14.01.2013 Views

Abstracts - Dipartimento di Elettronica Applicata

Abstracts - Dipartimento di Elettronica Applicata

Abstracts - Dipartimento di Elettronica Applicata

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Fifth Italian Workshop on<br />

Metamaterials and Special Materials for<br />

Electromagnetic Applications and TLC<br />

&<br />

IV Italian Workshop “The Finite Element<br />

Method Applied to Electrical and Information<br />

Engineering”<br />

Rome 13-15 December, 2010<br />

<strong>Abstracts</strong><br />

Organized by “Roma Tre” University<br />

in cooperation with the University of Naples “Federico II”, the<br />

University of Sannio, the University of Salerno, and the Microwave<br />

Engineering Center for Space Applications (MECSA)<br />

1


Technical sponsors<br />

Gold sponsors<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Printed: Rome, Italy, December 2010<br />

2


Meta 2010 - Committees<br />

Chairmen<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

L. Vegni, “Roma Tre” University<br />

A. Toscano, “Roma Tre” University<br />

Scientific Committee<br />

F. Bilotti, “Roma Tre” University (chairman)<br />

G. Abbate, University of Naples "Federico II"<br />

A. Andreone, University of Naples "Federico II"<br />

F. Frezza, MECSA - "Sapienza" University of Rome<br />

V. Gal<strong>di</strong>, University of Sannio<br />

I.M. Pinto, University of Sannio<br />

A. Scaglione, University of Salerno<br />

G. Vecchi, Polytechnic of Turin, liaison with IEEE<br />

Local Committee<br />

M. Barbuto, “Roma Tre” University<br />

A. Monti, “Roma Tre” University<br />

D. Ramaccia, “Roma Tre” University<br />

3


FEM 2010 - Committees<br />

Chairmen<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

G. Schettini - Università "Roma Tre"<br />

A. Di Napoli - Università "Roma Tre"<br />

Scientific Committee<br />

S. Caorsi - Università <strong>di</strong> Pavia<br />

M. Feliziani - Università dell'Aquila<br />

G. Ghione - Politecnico <strong>di</strong> Torino<br />

R. Graglia - Politecnico <strong>di</strong> Torino<br />

G. Molinari - Università <strong>di</strong> Genova<br />

G. Pelosi - Università <strong>di</strong> Firenze<br />

G. Rubinacci - Università "Federico II" <strong>di</strong> Napoli<br />

Organizing Committee<br />

A. Salvini - Università "Roma Tre"<br />

A. Toscano - Università "Roma Tre"<br />

L. Pajewski - Università "Roma Tre"<br />

F. Riganti Fulginei - Università "Roma Tre"<br />

Secretary<br />

L. Di Palma - Università "Roma Tre"<br />

G. Pulcini - Università "Roma Tre"<br />

D. Ramaccia - Università "Roma Tre"<br />

G. Rossi - Università "Roma Tre"<br />

4


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Index<br />

Meta 2010 - Introduction 6<br />

Meta 2010 - Foreword 7<br />

FEM 2010 - Introduction 8<br />

FEM 2010 - Foreword 9<br />

Scientific Program<br />

Session MTM-1<br />

10<br />

Recent advances in Metamaterials and Photonic Quasi-Crystals<br />

Session MTM-2<br />

17<br />

Artificial electromagnetic materials: phenomenology and applications<br />

Session FEM-1<br />

20<br />

Magnetic device modeling<br />

Session FEM-2<br />

25<br />

Biome<strong>di</strong>cal applications and large scale problems<br />

Session MTM-3<br />

29<br />

Microwave metamaterial applications I<br />

Session MTM-4<br />

34<br />

Non-linear metamaterials<br />

Session FEM-3<br />

38<br />

Methods and solvers<br />

Session FEM-4<br />

43<br />

Design and applications<br />

Session MTM-5<br />

47<br />

Microwave metamaterial applications II<br />

Session MTM-6<br />

52<br />

Optical metamaterial applications<br />

Session MTM-7<br />

56<br />

Metamaterials theory and modeling 61<br />

Authors’ Index 67<br />

5


Meta 2010 - Introduction<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

The Fifth Italian Workshop on Metamaterials and Special Materials for<br />

Electromagnetic Applications and TLC continues the series of successful<br />

metamaterial meetings, following Florence (2003), Rome (2004, 2006), and Naples<br />

(2008). This year the event is jointly held with the IV Italian Workshop “The Finite<br />

Element Method Applied to Electrical and Information Engineering”. The workshop,<br />

hosted and organized by “Roma Tre” University in cooperation with “Federico II”<br />

University of Naples, Salerno University, Sannio University, and the Microwave<br />

Engineering Center for Space Applications (MECSA), takes place in the charming<br />

atmosphere of Rome during Christmas time.<br />

6


Meta 2010 Foreword<br />

La<strong>di</strong>es and Gentlemen,<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

welcome to the Fifth Workshop on Metamaterials and Special Materials for<br />

Electromagnetic Applications and TLC, held in Rome for the third time. As the<br />

chairmen of the workshop, we are very glad of welcoming all of you to this venue and<br />

to host these three exciting days of talks on metamaterials and special material<br />

applications in electromagnetics. This year the workshop is held jointly with the IV<br />

Italian Workshop “The Finite Element Method Applied to Electrical and Information<br />

Engineering”, that will be introduced in the afternoon by Profs. Giuseppe Schettini<br />

and Augusto Di Napoli.<br />

This workshop is aimed to present the recent research advances in the metamaterials<br />

and special materials area. It includes theoretical, numerical, and experimental<br />

contributions to the understan<strong>di</strong>ng of the behavior of several classes of metamaterials<br />

and to their potential applications in components, devices, and antennas at microwave<br />

up to optical frequencies. There is evidently a renewed interest around the scientific<br />

community in using and designing artificial structures to develop composite materials<br />

that mimic known material responses and that have new, physically realizable<br />

response functions that are not rea<strong>di</strong>ly available in nature. Starting from the word<br />

itself, meta-materials, it is evident how physicists, chemists and engineers involved in<br />

this field are investigating new possibilities for going beyond the limits that natural<br />

materials have in <strong>di</strong>fferent applications.<br />

This year the Scientific Committee, chaired by Prof. Filiberto Bilotti, has accepted 24<br />

abstracts, all of them from excellent research schools and with a very high quality<br />

level. This is a clear in<strong>di</strong>cation of the interest that metamaterials and special materials<br />

are raising at the moment in Italy. We are also very proud to have here three among<br />

the most internationally recognized scientists lea<strong>di</strong>ng the research on Metamaterials:<br />

