The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

pliki.supernova.com.pl
from pliki.supernova.com.pl More from this publisher
15.01.2013 Views

112 The Mitochondrial Free Radical Theory of Aging References 1. Cooper JM, Mann VM, Schapira AH. Analyzes of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. J Neurol Sci 1992; 113:91-98. 2. Boulet L, Karpati G, Shoubridge EA. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 1992; 51:1187-1200. 3. Soong NW, Hinton DR, Cortopassi G et al. Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 1992; 2:318-323. 4. Müller-Höcker J, Schneiderbanger K, Stefani FH et al. Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing—a cytochemical-immunohistochemical study. Mutat Res 1992; 275:115-124. 5. Zhang C, Peters LE, Linnane AW et al. Comparison of different quantitative PCR procedures in the analysis of the 4977-bp deletion in human mitochondrial DNA. Biochem Biophys Res Commun 1996; 223:450-455. 6. Pallotti F, Chen X, Bonilla E et al. Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging. Am J Hum Genet 1996; 59:591-602. 7. Müller-Höcker J, Schäfer S, Link TA et al. Defects of the respiratory chain in various tissues of old monkeys: A cytochemical-immunocytochemical study. Mech Ageing Dev 1996; 86:197-213. 8. a)Brierley EJ, Johnson MA, Lightowlers RN et al. Role of mitochondrial DNA mutations in human aging: Implications for the central nervous system and muscle. Ann Neurol 1998; 43:217-223. 8. b) Kovalenko SA, Kopsidas G, Kelso JM et al. Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem Biophys Res Commun 1997; 232:147-152. 8. c) Hayakawa M, Katsumata K, Yoneda M et al. Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 1996; 226:369-377. 8. d) Nagley P, Wei YH. Ageing and mammalian mitochondrial genetics. Trends Genet 1998; 14:513-517. 8. e) Lightowlers RN, Jacobs HT, Kajander OA. Mitochondrial DNA — all things bad? Trends Genet 1999; 15:91-93. 9. de Grey ADNJ. A mechanism proposed to explain the rise in oxidative stress during aging. J Anti-Aging Med 1998; 1:53-66. 10. Kawase M, Kondoh C, Matsumoto S et al. Contents of D-lactate and its related metabolites as well as enzyme activities in the liver, muscle and blood plasma of aging rats. Mech Ageing Dev 1995; 84:55-63. 11. King MP, Attardi G. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science 1989; 246:500-503. 12. Nass MMK. Abnormal DNA patterns in animal mitochondria: Ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci USA 1970; 67:1926-1933. 13. Hines V, Keys LD, Johnston M. Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase. J Biol Chem 1986; 261:11386-11392. 14. Stryer L. Biochemistry. 3rd ed. New York: WH Freeman & Co., 1988. 15. Martinus RD, Linnane AW, Nagley P. Growth of ρ 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 1993; 31:997-1005. 16. Crane FL, Low H. NADH oxidation in liver and fat cell plasma membranes. FEBS Lett. 1976; 68:153-156. 17. Crane FL, Sun IL, Clark MG et al. Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta 1985; 811:233-264.

