtal fault, but <strong>the</strong>y exhibit quite opposite<br />

movements: <strong>the</strong> western block (Heukuppe-Klobenwand) has been relatively uplifted about<br />

200 m compared with <strong>the</strong> eastern block (Preinerwand-Grünschacher).<br />

The Breitensohl normal fault forms <strong>the</strong> western margin <strong>of</strong> <strong>the</strong> tec<strong>to</strong>nic window <strong>of</strong> Hoher<br />

Hengst, displaces <strong>the</strong> Krummbach fault some hundred meters and continues in<strong>to</strong> <strong>the</strong> eastern<br />

Gahns massive. The normal displacement east <strong>of</strong> Hengst is 800 m as a minimum and<br />

degrees <strong>to</strong>ward south <strong>to</strong> about 400 m.<br />

The NNE-SSW directed fault system at Bodenwiese has squeezed up Lower Triassic Werfen<br />

shales probably by strike slip movements.<br />

MÜRZALPEN NAPPE<br />

The nor<strong>the</strong>rn margin <strong>of</strong> <strong>the</strong> Mürzalpen-Nappe is <strong>of</strong>ten affected by younger faults or covered<br />

by tec<strong>to</strong>nic outliers. Its eastern end is dipping down under <strong>the</strong> Schneeberg-Nappe and at its<br />

sou<strong>the</strong>rn margin it is thrusted over rocks <strong>of</strong> <strong>the</strong> Werfen Imbricates Zone.<br />

The Mürzalpen-Nappe has only minor influence on <strong>the</strong> <strong>Rax</strong>-Schneeberg-aquifere, <strong>the</strong>refore it<br />

is not treated here in detail.<br />

GÖLLER NAPPE<br />

The Göller-Nappe consists here mainly <strong>of</strong> Hauptdolomite, which is gradually replaced <strong>to</strong>ward<br />

<strong>the</strong> south by lagoonal Dachstein limes<strong>to</strong>ne. Sandy shales <strong>of</strong> <strong>the</strong> Carnian Raibl-Group act as<br />

a shear horizon during internal thrusting.<br />

The sedimentary succession continues in<strong>to</strong> Jurassic red limes<strong>to</strong>nes and marly/cherty basinal<br />

sediments <strong>of</strong> Allgäu Formation and locally in<strong>to</strong> red radiolarite.<br />

23


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Die Göller-Nappe dips down <strong>to</strong>ward south under <strong>the</strong> Schneeberg-Nappe, forming a wide<br />

west-east striking syncline. The sou<strong>the</strong>rn flank <strong>of</strong> this syncline is visible in <strong>the</strong> Lahngraben-,<br />

Hengst- and Ödenh<strong>of</strong>-windows. Here it is cut <strong>of</strong>f by <strong>the</strong> Krummbach fault system. The<br />

continuation <strong>of</strong> <strong>the</strong> Göller-Nappe in <strong>the</strong> south <strong>of</strong> <strong>the</strong>se faults cannot be proven directly. It is<br />

probable due <strong>to</strong> <strong>the</strong> occurrence <strong>of</strong> Wettersteindolomite in <strong>the</strong> surrounding <strong>of</strong> Hinternaßwald,<br />

which one must be part <strong>of</strong> <strong>the</strong> Göller-Nappe in such a sou<strong>the</strong>rn position.<br />

The former mentioned syncline is dissected by <strong>the</strong> Weichtal normal fault in<strong>to</strong> an eastern and<br />

a western part. In <strong>the</strong> eastern part <strong>of</strong> <strong>the</strong> syncline <strong>the</strong> Jurassic Allgäu Formation and <strong>the</strong><br />

Werfen Formation <strong>of</strong> Schneeberg-Nappe are forming a thick aquiclude layer below <strong>the</strong><br />

carbonates <strong>of</strong> Hochschneeberg. In <strong>the</strong> western part <strong>of</strong> <strong>the</strong> syncline <strong>the</strong> Allgäu Formation is<br />

gradually replaced by red limes<strong>to</strong>nes and radiolarite <strong>of</strong> minor thickness. Also <strong>the</strong> Werfen<br />

formation may wedge out locally. Therefore no continuous aquiclude can be expected in <strong>the</strong><br />

subsurface <strong>of</strong> <strong>the</strong> western Kuhschneeberg and Fegenberg.<br />

