15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

III.5 Real Projective Spaces 135<br />

Let e i q be any q-block (recall that q > p). We beg<strong>in</strong> by remov<strong>in</strong>g cp from e i q:we<br />

write<br />

cp = c i p + f i p where c i p ⊂ e i q , f i p ⊂ e (q) � e i q .<br />

Hence, ∂p(c i p) ⊂ e i q; <strong>in</strong> addition,<br />

which leads to<br />

∂p(c i p) ⊂ ∂p(cp) ∪ ∂p( f i p) ⊂ e (p−1) ∪ (e (q) � e i q)=e (q) � e i q<br />

∂p(c i p ) ⊂ ei q ∩ (e(q) � e i q )= • e i q .<br />

Therefore, c i p ∈ Zp(e i q , • e i p );s<strong>in</strong>cep �= q,wehaveHp(e i q , • e i p )=0andso<br />

c i p = ∂p+1( f i p+1 )+gip , where f i p+1 ∈ Cp+1(ei q ) and gip ∈ Cp( • e i q ) .<br />

Hence, cp is homologous to<br />

cp − ∂p+1( f i p+1 )=ci p + f i p − (ci p − gi p )= f i p + gi p ;<br />

note that the closure of the p-cha<strong>in</strong> f i p + gip is conta<strong>in</strong>ed <strong>in</strong><br />

�<br />

e (q) � e i �<br />

p ∪ • e i q = e (q) � e i q ;<br />

s<strong>in</strong>ce f i p + gi p is homologous to cp, we may say that we have removed cp from the<br />

block e i p.<br />

Let us now remember that i �= j =⇒ e i q ∩e j q = /0; then, because ∂p+1( f i p+1 ) ⊂ ei q,<br />

the coefficient of each p-simplex of ∂p+1( f i p+1 ) <strong>in</strong> e j q is zero. Hence for every i, we<br />

may f<strong>in</strong>d a (p + 1)-cha<strong>in</strong> f i p+1 such that<br />

cp −∑ i<br />

∂p+1( f i p+1 ) ⊂ e(q−1) .<br />

We def<strong>in</strong>e the p-cha<strong>in</strong> fp = cp − ∑i ∂p+1( f i p+1 ); from the observations made at the<br />

beg<strong>in</strong>n<strong>in</strong>g of the proof, we conclude that there is a p-cha<strong>in</strong> c ′ p of K homologous to<br />

cp andsuchthat∂p(c ′ p ) ⊂ e(p) .<br />

Now the proof proceeds as before: let ei p be an arbitrary p-block; we write<br />

c ′ p = ki p + hi p where ki p ⊂ ei p , hi p ⊂ e(p) � e i p and hi p ⊂ e(p) � e i p .<br />

As before, ki p ∈ Zp(ei p , • ei p ).However,Zp(ei p , • ei p ) ∼ = Z;letβi p be one of its generators;<br />

then, ki p = miβ i p for a certa<strong>in</strong> nonzero <strong>in</strong>teger mi. Repeat<strong>in</strong>g this procedure for each<br />

i we obta<strong>in</strong> a cha<strong>in</strong> of p-blocks with<br />

c ′ p −∑ i<br />

miβ i p ⊂ e(p−1) ;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!