The Search for How So Few Anaerobic Cells Cause So Much Oxidative Stress 18. Aspnes LE, Lee CM, Weindruch R et al. Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 1997; 11:573-581. 19. Shoubridge EA. Mitochondrial DNA diseases: Histological and cellular studies. J Bioenerg Biomembr 1994; 26:301-310. 20. a)Oldfors A, Larsson NG, Holme E et al. Mitochondrial DNA deletions and cytochrome c oxidase deficiency in muscle fibers. J Neurol Sci 1992; 110:169-177. 20. b) Moraes CT, Ricci E, Petruzzella V et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat Genet 1992; 1:359-367. 21. Vaillant F, Loveland BE, Nagley P et al. Some biomedical properties of human lymphoblastoid Namalwa cells grown anaerobically. Biochem Int 1991; 23:571-580. 22. DeFrancesco L, Scheffler IE, Bissell MJ. A respiration-deficient Chinese hamster cell line with a defect in NADH-coenzyme Q reductase. J Biol Chem 1976; 251:4588-4595. 23. Breen GAM, Scheffler IE. Respiration-deficient Chinese hamster cell mutants: Biochemical characterization. Somat Cell Genet 1979; 5:441-451. 24. Rottenberg H, Wu S. Mitochondrial dysfunction in lymphocytes from old mice: Enhanced activation of the permeability transition. Biochem Biophys Res Commun 1997; 240:68-74. 25. Vaillant F, Larm JA, McMullen GL et al. Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators. J Bioenerg Biomembr 1996; 28:531-540. 26. Morré DJ. Hormone- and growth factor-stimulated NADH oxidase. J Bioenerg Biomembr 1994; 26:421-433. 27. a)Clark MG, Partick EJ, Patten GS et al. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system. Biochem J 1981; 200:565-572. 27. b) O’Donnell VB, Azzi A. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme. Biochem J 1996; 318:805-812. 27. c) Berridge MV, Tan AS. Trans-plasma membrane electron transport: a cellular assay for NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma 1998; 205:74-82. 27. d) Morré DJ, Pogue R, Morré DM. A multifunctional hydroquinone oxidase of the external cell surface and sera. Biofactors 1999; 9:179-187. 28. Larm JA, Wolvetang EJ, Vaillant F et al. Increase of plasma-membrane oxidoreductase activity is not correlated with the production of extracellular superoxide radicals in human Namalwa cells. Protoplasma 1995; 184:173-180. 29. Stralin P, Karlsson K, Johansson BO et al. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995; 15:2032-2036. 30. Kappus H. Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance. In: Sies H, ed. Oxidative Stress. London: Academic Press, Inc., 1985:273-310. 31. Aruoma OI, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl-radical generation? Biochem J 1987; 241:273-278. 32. Löw H, Grebing C, Lindgren A et al. Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system. J Bioenerg Biomembr 1987; 19:535-549. 33. Samokyszyn VM, Miller DM, Reif DW et al. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J Biol Chem 1989; 264:21-26. 34. Miller YI, Smith A, Morgan WT et al. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry 1996; 35:13112-13117. 35. Morgan WT, Liem HH, Sutor RP et al. Transfer of heme from heme-albumin to hemopexin. Biochim Biophys Acta 1976; 444:435-445. 36. Miller YI, Felikman Y, Shaklai N. The involvement of low-density lipoprotein in hemin transport potentiates peroxidative damage. Biochim Biophys Acta 1995; 1272:119-127. 113

<strong>The</strong> Search for How So Few Anaerobic Cells Cause So Much Oxidative Stress<br />

18. Aspnes LE, Lee CM, Weindruch R et al. Caloric restriction reduces fiber loss and mitochondrial<br />

abnormalities in aged rat muscle. FASEB J 1997; 11:573-581.<br />

19. Shoubridge EA. <strong>Mitochondrial</strong> DNA diseases: Histological and cellular studies. J Bioenerg<br />

Biomembr 1994; 26:301-310.<br />

20. a)Oldfors A, Larsson NG, Holme E et al. <strong>Mitochondrial</strong> DNA deletions and cytochrome c<br />

oxidase deficiency in muscle fibers. J Neurol Sci 1992; 110:169-177.<br />

20. b) Moraes CT, Ricci E, Petruzzella V et al. Molecular analysis <strong>of</strong> the muscle pathology<br />

associated with mitochondrial DNA deletions. Nat Genet 1992; 1:359-367.<br />

21. Vaillant F, Loveland BE, Nagley P et al. Some biomedical properties <strong>of</strong> human<br />

lymphoblastoid Namalwa cells grown anaerobically. Biochem Int 1991; 23:571-580.<br />

22. DeFrancesco L, Scheffler IE, Bissell MJ. A respiration-deficient Chinese hamster cell line<br />

with a defect in NADH-coenzyme Q reductase. J Biol Chem 1976; 251:4588-4595.<br />