Prof. Nikolay Zheludev from the University of Southampton, UK, Prof. Rick<br />

Ziolkowski from the University of Arizona, USA, and Prof. Silvio Hrabar from<br />

Zagreb University, Croatia. Thank you for being here and for having accepted our<br />

invitation.<br />

Finally, we would like to thank the IEEE Italy Section for technically supporting this<br />

event, Anosoft and CST for the financial support as Gold Sponsors, the members of<br />

the scientific and the organizing committees for the efforts they have spent for making<br />

this event possible, the Rector of “Roma Tre” University who gave us this beautiful<br />

room where we meet today, the authors of the papers for the high-level contributions<br />

they are going to present, and all of you for coming here in Rome to attend this event.<br />

We sincerely hope that you will enjoy your attendance to this workshop and to the<br />

social event we have organized. We will not steal more time to the sessions.<br />

Welcome to Rome!<br />

Lucio Vegni & Alessandro Toscano<br />

Chairmen of the Fifth Italian Workshop<br />

on Metamaterials and Special Materials for Electromagnetic Applications and TLC<br />

7


FEM 2010 - Introduction<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

The Fourth Italian Workshop on the Finite Element Method applied to Electrical and<br />

Information Engineering continues the series of successful meetings, following<br />

Cassino (2001), Genova (2004), and Rome (2007). This year, the vent is jointly held<br />

with the Fifth Italian Workshop on Metamaterials and Special Materials for<br />

Electromagnetic Applications and TLC. The workshop, hosted and organized by<br />

“Roma Tre” University takes place in the charming atmosphere of Rome during<br />

Christmas time.<br />

8


FEM 2010 Foreword<br />

La<strong>di</strong>es and Gentlemen,<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

welcome to the Fourth Italian Workshop on Finite Element Method applied to<br />

Electrical and Information Engineering, held in Rome for the second time. We are<br />

very glad of welcoming all of you to this event and have the occasion of <strong>di</strong>scussing<br />

about so exciting arguments on finite elements applied to electrical and information<br />

engineering during the workshop.<br />

This year the workshop is jointly held with Fifth Italian Workshop on Metamaterials<br />

and Special Materials for Electromagnetic Applications and TLC, that has the<br />

opening session in the morning.<br />

This workshop is aimed to present the recent research advances in the finite element<br />

method and its advanced applications. It includes numerical and experimental<br />

contributions to the comprehension of the behavior of several kinds of devices and to<br />

their applications as magnetic sensors, devices, electrical machines, antennas, and<br />

gui<strong>di</strong>ng components at microwave up to optical frequencies. The interest in studying<br />

new theoretical and numerical extensions of the method is renewing together with its<br />

application to an increasing number of <strong>di</strong>fferent and new fields. Among these we can<br />

cite magnetic modeling, biome<strong>di</strong>cal applications, microwave components,<br />

metamaterials, etc.<br />

This year the Scientific Committee has accepted 16 abstracts, all of them from<br />

excellent research schools and with a very high quality level. This is a clear in<strong>di</strong>cation<br />

of the interest that the finite element method is an active area of research in Italy. We<br />

are also very proud to have here one of the most internationally recognized scientists<br />

lea<strong>di</strong>ng the research on magnetic devices: Prof. Norio Takahashi from Okayama<br />

University, Japan. Thank you for being here and for having accepted our invitation.<br />

Finally, we would like to thank the IEEE Italy Section for technically supporting this<br />

event, Ansoft and CST for the financial support as Gold Sponsors, the members of the<br />

scientific and the organizing committees for the efforts they have spent for making<br />

this event possible, the Rector of “Roma Tre” University who gave us this beautiful<br />

room where we meet today, the authors of the papers for the high-level contributions<br />

they are going to present, and all of you for coming here in Rome to attend this event.<br />

We sincerely hope that you will enjoy your attendance to this workshop and to the<br />

social event we have organized. We will not steal more time to the sessions.<br />

Welcome to Rome!<br />

Augusto Di Napoli & Giuseppe Schettini<br />

Chairmen of the Fourth Italian Workshop<br />

on Finite Element Method applied to Electrical and Information Engineering<br />

9


08:30 – 09:20 Registration<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Scientific Program<br />

Monday 13 December 2010<br />

09:20 – 09:30 Opening Ceremony of Meta 2010<br />

Introduction of the Chairmen, L. Vegni and A. Toscano (“Roma<br />

Tre” University)<br />

09:30 – 10:50 Session MTM-1 – Recent advances in Metamaterials and<br />

Photonic Quasi-Crystals<br />

Chairperson: G. Schettini, “Roma Tre” University<br />

09:30-10:10<br />

Invited paper – N. Zheludev<br />

The road ahead for metamaterials: nonlinear, switchable and quantum<br />

metameterials<br />

10:10-10-30<br />

G. Strangi, A. De Luca, and R. Bartolino<br />

Gain induced optical transparency in meta-subunits<br />

10:30-10:50<br />

A. Ricciar<strong>di</strong>, I. Gallina, M. Pisco, S. Campopiano, G. Castal<strong>di</strong>, A. Cusano, and<br />

V. Gal<strong>di</strong><br />

Numerical and experimental stu<strong>di</strong>es on guided resonances in photonic<br />

