15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IV.3 The Cap Product 167<br />

Proof. Let us suppose that c = {x0,...,xp,...,xp+q,...,xp+q+r};then<br />

d ∩ (e ∩ c)=d ∩ (e ∩{x0,...,xp,...,xp+q,...,xp+q+r})<br />

On the other hand,<br />

= d ∩ e({x0,...,xq}){xq,...,xp+q+r}<br />

= e({x0,...,xq})d({xq,...,xq+p}){xq+p,...,xq+p+r} .<br />

(d ∪ e) ∩ c =(d ∪ e) ∩{x0,...,xp,...,xp+q,...,xp+q+r}<br />

= e({x0,...,xq})d({xq,...,xq+p}){xq+p,...,xq+p+r} .<br />

The general result follows by l<strong>in</strong>earity. �<br />

(IV.3.2) Theorem. For every c ∈ Cp+q(K;Z), d∈ C p (K;Z), and e ∈ C q (K;Z), the<br />

equality<br />

(d ∪ e)(c)=e(d ∩ c)<br />

holds.<br />

Proof. This proof is similar to the previous one: we first show that the equation is<br />

true for c = {x0,...,xp+q} and then use l<strong>in</strong>earity for complet<strong>in</strong>g the proof. �<br />

(IV.3.3) Theorem. For every c ∈ Cp+q(K;Z) and d ∈ C p (K;Z),<br />

∂q(d ∩ c)=(−1) p (d ∩ ∂p+q(c) − ∂ p (d) ∩ c) .<br />

Proof. We beg<strong>in</strong> by not<strong>in</strong>g that an element x ∈ Cp+q(K;Z) is null if and only if, for<br />

every e ∈ C p+q (K;Z), wehavee(x)=0. Hence, it is enough to prove that<br />

e(∂q(d ∩ c)) = e((−1) p (d ∩ ∂p+q(c) − ∂ p (d) ∩ c))<br />

for any e. In fact, by Remark (IV.1.2) andbyTheorem(IV.3.2),<br />

On the other hand,<br />

e(∂q(d ∩ c)) = (∂ q−1 e)(d ∩ c)=(d ∪ ∂ q−1 (e))(c).<br />

e((d ∩ ∂p+q(c) − ∂ p (d) ∩ c)) = ((d ∪ e)(∂p+q(c)) − (∂ p (d) ∪ e)(c))<br />

= ∂ p+q−1 (d ∪ e)(c) − (∂ p (d) ∪ e)(c);<br />

however, by Theorem (IV.2.1), this last expression equals<br />

(∂ p (d) ∪ e)(c)+(−1) p (d ∪ ∂ q−1 (e))(c) − (∂ p (d) ∪ e)(c)=(−1) p (d ∪ ∂ q−1 (e)(c).<br />

�<br />

(IV.3.4) Corollary. The cap product <strong>in</strong>duces the follow<strong>in</strong>g homomorphisms:<br />

∩: Z p (K;Z) × Zp+q(B;Z) −→ Zq(K;Z) ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!