23. Breen GAM, Scheffler IE. Respiration-deficient Chinese hamster cell mutants: Biochemical<br />

characterization. Somat Cell Genet 1979; 5:441-451.<br />

24. Rottenberg H, Wu S. <strong>Mitochondrial</strong> dysfunction in lymphocytes from old mice: Enhanced<br />

activation <strong>of</strong> the permeability transition. Biochem Biophys Res Commun 1997; 240:68-74.<br />

25. Vaillant F, Larm JA, McMullen GL et al. Effectors <strong>of</strong> the mammalian plasma membrane<br />

NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators. J<br />

Bioenerg Biomembr 1996; 28:531-540.<br />

26. Morré DJ. Hormone- and growth factor-stimulated NADH oxidase. J Bioenerg Biomembr<br />

1994; 26:421-433.<br />

27. a)Clark MG, Partick EJ, Patten GS et al. Evidence for the extracellular reduction <strong>of</strong><br />

ferricyanide by rat liver. A trans-plasma membrane redox system. Biochem J 1981;<br />

200:565-572.<br />

27. b) O’Donnell VB, Azzi A. High rates <strong>of</strong> extracellular superoxide generation by cultured human<br />

fibroblasts: involvement <strong>of</strong> a lipid-metabolizing enzyme. Biochem J 1996; 318:805-812.<br />

27. c) Berridge MV, Tan AS. Trans-plasma membrane electron transport: a cellular assay for<br />

NADH- and NADPH-oxidase based on extracellular, superoxide-mediated reduction <strong>of</strong> the<br />

sulfonated tetrazolium salt WST-1. Protoplasma 1998; 205:74-82.<br />

27. d) Morré DJ, Pogue R, Morré DM. A multifunctional hydroquinone oxidase <strong>of</strong> the external<br />

cell surface and sera. Bi<strong>of</strong>actors 1999; 9:179-187.<br />

28. Larm JA, Wolvetang EJ, Vaillant F et al. Increase <strong>of</strong> plasma-membrane oxidoreductase<br />

activity is not correlated with the production <strong>of</strong> extracellular superoxide radicals in human<br />

Namalwa cells. Protoplasma 1995; 184:173-180.<br />

29. Stralin P, Karlsson K, Johansson BO et al. <strong>The</strong> interstitium <strong>of</strong> the human arterial wall<br />

contains very large amounts <strong>of</strong> extracellular superoxide dismutase. Arterioscler Thromb<br />

Vasc Biol 1995; 15:2032-2036.<br />

30. Kappus H. Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance.<br />

In: Sies H, ed. Oxidative Stress. London: Academic Press, Inc., 1985:273-310.<br />

31. Aruoma OI, Halliwell B. Superoxide-dependent and ascorbate-dependent formation <strong>of</strong><br />

hydroxyl radicals from hydrogen peroxide in the presence <strong>of</strong> iron. Are lact<strong>of</strong>errin and<br />

transferrin promoters <strong>of</strong> hydroxyl-radical generation? Biochem J 1987; 241:273-278.<br />

32. Löw H, Grebing C, Lindgren A et al. Involvement <strong>of</strong> transferrin in the reduction <strong>of</strong> iron<br />

by the transplasma membrane electron transport system. J Bioenerg Biomembr 1987;<br />

19:535-549.<br />

33. Samokyszyn VM, Miller DM, Reif DW et al. Inhibition <strong>of</strong> superoxide and ferritin-dependent<br />

lipid peroxidation by ceruloplasmin. J Biol Chem 1989; 264:21-26.<br />

34. Miller YI, Smith A, Morgan WT et al. Role <strong>of</strong> hemopexin in protection <strong>of</strong> low-density<br />

lipoprotein against hemoglobin-induced oxidation. Biochemistry 1996; 35:13112-13117.<br />

35. Morgan WT, Liem HH, Sutor RP et al. Transfer <strong>of</strong> heme from heme-albumin to hemopexin.<br />

Biochim Biophys Acta 1976; 444:435-445.<br />

36. Miller YI, Felikman Y, Shaklai N. <strong>The</strong> involvement <strong>of</strong> low-density lipoprotein in hemin<br />

transport potentiates peroxidative damage. Biochim Biophys Acta 1995; 1272:119-127.<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!