quasicrystals<br />

10:50 – 11:20 Coffee break<br />

11:20 – 12:40 Session MTM-2 – Artificial electromagnetic materials:<br />

phenomenology and applications<br />

Chairperson: V. Gal<strong>di</strong>, University of Sannio<br />

11:20-11:40<br />

G. Parisi, D. Sammito, M. Natali, S. De Zuani, D. Garoli, and F. Romanato<br />

Parametrical analysis of metamaterials fishnet<br />

11:40-12:00<br />

E. Di Gennaro, T. Priya Rose, G. Zito, G. Abbate, and A. Andreone<br />

Effect of localized states on photonic quasicrystal waveguides<br />

10


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

12:00-12:20<br />

A.G. Chiariello, C. Forestiere, A. Maffucci, and G. Miano<br />

Scattering properties of carbon nanotube arrays<br />

12:20-12:40<br />

I. Gallina, G. Castal<strong>di</strong>, V. Gal<strong>di</strong>, A. Alù, and N. Engheta<br />

Image formation/<strong>di</strong>splacement and field tunneling in metamaterial<br />

transformation slabs<br />

12:40 – 13:50 Lunch<br />

13:50 – 14:00 Opening Ceremony of FEM 2010<br />

Introduction of the Chairmen, A. Di Napoli and G. Schettini (“Roma<br />

Tre” University)<br />

14:00 – 15:20 Session FEM-1 – Magnetic device modeling<br />

Chairperson: A. Salvini, “Roma Tre” University<br />

14:00-14:40<br />

Invited paper – N. Takahashi<br />

Application of ON/OFF method to new conceptual design of magnetic devices<br />

14:40-15:00<br />

C. Ragusa, B. Montrucchio, V. Giovara, F. Khan, O. Khan, M. Repetto, and B.<br />

Xie<br />

Implementation of a 3D micromagnetic code on a parallel and <strong>di</strong>stributed<br />

architecture<br />

15:00-15:20<br />

S. Coco, A. Laudani, F. Riganti Fulginei, A. Salvini<br />

Neural-FEM approach for the analysis of hysteretic materials in unbounded<br />

domain<br />

15:20 – 15:50 Coffee break<br />

15:50 – 16:50 Session FEM-2 – Biome<strong>di</strong>cal applications and large scale<br />

problems<br />

Chairperson: N. Takahashi, Okayama University<br />

15:50-16:10<br />

S. Coco and A. Laudani<br />

Finite Element model of charge transport across ionic channels<br />

11


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

16:10-16:30<br />

S. Tricarico, M. Goffredo, M. Schmid, S. Conforto, F. Bilotti, T. D’Alessio,<br />

and L. Vegni<br />

Transient model of the human upper limb under surface electrical stimulation<br />

16:30-16:50<br />

B. Bisceglia, F. De Terlizzi, A. Scaglione, NF. Tallarino<br />

Alterazione della elettroporazione in ortope<strong>di</strong>a. Simulazione del trattamento<br />

<strong>di</strong> masse tumorali<br />

16:50-17:10<br />

G. Rubinacci, A. Tamburrino, and S. Ventre<br />

Large scale computation for source integral equations<br />

12


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Tuesday 14 December 2010<br />

09:30 – 10:50 Session MTM-3 – Microwave metamaterial applications I<br />

Chairperson: L. Vegni, “Roma Tre” University<br />

9:30-10:10<br />

Invited paper – R. Ziolkowski<br />

Multi-functional, planar metamaterial-inspired near-field resonant parasitic<br />

antennas<br />

10:10-10:30<br />

E. Di Gennaro, I. Gallina, A. Andreone, G. Castal<strong>di</strong>, and V. Gal<strong>di</strong><br />

Cut-wire-induced enhanced transmission through sub-wavelength slits<br />

10:30-10:50<br />

D. Ramaccia, F. Bilotti, and A. Toscano<br />

Design formulas of High-Impedance Surfaces with circular patch arrays<br />

10:50 – 11:20 Coffee break<br />

11:20 – 12:40 Session MTM-4 – Non-linear metamaterials<br />

Chairperson: A. Andreone, University of Naples “Federico II”<br />

11:20-11:40<br />

A. Ciattoni, C. Rizza, and E. Palange<br />

Multistability at arbitrary low optical intensities through epsilon-near-zero<br />

nonlinear metamaterial<br />

11:40-12:00<br />

M. Centini, A. Benedetti, C. Sibilia, M. Bertolotti<br />

Optimized second harmonic generation in gold square rod chains<br />

12:00-12:20<br />

A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou<br />

Tuning concept of PDMS nanocomposite material for optical fiber<br />

enhancement<br />

12:20-12:40<br />

N. Chikhi, E. Di Gennaro, A. Andreone, E. Esposito, I. Gallina, G. Castal<strong>di</strong>,<br />

and V. Gal<strong>di</strong><br />

Tunable metamaterials operating in the terahertz region<br />

12:40 – 14:00 Lunch<br />

13


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

14:00 – 15:00 Session FEM-3 – Methods and solvers<br />

Chairperson: F. Bilotti, “Roma Tre” University<br />

14:00-14:20<br />

G. Aiello, S. Alfonzetti, S. A. Rizzo, and N. Salerno<br />

A Comparison between Hybrid Methods: FEM-BEM versus FEM-DBCI<br />

14:20-14:40<br />

G. Borzì<br />

A comparison of <strong>di</strong>rect methods for the solution of finite element systems on<br />

shared memory computers<br />

14:40-15:00<br />

C. Molar<strong>di</strong>, E. Coscelli, F. Poli, A. Cucinotta, S. Selleri<br />

C-language-based 2D-optical mode solver<br />

15:00 – 15:20 Sponsor presentation<br />

15:20 – 15:50 Coffee break<br />

15:50 – 17:10 Session FEM-4 – Design and applications<br />

Chairperson: S. Selleri, University of Florence<br />

15:50-16:10<br />

S. Ceccuzzi, S. Meschino, F. Mirizzi, L. Pajewski, C. Ponti, and G. Schettini<br />

A FEM analysis of microwave components for oversized waveguides<br />

16:10-16:30<br />

U. d’Elia, G. Pelosi, S. Selleri, R. Taddei<br />

Finite Element design of CNT-based multilayer absorbers<br />

16:30-16:50<br />

S. Coco, A. Laudani, G. Pulcini, F. Riganti Fulginei, A. Salvini<br />

Optimization of multistage depressed collectors by using FEM and METEO<br />

16:50-17:10<br />

D. Ramaccia, F. Bilotti, and A. Toscano<br />

Parametric bandwidth analysis of an Artificial Magnetic Conductor surface<br />

20:00 – 23:00 Social Dinner at the restaurant “Al Biondo Tevere”<br />

14


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Wednesday 15 December 2010<br />

