15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IV.2 The Cohomology R<strong>in</strong>g 161<br />

is such that<br />

(∀c p ∈ C p (K;Z)) c 0 ∪ c p = c p ∪ c 0 = c p .<br />

We conclude from these remarks that the cup product provides the graded Abelian<br />

group C ∗ (K;Z) with a structure of graded r<strong>in</strong>g with identity c 0 .<br />

(IV.2.1) Theorem. For every c p ∈ C p (K;Z) and c q ∈ C q (K;Z),<br />

holds.<br />

∂ p+q (c p ∪ c q )=∂ p (c p ) ∪ c q +(−1) p c p ∪ ∂ q (c q )<br />

Proof. We prove this result by comput<strong>in</strong>g ∂ p+q (c p ∪ c q ) on any generator<br />

{x0,...,xp+q+1} of Cp+q+1(K).<br />

∂ p+q (c p ∪ c q )({x0,...,xp+q+1})=(c p ∪ c q )(∂p+q+1({x0,...,xp+q+1}))<br />

=(c p ∪ c q �<br />

p+q+1<br />

) ∑<br />

i=0<br />

On the other hand,<br />

and<br />

Therefore,<br />

∂ p (c p ) ∪ c q ({x0,...,xp+q+1})=<br />

= ∂ p (c p )({x0,...,xp+1}) × c q ({xp+1,...,xp+q+1})<br />

� �<br />

p+1<br />

= c p<br />

∑<br />

= c p ∪ c q<br />

(−1) i {x0,...,�xi,...,xp+1}<br />

i=0<br />

�<br />

p<br />

∑(−1)<br />

i=0<br />

i {x0,...,�xi,...,xp+q+1}<br />

(−1) i �<br />

{x0,...,�xi,...,xp+q+1} ;<br />

× c q ({xp+1,...,xp+q+1})<br />

�<br />

+<br />

+(−1) p+1 c p ({x0,...,xp}) × c q ({xp+1,...,xp+q+1})<br />

c p ∪ ∂ q (c q )({x0,...,xp+q+1})=<br />

= c p ({x0,...,xp}) × c q<br />

�<br />

p+q+1<br />

∑<br />

i=p<br />

= c p ({x0,...,xp}) × c q ({xp+1,...,xp+q+1})+<br />

+(−1) p c p ∪ c q<br />

(−1) i �<br />

{xp,...,�xi,...,xp+q+1}<br />

�<br />

p+q+1<br />

∑ (−1)<br />

i=p+1<br />

i {x0,...,�xi,...,xp+q+1}<br />

�<br />

.<br />

∂ p+q (c p ∪ c q )({x0,...,xp+q+1})=<br />

=(∂ p (c p ) ∪ c q +(−1) p c p ∪ ∂ q (c q ))({x0,...,xp+q+1}) . �

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!