15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VI.3 Homotopy Groups 215<br />

for every n ≥ 2 and for every (Y,y0) ∈ Top ∗; also <strong>in</strong> this case, the def<strong>in</strong>ition does<br />

not depend on the representatives of the homotopy classes [ f ] and [g].<br />

(VI.3.3) Theorem. The set [S n ,Y]∗ with the multiplication νn<br />

× is a group.<br />

Proof. The associativity of νn<br />

× stems from νn be<strong>in</strong>g homotopy associative (see<br />

Lemma (VI.3.1)): <strong>in</strong>deed, for every f ,g,h ∈ Top ∗((S n ,e0),(Y,y0)),<br />

σ(1Y ∨ σ)( f ∨ g ∨ h)(1S n ∨ νn)νn ∼ σ(σ ∨ 1Y )( f ∨ g ∨ h)(νn ∨ 1S n)νn<br />

and the equalities<br />

σ(1Y ∨ σ)( f ∨ g ∨ h)(1S n ∨ νn)νn = σ( f ∨ σ(g ∨ h)νn)νn,<br />

σ(σ ∨ 1Y )( f ∨ g ∨ h)(νn ∨ 1S n)νn = σ(σ( f ∨ g)νn ∨ h)νn<br />

are also valid.<br />

The homotopy class [c] of the constant map<br />

c: S n → Y , t ∧ x ↦→ y0<br />

is the identity element for the multiplication def<strong>in</strong>ed <strong>in</strong> πn(Y,y0): <strong>in</strong> fact, for every<br />

f ∈ Top ∗((S n ,e0),(Y,y0)) andbyLemma(VI.3.2), the follow<strong>in</strong>g homotopies:<br />

σ( f ∨ c)νn = σ( f × c)ινn ∼ σ( f × c)Δ = f ,<br />

σ(c ∨ f )νn = σ(c × f )ινn ∼ σ(c × f )Δ = f<br />

hold true.<br />

As for the <strong>in</strong>verses, we proceed <strong>in</strong> the follow<strong>in</strong>g manner. Let [ f ] ∈ πn(Y,y0) be<br />

an arbitrarily given element. We def<strong>in</strong>e<br />

note that, for every t ∧ x ∈ S n ,<br />

h: S n → Y , t ∧ x ↦→ f ((1 − t) ∧ x);<br />

� 1<br />

f (2t ∧ x) 0 ≤ t ≤<br />

σ( f ∨ h)νn(t ∧ x)=<br />

2<br />

h((2t − 1) ∧ x) 1 2 ≤ t ≤ 1.<br />

The homotopy<br />

⎧<br />

y0 ⎪⎨<br />

0 ≤ t ≤<br />

H(t ∧ x,s)=<br />

⎪⎩<br />

s<br />

2<br />

s<br />

f ((2t − s) ∧ x) 2 ≤ t ≤ 1 2<br />

f ((2 − 2t − s) ∧ x) 1 2−s<br />

2 ≤ t ≤ 2<br />

≤ t ≤ 1<br />

y0<br />

shows that [h] is the right <strong>in</strong>verse of [ f ]; similarly, one proves that [h] is also the left<br />

<strong>in</strong>verse of [ f ]. �<br />

2−s<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!