09:30 – 10:50 Session MTM-5 – Microwave metamaterial applications II<br />

Chairperson: R. Ziolkowski, University of Arizona<br />

09:30-10:10<br />

Invited paper – S. Hrabar<br />

Metamaterials based on non-Foster elements<br />

10:10-10:30<br />

L. Di Palma, F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, G. Rossi and G.<br />

Schettini<br />

Experimental investigations on woodpile EBG metamaterials<br />

10:30-10:50<br />

F. Bilotti, L. Di Palma, and L. Vegni<br />

Analytical model of connected bi-omega structures for enhanced microwave<br />

transmission<br />

10:50 – 11:20 Coffee break<br />

11:20 – 12:40 Session MTM-6 – Optical metamaterial applications<br />

Chairperson: F. Frezza, “Sapienza” University<br />

11:20-11:40<br />

A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou<br />

Pillar type PDMS nanocomposite optical antenna for liquid detection systems<br />

11:40-12:00<br />

R. Marinelli and E. Palange<br />

Optical performances of micron-sized CMOS image sensors using metallic<br />

planar lenses<br />

12:00-12:20<br />

A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti<br />

Second harmonic generation in gold nanoantennas<br />

12:20-12:40<br />

S. Tricarico, F. Bilotti, and L. Vegni<br />

Controlling optical forces on nanoparticles through metamaterials<br />

12:40 – 14:00 Lunch<br />

15


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

14:00 – 15:40 Session MTM-7 – Metamaterials theory and modeling<br />

Chairperson: S. Hrabar, University of Zagreb<br />

14:00-14:20<br />

P. Fernandes, M. Ottonello, and M. Raffetto<br />

Some comments on the solution of the linear algebraic systems defined by the<br />

finite element method when applied to electromagnetic problems involving<br />

bianisotropic me<strong>di</strong>a<br />

14:20-14:40 (withdrawn)<br />

G. Conte, G. Finocchio, A. Faba, A. Prattella, B. Azzerboni, E. Cardelli<br />

Double negative metamaterials based on ferromagnetic microwire: a<br />

numerical study<br />

14:20-14:40<br />

G. Ruffato and F. Romanato<br />

Near-field numerical analysis of Surface Plasmon Polariton propagation on<br />

metallic gratings<br />

14:40-15:00<br />

A. Massaro, D. Caratelli, A. Yarovoy, R. Cingolani, and A. Athanassiou<br />

Accurate circuit modeling for plasmon probe design<br />

15:00-15:20<br />

P. Zilio, D. Sammito, and F. Romanato<br />

Role of resonances of <strong>di</strong>gital plasmonic gratings in absorption profile<br />

remodulation<br />

16


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-1<br />

Recent advances in Metamaterials and Photonic Quasi-Crystals<br />

Chairperson: G. Schettini, “Roma Tre” University<br />

09:30-10:10<br />

Invited paper – N. Zheludev<br />

The road ahead for metamaterials: nonlinear, switchable and quantum<br />

metameterials<br />

10:10-10-30<br />

G. Strangi, A. De Luca, and R. Bartolino<br />

Gain induced optical transparency in meta-subunits<br />

10:30-10:50<br />

A. Ricciar<strong>di</strong>, I. Gallina, M. Pisco, S. Campopiano, G. Castal<strong>di</strong>, A. Cusano, and<br />

V. Gal<strong>di</strong><br />

Numerical and experimental stu<strong>di</strong>es on guided resonances in photonic<br />

quasicrystals<br />

17


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Gain Induced Optical Transparency<br />

in Meta-Subunits<br />

Giuseppe Strangi, Antonio De Luca and Roberto Bartolino<br />

LICRYL (Liquid Crystals Laboratory, IPCF-CNR)<br />

Center of Excellence CEMIF.CAL and Department of Physics,<br />

University of Calabria 87036 Rende (CS), Italy –<br />

Giuseppe.Strangi@fis.unical.it<br />

This work is aimed to compensate absorptive losses in optical metamaterials<br />

based on gain functionalized core shell gold nanoparticles. In particular,<br />

resonant energy transfer from organic fluorescent molecules to noble metal<br />

nanoparticles properly designed to create reconfigurable optical metamaterials<br />

via self-assembling routes is reported. Multiple experimental investigations<br />

show that losses at optical frequencies, mainly due to plasmon-ra<strong>di</strong>ation field<br />

coupling, can be partly compensated. Resonant excitation energy transfer<br />

occurs via non-ra<strong>di</strong>ative process, by proper overlapping gain and plasmonic<br />

spectra and by optimizing size-ratios. The gain assistance of plasmonic<br />

elements through non-ra<strong>di</strong>ative processes is emphasized by Fluorescence<br />

quenching, enhanced Scattering Rayleigh, mitigation of ra<strong>di</strong>ation damping and<br />

related ra<strong>di</strong>ative and non-ra<strong>di</strong>ative effects.<br />

References:<br />

[1] M.I. Stockman , Nature Photonics, 2, 327, (2008)<br />

[2] Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104 (2009).<br />

[3] G. Strangi, A. De Luca, S. Ravaine and R. Bartolino, submitted to Phys. Rev. Lett.<br />

18


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Numerical and Experimental Stu<strong>di</strong>es<br />

on Guided Resonances in Photonic Quasicrystals<br />

Armando Ricciar<strong>di</strong> (1) , Ilaria Gallina (2) , Marco Pisco (2) ,<br />

Stefania Campopiano (1) , Giuseppe Castal<strong>di</strong> (2) , Andrea Cusano (2) ,<br />

and Vincenzo Gal<strong>di</strong> (2)<br />

(1) University of Naples “Parthenope”, Department for Technologies<br />

Naples, Italy – E-mail: armando.ricciar<strong>di</strong>@uniparthenope.it,<br />

stefania.campopiano@uniparthenope.it<br />

(2) University of Sannio, Department of Engineering<br />

Benevento, Italy – E-mail: ilaria.gallina@unisannio.it, pisco@unisannio.it,<br />

castal<strong>di</strong>@unisannio.it, acusano@unisannio.it, vgal<strong>di</strong>@unisannio.it<br />

