15.01.2013 Views

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

History <strong>of</strong> the <strong>Mitochondrial</strong> <strong>Free</strong> <strong>Radical</strong> <strong>The</strong>ory <strong>of</strong> <strong>Aging</strong>, 1954-1995<br />

59. Matsuoka T, Goto Y, Nonaka I. “All-or-none” cytochrome c oxidase positivity in mitochondria<br />

in chronic progressive external ophthalmoplegia: an ultrastructural-cytochemical study. Muscle<br />

Nerve 1993; 16:206-209.<br />

60. Ozawa T. Mechanism <strong>of</strong> somatic mitochondrial DNA mutations associated with age and<br />

diseases. Biochim Biophys Acta 1995; 1271:177-189.<br />

61. Lee CM, Lopez ME Weindruch R et al. Association <strong>of</strong> age-related mitochondrial abnormalities<br />

with skeletal muscle fiber atrophy. <strong>Free</strong> Radic Biol Med 1998; 25:964-972.<br />

62. a)Brierley EJ, Johnson MA, Lightowlers RN et al. Role <strong>of</strong> mitochondrial DNA mutations<br />

in human aging: Implications for the central nervous system and muscle. Ann Neurol 1998;<br />

43:217-223.<br />

62. b)Khrapko K, Bodyak N, Thilly WG et al. Cell-by-cell scanning <strong>of</strong> whole mitochondrial<br />

genomes in aged human heart reveals a significant fraction <strong>of</strong> myocytes with clonally<br />

expanded deletions. Nucleic Acids Res 1999; 27:2434-2441.<br />

62. c)Moslemi AR, Melberg A, Holme E et al. Clonal expansion <strong>of</strong> mitochondrial DNA with<br />

multiple deletions in autosomal dominant progressive external ophthalmoplegia. Ann Neurol<br />

1996; 40: 707-713.<br />

63. Fawcett DW, Bloom W. A textbook <strong>of</strong> histology. 12th ed. New York: Chapman and Hall,<br />

1994.<br />

64. Mullis KB, Faloona FA. Specific synthesis <strong>of</strong> DNA in vitro via a polymerase-catalyzed chain<br />

reaction. Methods Enzymol 1987; 155:335-350.<br />

65. Barnes WM. PCR amplification <strong>of</strong> up to 35-kb DNA with high fidelity and high yield<br />

from lambda bacteriophage templates. Proc Natl Acad Sci USA 1994; 91:2216-2220.<br />

66. Cheng S, Higuchi R, Stoneking M. Complete mitochondrial genome amplification. Nature<br />

Genet 1994; 7:350-351.<br />

67. Reynier P, Malthiery Y. Accumulation <strong>of</strong> deletions in MtDNA during tissue aging: analysis<br />

by long PCR. Biochem Biophys Res Commun 1995; 217:59-67.<br />

68. Desjardins P, Frost E, Morais R. Ethidium bromide-induced loss <strong>of</strong> mitochondrial DNA<br />

from primary chicken embryo fibroblasts. Mol Cell Biol 1985; 5:1163-1169.<br />

69. King MP, Attardi G. Human cells lacking mtDNA: Repopulation with exogenous<br />

mitochondria by complementation. Science 1989; 246:500-503.<br />

70. Chomyn A, Lai ST, Shakeley R et al. Platelet-mediated transformation <strong>of</strong> mtDNA-less<br />

human cells: Analysis <strong>of</strong> phenotypic variability among clones from normal individuals and<br />

complementation behavior <strong>of</strong> the tRNALys mutation causing myoclonic epilepsy and ragged<br />

red fibers. Am J Hum Genet 1994; 54:966-974.<br />

71. Yoneda M, Chomyn A, Martinuzzi A et al. Marked replicative advantage <strong>of</strong> human mtDNA<br />

carrying a point mutation that causes the MELAS encephalomyopathy. Proc Natl Acad Sci<br />

USA 1992; 89:11164-11168.<br />

72. Dunbar DR, Moonie PA, Jacobs HT et al. Different cellular backgrounds confer a marked<br />

advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci USA<br />

1995; 92: 6562-6566.<br />

73. King MP. Transmitochondrial cells in the study <strong>of</strong> mitochondrial disease. Molec Genet<br />

Metab 1998; 63:43.<br />

74. Peterson ER, Crain SM. Regeneration and innervation in cultures <strong>of</strong> adult mammalian<br />

skeletal muscle coupled with fetal rodent spinal cord. Exp Neurol 1972; 36:136-159.<br />

75. Arnheim N, Cortopassi G. Deleterious mitochondrial DNA mutations accumulate in aging<br />

human tissues. Mutat Res 1992; 275:157-167.<br />

76. Münscher C, Müller-Höcker J, Kadenbach B. Human aging is associated with various point<br />

mutations in tRNA genes <strong>of</strong> mitochondrial DNA. Biol Chem Hoppe Seyler 1993;<br />

374:1099-1104.<br />

77. Kadenbach B, Münscher C, Frank V et al. Human aging is associated with stochastic somatic<br />

mutations <strong>of</strong> mitochondrial DNA. Mutat Res 1995; 338:161-172.<br />

78. Pallotti F, Chen X, Bonilla E et al. Evidence that specific mtDNA point mutations may not<br />

accumulate in skeletal muscle during normal human aging. Am J Hum Genet 1996;<br />

59:591-602.<br />

83

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!