15.01.2013 Views

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

The Mitochondrial Free Radical Theory of Aging - Supernova: Pliki

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

112<br />

<strong>The</strong> <strong>Mitochondrial</strong> <strong>Free</strong> <strong>Radical</strong> <strong>The</strong>ory <strong>of</strong> <strong>Aging</strong><br />

References<br />

1. Cooper JM, Mann VM, Schapira AH. Analyzes <strong>of</strong> mitochondrial respiratory chain function<br />

and mitochondrial DNA deletion in human skeletal muscle: Effect <strong>of</strong> ageing. J Neurol Sci<br />

1992; 113:91-98.<br />

2. Boulet L, Karpati G, Shoubridge EA. Distribution and threshold expression <strong>of</strong> the tRNA(Lys)<br />

mutation in skeletal muscle <strong>of</strong> patients with myoclonic epilepsy and ragged-red fibers<br />

(MERRF). Am J Hum Genet 1992; 51:1187-1200.<br />

3. Soong NW, Hinton DR, Cortopassi G et al. Mosaicism for a specific somatic mitochondrial<br />

DNA mutation in adult human brain. Nature Genet 1992; 2:318-323.<br />

4. Müller-Höcker J, Schneiderbanger K, Stefani FH et al. Progressive loss <strong>of</strong> cytochrome c<br />

oxidase in the human extraocular muscles in ageing—a cytochemical-immunohistochemical<br />

study. Mutat Res 1992; 275:115-124.<br />

5. Zhang C, Peters LE, Linnane AW et al. Comparison <strong>of</strong> different quantitative PCR procedures<br />

in the analysis <strong>of</strong> the 4977-bp deletion in human mitochondrial DNA. Biochem Biophys<br />

Res Commun 1996; 223:450-455.<br />

6. Pallotti F, Chen X, Bonilla E et al. Evidence that specific mtDNA point mutations may not<br />

accumulate in skeletal muscle during normal human aging. Am J Hum Genet 1996;<br />

59:591-602.<br />

7. Müller-Höcker J, Schäfer S, Link TA et al. Defects <strong>of</strong> the respiratory chain in various tissues<br />

<strong>of</strong> old monkeys: A cytochemical-immunocytochemical study. Mech Ageing Dev 1996;<br />

86:197-213.<br />

8. a)Brierley EJ, Johnson MA, Lightowlers RN et al. Role <strong>of</strong> mitochondrial DNA mutations<br />

in human aging: Implications for the central nervous system and muscle. Ann Neurol 1998;<br />

43:217-223.<br />

8. b) Kovalenko SA, Kopsidas G, Kelso JM et al. Deltoid human muscle mtDNA is extensively<br />

rearranged in old age subjects. Biochem Biophys Res Commun 1997; 232:147-152.<br />

8. c) Hayakawa M, Katsumata K, Yoneda M et al. Age-related extensive fragmentation <strong>of</strong><br />

mitochondrial DNA into minicircles. Biochem Biophys Res Commun 1996; 226:369-377.<br />

8. d) Nagley P, Wei YH. Ageing and mammalian mitochondrial genetics. Trends Genet 1998;<br />

14:513-517.<br />

8. e) Lightowlers RN, Jacobs HT, Kajander OA. <strong>Mitochondrial</strong> DNA — all things bad? Trends<br />

Genet 1999; 15:91-93.<br />

9. de Grey ADNJ. A mechanism proposed to explain the rise in oxidative stress during aging.<br />

J Anti-<strong>Aging</strong> Med 1998; 1:53-66.<br />

10. Kawase M, Kondoh C, Matsumoto S et al. Contents <strong>of</strong> D-lactate and its related metabolites<br />

as well as enzyme activities in the liver, muscle and blood plasma <strong>of</strong> aging rats. Mech<br />

Ageing Dev 1995; 84:55-63.<br />

11. King MP, Attardi G. Human cells lacking mtDNA: Repopulation with exogenous<br />

mitochondria by complementation. Science 1989; 246:500-503.<br />

12. Nass MMK. Abnormal DNA patterns in animal mitochondria: Ethidium bromide-induced<br />

breakdown <strong>of</strong> closed circular DNA and conditions leading to oligomer accumulation. Proc<br />

Natl Acad Sci USA 1970; 67:1926-1933.<br />

13. Hines V, Keys LD, Johnston M. Purification and properties <strong>of</strong> the bovine liver mitochondrial<br />

dihydroorotate dehydrogenase. J Biol Chem 1986; 261:11386-11392.<br />

14. Stryer L. Biochemistry. 3rd ed. New York: WH <strong>Free</strong>man & Co., 1988.<br />

15. Martinus RD, Linnane AW, Nagley P. Growth <strong>of</strong> ρ 0 human Namalwa cells lacking oxidative<br />

phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme<br />

Q10 putatively acting through the plasma membrane oxidase. Biochem Mol Biol Int 1993;<br />

31:997-1005.<br />

16. Crane FL, Low H. NADH oxidation in liver and fat cell plasma membranes. FEBS Lett.<br />

1976; 68:153-156.<br />

17. Crane FL, Sun IL, Clark MG et al. Transplasma-membrane redox systems in growth and<br />

development. Biochim Biophys Acta 1985; 811:233-264.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!