Guided resonances (GRs) [1] in photonic crystal (PC) slabs have been the<br />

subject of several recent stu<strong>di</strong>es. Such resonances can be observed in the<br />

transmittance/reflectance response of a plane-wave-excited PC slab as narrow<br />

Fano-like resonant line shapes superimposed on a smoothly varying<br />

background, and stem from the interference between the <strong>di</strong>rectly<br />

transmitted/reflected wave and the waves originating from the excited leaky<br />

modes.<br />

Here, we compactly review the salient results from a series of ongoing<br />

investigations [2-5] on GRs in aperio<strong>di</strong>cally-ordered “photonic quasicrystal”<br />

(PQC) slabs, intrinsically tied to the concept of “quasicrystal” in solid-state<br />

physics [6]. In particular, we show numerically [2] and experimentally [5]<br />

that, in spite of the seemingly necessary spatial perio<strong>di</strong>city, GRs could also be<br />

observed in PC slabs with quasiperio<strong>di</strong>c supercells based on the Ammann-<br />

Beenker (octagonal) tiling. Besides the phenomenological implications, our<br />

results endow with new perspectives and degrees of freedom in the defectengineering<br />

of GRs [3], and pave the way for new developments and<br />

applications (e.g., to sensing [4]).<br />

References<br />

[1] S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal<br />

slabs,” Phys. Rev. B, 65, 235112, 2002<br />

[2] A. Ricciar<strong>di</strong>, I. Gallina, S. Campopiano, G. Castal<strong>di</strong>, M. Pisco, V. Gal<strong>di</strong>, and A. Cusano,<br />

“Guided resonances in photonic quasicrystals,” Opt. Express, 17, 6335-6346, 2009.<br />

[3] I. Gallina, M. Pisco, A. Ricciar<strong>di</strong>, S. Campopiano, G. Castal<strong>di</strong>, A. Cusano, and V. Gal<strong>di</strong>,<br />

“Guided resonances in photonic crystals with point-defected aperio<strong>di</strong>cally-ordered<br />

supercells,”Opt. Express, 17, 19586-19598, 2009.<br />

[4] M. Pisco, A. Ricciar<strong>di</strong>, I. Gallina, G. Castal<strong>di</strong>, S. Campopiano, A. Cutolo, A. Cusano, and<br />

V. Gal<strong>di</strong>, “Tuning efficiency and sensitivity of guided resonances in photonic crystals and<br />

quasi-crystals: a comparative study,” Opt. Express, 18, 17280-17293, 2010<br />

[5] A. Ricciar<strong>di</strong>, M. Pisco, I. Gallina, S. Campopiano, V. Gal<strong>di</strong>, L. O’ Faolain, T. F. Krauss,<br />

and A. Cusano, “Experimental evidence of guided resonances in photonic crystals with<br />

aperio<strong>di</strong>cally-ordered supercells,” to be published in Opt. Lett., 2010<br />

[6] M. Senechal, Quasicrystals and Geometry, Cambridge University Press, Cambridge, UK,<br />

1995.<br />

19


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-2<br />

Artificial electromagnetic materials: phenomenology and<br />

applications<br />

Chairperson: V. Gal<strong>di</strong>, University of Sannio<br />

11:20-11:40<br />

G. Parisi, D. Sammito, M. Natali, S. De Zuani, D. Garoli, and F. Romanato<br />

Parametrical analysis of metamaterials fishnet<br />

11:40-12:00<br />

E. Di Gennaro, T. Priya Rose, G. Zito, G. Abbate, and A. Andreone<br />

Effect of localized states on photonic quasicrystal waveguides<br />

12:00-12:20<br />

A.G. Chiariello, C. Forestiere, A. Maffucci, and G. Miano<br />

Scattering properties of carbon nanotube arrays<br />

12:20-12:40<br />

I. Gallina, G. Castal<strong>di</strong>, V. Gal<strong>di</strong>, A. Alù, and N. Engheta<br />

Image formation/<strong>di</strong>splacement and field tunneling in metamaterial<br />

transformation slabs<br />

20


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Parametrical analysis of metamaterials fish-net<br />

Giuseppe Parisi (1,2) , Davide Sammito (2,3) , Marco Natali (4) , Stefano De<br />

Zuani (1,2) , Denis Garoli (1,2,3) and Filippo Romanato (1,2,3)<br />

(1) University of Padova, Department of Physics<br />

Padova, Italy – E-mail: giuseppe.parisi@unipd.it<br />

(2) LaNN, Laboratory for Nanofabrication of Nanodevices<br />

Padova, Italy<br />

(3) IOM-TASC Natl. Lab. CNR-INFM, Trieste, Italy<br />

(4) CNR-ICIS, Padova, Italy<br />

Recently, the fabrication and optimization of nano-hole arrays in noble metal<br />

layers has attracted much attention both because of the interesting new physics<br />

associated with them and for their potential applications in nano-optics and<br />

biosensing [1,2]. Electric tuneability of the negative refractive index<br />

wavelength is theoretically foreseen to be possible by use of <strong>di</strong>electrics with<br />

electro-optical properties such as PZT. Here we report a design and a<br />

parametrical analysis of metamaterial fishnet in the optical spectral range [3].<br />

In particular a dependence analysis on the geometric features of the fishnet is<br />

carried out for both the magnetic and the electric resonance. We found out that<br />

a sharp negative resonance (electric in nature) is down-shifted to 200 nm by a<br />

stronger resonance (magnetic in origin). This split the bandwidth of negative<br />

refractive index in two frequency domains. For appropriately designed of<br />

squared hole-array structures, the frequency of the magnetic resonance<br />

coincides with a region of negative effective permittivity and a negative index<br />

of refraction is seen in the simulation. In figure 1 the simulated effective<br />

transmittance, reflectance and absorbance of the proposed structure are shown.<br />

We also show in figure 2 how the electric and magnetic resonance depend by<br />

the squared hole of the fishnet.<br />

Fig. 1. Simulated transmittance, reflectance<br />

and absorbance.<br />

21<br />

Fig. 2. Simulated dependence of negative<br />

refractive index on the hole size<br />

References<br />

[1] N.C.Lindquist , A. Lesuffleur, and H.Im Oh, Lab Chip, 9 (2009) 382 - 387.<br />

[2] J. Ji, G. O'Connel, D.J.D. Carter and D.N. Larson, . Anal. Chem., 80 (2008) 2491-2498<br />

[3] J. Valentine, S. Zhang, T.Zentgraf, E. Ulin-Avilal, D.A. Genov, G. Bartal, X. and Zhang,<br />

Nature 455 (2008) 367-379.