WERFEN IMBRICATES ZONE<br />

As mentioned above <strong>the</strong> Permo-Triassic siliciclastic rocks <strong>of</strong> this zone exhibit a transgressive<br />

contact <strong>to</strong> <strong>the</strong> Early Palaeozoic rocks <strong>of</strong> <strong>the</strong> Grauwacken Zone. The tec<strong>to</strong>nic contact <strong>to</strong> <strong>the</strong><br />

Schneeberg-Nappe is proven by intercalated Juvavic slices and Meliata Klippen. Additional<br />

internal thrusting is probable due <strong>to</strong> incorporated younger rauwacke and ?Permian<br />

quartzporphyry. This zone is forming a thick aquiclude layer below <strong>the</strong> carbonates in <strong>the</strong><br />

sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Schneeberg-Nappe.<br />

24


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

Acknowledgements<br />

Early <strong>map</strong>ping activities in <strong>the</strong> area between Schneeberg and Naßwald have started in 1993<br />

in <strong>the</strong> frame <strong>of</strong> Project WA 4a. Financial support was given in <strong>the</strong> frame <strong>of</strong> <strong>the</strong><br />

“Bund/Bundesländerkooperation for raw material research” by <strong>the</strong> government <strong>of</strong> Vienna /<br />

MA 31 and by <strong>the</strong> Austrian ministry for science and research.<br />

Additional <strong>map</strong>ping in 2004-05, compilation and actualisation <strong>of</strong> <strong>map</strong>s, construction <strong>of</strong> cross<br />

sections, GIS – operating etc. have been supported in <strong>the</strong> frame <strong>of</strong> <strong>KATER</strong> II by <strong>the</strong><br />

government <strong>of</strong> Vienna and by <strong>the</strong> European Union program Interreg III C.<br />

References<br />

BÖHM, F. 1992: Mikr<strong>of</strong>azies und Ablagerungsmilieu des Lias und Dogger der Nordöstlichen<br />

Kalkalpen. – Erlanger geol. Abh., 121, 57-217, 78 Abb., 6 Tab., 11 Taf., Erlangen.<br />

DECKER, K., FAUPL, P. & MÜLLER, A. 1987: Synorogenic Sedimentation on <strong>the</strong> Nor<strong>the</strong>rn<br />

Calcareous Alps During <strong>the</strong> Early Cretaceous. - (In: ) FLÜGEL, H.W. & FAUPL,P.(Ed.):<br />

Geodynamics <strong>of</strong> <strong>the</strong> Eastern Alps, 126-141, Wien (Deuticke).<br />

DECKER, K., PERESSON, H. & FAUPL, P. 1994: Die miozäne Tek<strong>to</strong>nik der östlichen Kalkalpen:<br />

Kinematik, Paläospannungen und Deformationsaufteilung während der "lateralen Extrusion" der<br />

Zentralalpen. - Jb. Geol. B.-A., 137/1, 5-18, 10 Abb., Wien.<br />

FAUPL, P. & WAGREICH, M. 1996: Basin analysis <strong>of</strong> <strong>the</strong> Gosau Group <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous<br />

Alps (Turonian-Eocene, Eastern Alps). - EAGE Spec. Publ., 5, 127-135.<br />

FAUPL, P. & WAGREICH, M. 2000: Late Jurassic <strong>to</strong> Eocene Palaeogeography and Geodynamic<br />

Evolution <strong>of</strong> <strong>the</strong> Eastern Alps. - Mitt. Österr. Geol. Ges., 92(1999), 4 figs., 1 tab., Wien.<br />

FLÜGEL, E. 1981: Paleoecology and facies <strong>of</strong> Upper Triassic Reefs in <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps.<br />

- Soc. Econ. Paleont. Min. Spec. Publ., 30, 291-359, 6 figs., Tulsa (Oklahoma).<br />

