15.01.2013 Views

Simplicial Structures in Topology

Simplicial Structures in Topology

Simplicial Structures in Topology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

86 II <strong>Simplicial</strong> Complexes<br />

Therefore, the set {θn | n ∈ Z} <strong>in</strong>duces a homomorphism<br />

Hn(θn): Hn(K,L;Z) → Hn(K,L;Z) .<br />

On the other hand, θn is an isomorphism for each n ≥ 0 (it is <strong>in</strong>jective by def<strong>in</strong>ition<br />

and surjective because θnμn = qn). Therefore, the two types of homology groups<br />

are isomorphic.<br />

Let<br />

{Ki =(Xi,Φi) |i = 1,...,p}<br />

be a f<strong>in</strong>ite set of simplicial complexes; we choose a base vertex x i 0 ∈ Xi for each Ki<br />

and construct the wedge sum of all Ki as the simplicial complex<br />

that is to say<br />

∨ p<br />

i=1Ki n�<br />

: =<br />

i=1<br />

({x 1 0 }×...× Ki × ...×{x p<br />

∨ p<br />

i=1Ki =(∨ p p<br />

i=1Xi,∨ i=1Φi). The next theorem shows that the homology of the wedge sum of simplicial complexes<br />

acts <strong>in</strong> a special way.<br />

(II.4.9) Theorem. For every q ≥ 1,<br />

Hq(∨ p<br />

i=1 Ki;Z) ∼ = ⊕ p<br />

i=1 Hq(Ki;Z).<br />

Proof. It is enough to prove this result for p = 2. The short exact sequence of cha<strong>in</strong><br />

complexes<br />

C(K1) ��<br />

i ��<br />

C(K1 ∨ K2)<br />

<strong>in</strong>duces a long exact sequence of homology groups<br />

0 })<br />

k ��<br />

��<br />

C(K1 ∨ K2,K1;Z)<br />

...→ Hn(K1;Z) Hn(i)<br />

−→ Hn(K1 ∨ K2;Z) q∗(n)<br />

−→ Hn(K2;Z) λn<br />

−→ Hn−1(K1;Z) → ...<br />

��<br />

(see Remark (II.4.8)).<br />

complexes<br />

Let us now exam<strong>in</strong>e how the homomorphisms of cha<strong>in</strong><br />

C(K1)<br />

i<br />

C(K1 ∨ K2)<br />

C(K1 ∨ K2)<br />

k ��C(K1<br />

∨ K2,K1;Z) ∼ = C(K2)<br />

are def<strong>in</strong>ed on simplexes (<strong>in</strong> other words, the generators of the free groups that<br />

concern us):<br />

(∀σ 1 n ∈ Φ1) <strong>in</strong>(σn)=σ 1 n ×{x2 0 }<br />

(∀σ 1 n ×{x 2 0}∈Φ1 ×{x 2 0}) kn(σ 1 n ×{x 2 0} = 0<br />

(∀{x 1 0 }×σ 2 n ∈{x1 0 }×Φ2) kn({x 1 0 }×σ 2 n )=σ 2 n .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!