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Effect of Localized States on Photonic<br />

Quasicrystal Waveguides<br />

Emiliano Di Gennaro (1) , Priya Rose T. (1) , Gianluigi Zito (2) , Giancarlo<br />

Abbate (1) , and Antonello Andreone (1)<br />

(1) CNR-SPIN and University of Naples “Federico II,” Department of Physics<br />

Naples, Italy – E-mail: emiliano@na.infn.it, priyarose@na.infn.it,<br />

abbate@na.infn.it, andreone@unina.it<br />

(2) CNR-ICIB “E. Caianiello”,<br />

Pozzuoli (NA), Italy – E-mail: zito.gianluigi@libero.it<br />

In recent years, photonic quasicrystals have attracted enormous interest in the<br />

field of photonics of complex structured materials. The lack of translational<br />

symmetry into quasiperio<strong>di</strong>c and aperio<strong>di</strong>c crystals is compensated by longrange<br />

quasiperio<strong>di</strong>c translational order and high rotational symmetries not<br />

achievable by conventional perio<strong>di</strong>c crystals. Photonic Quasicrystals (PQCs)<br />

may possess large photonic bandgaps (PBGs) [1,2] with very interesting<br />

properties of light transmission, wave gui<strong>di</strong>ng and localization [3] that can be<br />

exploited in a wide variety of electro-optical and photonic applications.<br />

In this work we study the PBG properties of an octagonal interferential PQC.<br />

The 2D quasiperio<strong>di</strong>c pattern is obtained by placing ideal <strong>di</strong>electric cylinders<br />

(infinitely long) where the interference of 8 coherent light beams shows its<br />

local maxima [4]. In order to characterize the in-plane PBG properties of the<br />

abovementioned structure, we have designed and performed a series of<br />

experiments in the microwave regime (8-20 GHz). The sample under study<br />

consists of alumina cylindrical rods in air inserted in a parallel plate<br />

waveguide. Transmittance and field maps are obtained using an x-y robot and<br />

two <strong>di</strong>pole antennas connected to a two-port vectorial network analyzer<br />

(VNA) HP 8720C [5]. We focus on the response of a linear waveguide,<br />

whose transmittance can be controlled by tuning the <strong>di</strong>electric properties of<br />

the central post. Experimental results are compared and found in very good<br />

agreement with numerical simulations obtained by finite <strong>di</strong>fferences timedomain<br />

technique.<br />

References<br />

[1] M.E. Zoorob , M.D.B. Charlton, G.J. Parker, J.J. Baumberg, M.C. Netti, “Complete<br />

photonic bandgaps in twelve-fold symmetric quasicrystals” Nature 404, 740, 2000<br />

[2] Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional<br />

Photonic Quasicrystals” , Phys. Rev. Lett. 80, 956, 1998<br />

[3] S. S. M. Cheng, L. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties<br />

of two-<strong>di</strong>mensional quasiperio<strong>di</strong>c photonic band-gap systems," Phys. Rev. B 59, 4091,<br />

1999<br />

[4] G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, "Two<strong>di</strong>mensional<br />

photonic quasicrystals by single beam computer-generated holography," Opt.<br />

Express 16, 5164, 2008<br />

[5] E. Di Gennaro, C. Miletto, S. Savo, A. Andreone, D. Morello, V. Gal<strong>di</strong>, G. Castal<strong>di</strong>, and<br />

V. Pierro, “Evidence of local effects in anomalous refraction and focusing properties of<br />

dodecagonal photonic quasicrystals,” Phys. Rev. B 77, 193104, 2008<br />

22


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Scattering Properties of Carbon Nanotube<br />

Arrays<br />

A. G. Chiariello (1) , C. Forestiere (2) , A. Maffucci (1) and G. Miano (2)<br />

(1) University of Cassino, Department DAEIMI, via Di Biasio 43, Cassino, 03043, Italy Email:<br />

chiariello@unicas.it, maffucci@unicas.it<br />

(2) University of Naples Federico II, Department of Electrical Engineering, via Clau<strong>di</strong>o 21,<br />

Naples, 80125, Italy E-mail: carlo.forestiere@unina.it, miano@unina.it<br />

Due to their unique electrical, thermal and mechanical properties, carbon nanotubes<br />

(CNTs) have been proposed for a wide range of nano-electronics applications [1],<br />

inclu<strong>di</strong>ng interconnects, packages, transistors, passive devices, antennas [2].<br />

Recently, carbon nanotubes have been also proposed as innovative scattering material<br />

[3-4], in the realization of absorbing materials in the aircraft industry, in view of<br />

replacing conventional materials, like polymeric sheets filled with magnetic or<br />