FRANK, W. 1987: Evolution <strong>of</strong> <strong>the</strong> Austroalpine elements in <strong>the</strong> Cretaceous. - In: Flügel, H.W. &<br />

Faupl,P. (eds.): Geodynamics <strong>of</strong> <strong>the</strong> Eastern Alps, 379-406, 9 figs., 1 tab., Wien (Deuticke).<br />

GAWLICK, H.J., KRYSTYN, L. & LEIN, R., 1994: Conodont colour alteration indices: Palaeotemperatures<br />

and metamorphism in <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps - a general view. - Geol.<br />

Rundschau, 83, 660-664, Berlin.<br />

HAAS, J., KOVACS, S., KRYSTYN, L. & LEIN, R., 1995: Significance <strong>of</strong> Late Permian - Triassic facies<br />

zones in terrane reconstruction in <strong>the</strong> Alpine - North Pannonian domain. - Tec<strong>to</strong>nophysics, 242,<br />

19-40.<br />

KOZUR, H. & MOSTLER, H. 1992 : Erster paläon<strong>to</strong>logischer Nachweis von Meliaticum und<br />

Südrudabanyaicum in den Nördlichen Kalkalpen (Österreich) und ihre Beziehungen zu den<br />

Abfolgen in den Westkarpaten. – Geol. Paläont. Mitt. Innsbruck, 18 (1991/92), 87-129,<br />

Innsbruck.<br />

KRALIK, M., KRUMM, H. & SCHRAMM, J.M., 1987: Low Grade and Very Low Grade Metamor-phism<br />

in <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps and in <strong>the</strong> Greywacke Zone. Illite-Crystallinity Datas and<br />

Iso<strong>to</strong>pic Ages. - In: FLÜGEL, H. & FAUPL, P. (Hrsg.): Geodynamics <strong>of</strong> <strong>the</strong> Eastern Alps, 164-<br />

178, 4 figs., 1 pl., Wien (Deuticke).<br />

25


<strong>KATER</strong> II Geology <strong>of</strong> <strong>the</strong> <strong>Rax</strong>-Schneeberg-region<br />

__________________________________________________________________________________________<br />

KUHLEMANN, J. & KEMPF, O., 2002: Post-Eocene evolution <strong>of</strong> <strong>the</strong> North Alpine Foreland Basin and<br />

its response <strong>to</strong> Alpine tec<strong>to</strong>nics. – Sedimentary Geol., 152, 45-78, 6 figs., 8 pl., Oxford<br />

(Elsevier).<br />

LEIN, R. 1987: Evolution <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps during Triassic times. - In: FLÜGEL, H. &<br />

FAUPL, P. (Hrsg.): Geodynamics <strong>of</strong> <strong>the</strong> Eastern Alps, 85-102, 4 figs., Wien (Deuticke).<br />

LINZER, H.-G., RATSCHBACHER, L. & FRISCH, W., 1995: Transpressional collision structures in <strong>the</strong><br />

upper crust: <strong>the</strong> fold-thrust belt <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps. - Tec<strong>to</strong>nophysics, 242, 41-61,<br />

Amsterdam (Elsevier).<br />

LOBITZER, H., MANDL, G.W., MAZZULLO, S.J. & MELLO, J., 1990: Comparative Study <strong>of</strong><br />

Wetterstein Carbonate Platforms <strong>of</strong> <strong>the</strong> Easternmost Nor<strong>the</strong>rn Calcareous Alps and<br />

<strong>the</strong> West Carpatian Mountains: Preliminary Results. - (In: ) MINARIKOVA, D. &<br />

LOBITZER, H. (Ed.): Festiv Volume Thirty Years <strong>of</strong> Geological Cooperation<br />

between Austria and Czechoslovakia. 136-158, Wien (GBA)-Prag(UUG).<br />

MANDL, G.W., 2000: The Alpine sec<strong>to</strong>r <strong>of</strong> <strong>the</strong> Tethyan shelf - Examples <strong>of</strong> Triassic <strong>to</strong> Jurassic<br />

sedimentation and deformation from <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps. – Mitt. Österr. Geol. Ges.,<br />

