15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VI.1 Fundamental Group 197<br />

The function<br />

H : S 1 × I −→ S 1 ∨ S 1 ∨ S 1 ,<br />

def<strong>in</strong>ed for every (e 2πti ,s) ∈ S 1 × I by the formula<br />

H(e 2πti ⎧<br />

⎨ (e0,e0,e<br />

,s)=<br />

⎩<br />

2π(2s+2)ti ) 0 ≤ t ≤ 2−s<br />

4<br />

(e0,e2π[4t−2(1− s 2 )]i 2−s 3−s<br />

,e0) 4 ≤ t ≤ 4<br />

≤ t ≤ 1,<br />

(e 2π[4(1− s 2 )(t−1)+1]i ,e0,e0) 3−s<br />

4<br />

is the desired homotopy.<br />

We now prove that the multiplication ν<br />

× is associative. We have to prove that<br />

(∀ f ,g,h ∈ Top ∗(S 1 ,Y)) σ(σ( f ∨ g)ν ∨ h)ν ∼ σ( f ∨ σ(g ∨ h)ν)ν.<br />

In fact, the associativity of ν implies<br />

on the other hand,<br />

σ(1Y ∨ σ)( f ∨ g ∨ h)(1 ∨ ν)ν ∼ σ(σ ∨ 1Y )( f ∨ g ∨ h)(ν ∨ 1)ν;<br />

σ(1Y ∨ σ)( f ∨ g ∨ h)(1 ∨ ν)ν = σ( f ∨ σ(g ∨ h)ν)ν<br />

σ(σ ∨ 1Y )( f ∨ g ∨ h)(ν ∨ 1)ν = σ(σ( f ∨ g)ν ∨ h)ν.<br />

The homotopy class [c] of the constant function at the base po<strong>in</strong>t y0 ∈ Y is the<br />

identity element of [S1 ,Y ]∗. We first prove that, if i : S1 ∨ S1 → S1 × S1 is the <strong>in</strong>clusion<br />

map and Δ : S1 → S1 × S1 is the diagonal function e2πti ↦→ (e2πti ,e2πti ),then<br />

iν ∼ Δ; <strong>in</strong> fact, this assertion is ensured by the homotopy H : S1 × I → S1 × S1 H(e 2πti �<br />

(e2πtsi ,e2π(t(2−s)i 1<br />

) 0 ≤ t ≤<br />

,s)=<br />

2<br />

(e2π[2t−1+s(1−t)]i ,e2π(st+1−s)i ) 1 2 ≤ t ≤ 1.<br />

We then conclude that, for every based map f : S 1 → Y ,<br />

σ( f ∨ c)ν = σ( f × c)iν ∼ σ( f × c)Δ = f<br />

σ(c ∨ f )ν = σ(c × f )iν ∼ σ(c × f )Δ = f .<br />

F<strong>in</strong>ally, we prove that every [ f ] ∈ [S1 ,Y ]∗ has an <strong>in</strong>verse. Indeed, for each e2πti ,we<br />

def<strong>in</strong>e h: S1 → Y by h(e2πti )= f (e2π(1−t)i ) and note that<br />

σ( f ∨ h)ν(e 2πti �<br />

f (e2π2ti 1 ) 0 ≤ t ≤<br />

)=<br />

2<br />

h(e2π(2t−1)i ) 1<br />

2 ≤ t ≤ 1;<br />

the function<br />

H(e 2πti ⎧<br />

y0 ⎪⎨<br />

0 ≤ t ≤<br />

,s)=<br />

⎪⎩<br />

s 2<br />

f (e2π(2t−s)i s ) 2 ≤ t ≤ 1 2<br />

f (e2π(2−2t−s)i ) 1 2−s<br />

2 ≤ t ≤ 2<br />

≤ t ≤ 1<br />

y0<br />

2−s<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!