<strong>di</strong>electric loss materials, such as ferrite, permalloy.<br />

In this work we investigate the scattering properties of an array of finite-length<br />

single-wall carbon nanotubes (SWCNTs), up to terahertz frequencies. The problem is<br />

cast in terms of a Pocklington-like equation. The current density along the CNT is<br />

described by a quasi-classical transport model, recently proposed. The numerical<br />

solution is obtained by means of the Galerkin method. Case stu<strong>di</strong>es are carried out,<br />

either referred to isolated SWCNTs and array of SWCNTs, aimed at investigating the<br />

frequency behaviour of the scattered field.<br />

a) b)<br />

Figure 1 – (a) Scattered electric field for a 20µm-long CNT, with ra<strong>di</strong>us of 2.72nm at 300K,<br />

illuminated by a TEM plane wave impinging orthogonally. The scattered field has been<br />

evaluated at a <strong>di</strong>stance of 100 μm (b) Spatial <strong>di</strong>stributions of the current along the CNT at the<br />

frequencies<br />

References<br />

[1] R. H. Baughman, A.A. Zakhidov, W.A. de Heer., “Carbon nanotubes--the route toward<br />

applications ,” Science, 297(5582), 787-792, 2002<br />

[2] S. A Maksimenko, G. Ya. Slepyan, A. M. Nemilentsau, and M. V. Shuba, “Carbon<br />

nanotube antenna: Far-field, near-field and thermal-noise properties,” Physical Rev. E, 40,<br />

2360, 2008.<br />

[3] J. Hao and G.W. Hanson, “Electromagnetic scattering from finite-length metallic carbon<br />

nanotubes in the lower IR bands”, Physical Review B, 74, 035119, 2006.<br />

[4] A.G. Chiariello, C. Forestiere, A. Maffucci and G. Miano, “Scattering Properties of<br />

Carbon Nanotube Arrays,” in press on Intern. Journal of Microwave and Wireless<br />

Technologies<br />

23


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Image Formation/Displacement and Field<br />

Tunneling in Metamaterial Transformation Slabs<br />

Ilaria Gallina (1) , Giuseppe Castal<strong>di</strong> (1) , Vincenzo Gal<strong>di</strong> (1) ,<br />

Andrea Alù (2) , and Nader Engheta (3)<br />

(1) University of Sannio, Department of Engineering<br />

Benevento, Italy – E-mail: ilaria.gallina@unisannio.it,<br />

castal<strong>di</strong>@unisannio.it, vgal<strong>di</strong>@unisannio.it<br />

(2) The University of Texas at Austin, Department of Electrical and Computer<br />

Engineering, Austin, TX 78712, USA – E-mail: alu@mail.utexas.edu<br />

(3) University of Pennsylvania, Department of Electrical and Systems<br />

Engineering, Philadelphia, PA 19104, USA – E-mail: engheta@ee.upenn.edu<br />

Transformation optics has recently emerged as one of the most interesting and<br />

promising approaches to the synthesis of metamaterials for electromagneticfield<br />

manipulation (see, e.g., [1]).<br />

In this work, we review and summarize some recent results [2,3] on the<br />

electromagnetic properties of certain general classes of metamaterial slabs,<br />

inspired by transformation optics, that exploit their intrinsic anisotropy and<br />

inhomogeneity to achieve exotic material properties, within double-positive,<br />

double-negative or single-negative constitutive parameters. In particular, by<br />

means of analytical and numerical full-wave stu<strong>di</strong>es, we derive some<br />

con<strong>di</strong>tions for total transmission, which generalize some previous results in<br />

the literature, and explore the image <strong>di</strong>splacement/formation properties, of<br />

interest for applications such as anti-reflection radomes, anti-cloaking, and<br />

lensing/focusing.<br />

Our results confirm the broad breadth of transformation optics and its<br />

intriguing potentials as a general unifying approach to the design of<br />

application-oriented metamaterials. In particular, we systematically derive the<br />

con<strong>di</strong>tions for designs that do not require negative constitutive parameters, but<br />

that exploit the inherent anisotropy of the transformation slabs to achieve the<br />

required field-manipulation effects within the double-positive (possibly nonmagnetic)<br />

regime of operation.<br />

References<br />

[1] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science,<br />

312, 1780-1782, 2006<br />

[2] I. Gallina, G. Castal<strong>di</strong>, V. Gal<strong>di</strong>, A. Alù, and N. Engheta, “General class of metamaterial<br />

transformation slabs,” Phys. Rev. B, 81, 125124, 2010<br />

[3] G. Castal<strong>di</strong>, I. Gallina, V. Gal<strong>di</strong>, A. Alù, and N. Engheta, “Transformation-optics<br />

generalization of tunnelling effects in bi-layers made of paired pseudo-epsilonnegative/mu-negative<br />

me<strong>di</strong>a,” to be published in J. Opt. (Special Issue on Transformation<br />

Optics), 2011<br />

24


Session FEM-1<br />

Magnetic device modeling<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Chairperson: A. Salvini, “Roma Tre” University<br />

14:00-14:40<br />

Invited paper – N. Takahashi<br />

Application of ON/OFF method to new conceptual design of magnetic devices<br />

14:40-15:00<br />

C. Ragusa, B. Montrucchio, V. Giovara, F. Khan, O. Khan, M. Repetto, and B.<br />

Xie<br />

Implementation of a 3D micromagnetic code on a parallel and <strong>di</strong>stributed<br />

architecture<br />

15:00-15:20<br />

S. Coco, A. Laudani, F. Riganti Fulginei, A. Salvini<br />

Neural-FEM approach for the analysis of hysteretic materials in unbounded<br />

domain<br />

25


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Application of ON/OFF Method to New<br />

Conceptual Design of Magnetic Devices<br />

Norio Takahashi<br />

Dept. Electrical and Electronic Eng., Okayama Univ. Tsushima, Okayama<br />

700-8530, Japan E-mail: norio@elec.okayama-u.ac.jp<br />

In the development of an electromagnetic device, the design based on the experience<br />

of designers is usually performed. Recently, various optimal design methods using<br />

electromagnetic field analysis are developed and applied to the design of actual<br />

magnetic devices. In those methods, we must imagine the outline of the optimal shape<br />

of the magnetic circuit, and the <strong>di</strong>mensions etc. are determined by the optimization<br />

software. Therefore, it may be <strong>di</strong>fficult to get a newly developed magnetic circuit<br />

which we could not imagine beforehand. If a topology optimization method which<br />

can determine the optimal topology by <strong>di</strong>stributing materials in a design domain is<br />

used, there is a possibility that a new magnetic circuit can be <strong>di</strong>scovered, because it is<br />

not necessary to set design variables in advance. In this paper, the ON/OFF method<br />