92(1999), 61-78, 8 figs., Wien.<br />

MANDL, G.W., 1996: Zur Geologie des Ödenh<strong>of</strong>-Fensters (Nördliche Kalkalpen, Österreich). - Jb.<br />

Geol. Bundesanst., 139/4, 473-495, Wien.<br />

MANDL, G. W. & ONDREJICKOVA, A., 1991: Über eine triadische Tiefwasserfazies (Radiolarite,<br />

Schiefer<strong>to</strong>ne) in den Nördlichen Kalkalpen - ein Vorbericht. - Jb. Geol. B.-A., 134/2, 309-318,<br />

Wien.<br />

MANDL, G. & ONDREJICKOVA, A. , 1993: Radiolarien und Conodonten aus dem Meliatikum im<br />

Ostabschnitt der Nördlichen Kalkalpen (Österreich). – Jb. Geol. B.-A., 136/4, 841-871, Wien.<br />

NEUBAUER, F., HANDLER, R., HERMANN, S. & PAULUS, G., 1994: Revised Lithostratigra-phy and<br />

Structur <strong>of</strong> <strong>the</strong> Eastern Graywacke Zone. – Mitt. österr. Geol. Ges., 86 (1993), 61-74, 7 figs., 1<br />

tab., Wien.<br />

PLÖCHINGER, B., 1995: Tec<strong>to</strong>nics <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps: A review. - Mem. Sci. Geol., 47,<br />

73-86, 3 figs., Padova.<br />

SCHLAGINTWEIT, F. & EBLI, O., 1999: New Results on Micr<strong>of</strong>acies, Biostratigraphy and<br />

Sedimen<strong>to</strong>logy <strong>of</strong> Late Jurassic-Early Cretaceous platform carbonates <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn<br />

Calcareous Alps. Part I: Tressenstein Limes<strong>to</strong>ne, Plassen Formation. – Abh. Geol. B.-Anst.,<br />

56/2, 379-418, 4 fig., 8 tab., 12 pl., Wien (Geol. B.-Anst.).<br />

SUMMESBERGER; H., 1985: Ammonite Zonation <strong>of</strong> <strong>the</strong> Gosau Group (Upper Cretaceous, Austria). -<br />

Ann. Naturhist. Mus. Wien, 87,A, 145-166, Wien.<br />

TOLLMANN, A. , 1976: Analyse des klassischen nordalpinen Mesozoikums. Stratigraphie, Fauna und<br />

Fazies der Nördlichen Kalkalpen. - Xl+580 p., Wien (Deuticke).<br />

TOLLMANN, A., 1985: Geologie von Österreich, Bd. II: Außerzentralalpiner Anteil. - Xlll + 710 S., 286<br />

Abb., 27 Tab., Wien (Deuticke).<br />

TOLLMANN, A., 1986: Geologie von Österreich, Bd. III: Gesamtübersicht. - 718 S., 145 Abb., 8 Tab.,<br />

3 Taf., Wien (Deuticke).<br />

TOLLMANN, A., 1987: Late Jurassic/Neocomian Gravitational Tec<strong>to</strong>nics in <strong>the</strong> Nor<strong>the</strong>rn<br />

Calcareous Alps in Austria. - (In:) FLÜGEL, H.W. & FAUPL, P.(Ed.): Geodynamics <strong>of</strong> <strong>the</strong><br />

Eastern Alps, 112-125, Wien (Deuticke).<br />

WAGREICH, M. & FAUPL, P., 1994: Paleogeography and geodynamic evolution <strong>of</strong> <strong>the</strong> Gosau Group<br />

<strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). - Palaeogeography,<br />

Palaeoclima<strong>to</strong>logy, Palaeoecology, 110, 235-254.<br />

ZANKL, H., 1971: Upper Triassic Carbonate Facies in <strong>the</strong> Nor<strong>the</strong>rn Limes<strong>to</strong>ne Alps. (In:) Müller, G.<br />

(ed.): Sedimen<strong>to</strong>logy <strong>of</strong> Parts <strong>of</strong> Central Europe, Guidebook, 147-185, 20 Abb., 1 Tab.,<br />

Frankfurt.<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!