which can determine the optimal topology considering 3-D shape and the nonlinearity<br />

of magnetic material is examined. The effectiveness of the newly developed ON/OFF<br />

method is shown applying it to the design of various magnetic devices, such as<br />

magnetic head[1], shield[2], motor[3] etc. Fig.1 shows the obtained shape of high<br />

density magnetic head. A reasonable shape is obtained. Fig. 2 shows the optimal<br />

shape of IPM motor which produces a higher driving torque.<br />

References<br />

[1] K.Akiyama, D. Miyagi, N.Takahashi, “Design of CF-SPT Head Having Large Recor<strong>di</strong>ng Field<br />

and Small Stray Field Using 3-D ON/OFF Method”, IEEE Trans. on Magn., Vol. 42, No.10,<br />

pp.2431-2433, 2006.<br />

[2] N. Takahashi, S. Nakazaki, D. Miyagi: “ Examination of Optimal Design Method of<br />

Electromagnetic Shield Using ON/OFF Method”, IEEE Trans. on Magn., Vol. 45, no.3, pp.1546-<br />

1549, 2009.<br />

[3] N. Takahashi, T. Yamada, D. Miyagi: “Examination Optimal Design of IPM Motor Using ON/OFF<br />

Method ”, IEEE Trans. on Magn., Vol.46, No. 8, pp.3149-3152, 2010.<br />

26


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Implementation of a 3D Micromagnetic Code on a<br />

Parallel and Distributed Architecture<br />

Carlo Ragusa (1) , Bartolomeo Montrucchio (2) , Vittorio Giovara (2) ,<br />

Fiaz Khan (2) , Omar Khan (2) , Maurizio Repetto (1) (1, 3)<br />

, and Baochang Xie<br />

(1) Politecnico <strong>di</strong> Torino, Department of Electrical Engineering<br />

Torino, Italy – E-mail: carlo.ragusa@polito.it<br />

(2) Politecnico <strong>di</strong> Torino, Department of Control and Computer Engineering<br />

Torino, Italy – E-mail: bartolomeo.montrucchio@polito.it<br />

(3) Shanghai Jiaotong University (SJTU), Shanghai 200030,China<br />

We present the implementation of a full micromagnetic code developed on a low cost<br />

and low latency parallel and <strong>di</strong>stributed architecture based on OpenMP [1] and MPI<br />

over Infiniband [2]. Since the most time consuming part of a micromagnetic code is<br />

the magnetostatic field computation algorithm, many existing parallel<br />

implementations take advantage of Ethernet-based computer clusters [3]. Moreover,<br />

in recent years, the availability of low cost multi-core and<br />

multi-processor computers have enabled the parallelization of micromagnetic<br />

programs on shared memory computer systems [4]. In our approach we use a low<br />

latency Infiniband network coupled with a low cost multi processor, multi core<br />

cluster. The hardware architecture includes a 16 cores cluster composed by two<br />

double processor computers. The two computers are connected by means of<br />

Infiniband network cards that are <strong>di</strong>rectly connected together, without using a switch.<br />

The general implementation scheme is summed up in the following. As first, any<br />

standard sequential loop is parallelized to fully exploit all the eight cores<br />

each single machine can offer. By setting up proper shared/private variables lists, the<br />

loop is <strong>di</strong>vided among a given number of OpenMP threads and each carries out a<br />

portion of that iteration. Afterwards, the loop is split in two (n in the general<br />

case of a n nodes cluster) data sets, before executing OpenMP. Each part of the loop is<br />

submitted to a node of the cluster and separately executed. Eventually, at the end of<br />

the loop, data is exchanged back with MPI and merged so that the two (n) machines<br />

can continue working on complete arrays.<br />

References<br />

[1] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel programming in<br />

OpenMP, Morgan Kaufmann Publishers, 2001<br />

[2] W. Gropp, E. Lusk, A. Skjellum, Using MPI - Portable parallel programming with the Message-<br />

Passing Interface, Scientific and Engineering computation series, The MIT Press, 1999<br />

[3] Y. Kanai, M. Saiki, K. Hirasawa, T. Tsukamomo, and K. Yoshida, IEEE Trans. on Magnetics, 44,<br />

1602, 2008<br />

[4] M.J. Donahue, “Parallelizing a micromagnetic program for use on multiprocessor shared memory<br />

computers” IEEE Trans. on Magnetics, 45, 3923-3925, 2009<br />

27


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Neural-FEM approach for the analysis of Hysteretic<br />

Materials in unbounded domain<br />

S. Coco (1) , A. Laudani (1) , A. Salvini (2) and F. Riganti Fulginei (2)<br />

(1) University of Catania, DIEES Catania, Italy – e-mail: alaudani@<strong>di</strong>ees.unict.it,<br />

coco@<strong>di</strong>ees.unict.it<br />

(2) Roma Tre University of, DEA<br />

Roma, Italy – e-mail: asalvini@uniroma3.it, riganti@uniroma3.it<br />

The Finite Element method has proved to be a powerful tool for the modeling of<br />

electromagnetic devices, thanks to the possibility of accurate representation of<br />

realistic geometry of the device. On the other hand, the modeling of magnetic material<br />

has also been the subject of many stu<strong>di</strong>ed, above all to take into account the hysteresis<br />

phenomenon and to model it in an efficient and accurate way. The possibility of using<br />

Neural Networks to model magnetic hysteresis has been verified in literature [1], and<br />

represents a good solution if a de<strong>di</strong>cated model for the training of the network is<br />

implemented.<br />

In this paper the authors present a Finite Element code for the analysis of magnetic<br />

problems in unbounded domains combined with a Neural Network (NN) approach for<br />

the characterization of magnetic hysteresis. In particular, the proposed NN is capable<br />

to perform the modelling of saturated and non-saturated, symmetric or asymmetric<br />

hysteresis loops. The use of this NN approach is advantageous for avoi<strong>di</strong>ng<br />

identification of hysteresis models and their inversion (if requested). Even if a number<br />

of measurements are requested, they are very simple and fast to perform (asymmetric<br />

saturated static loops). Thus, the present approach can be easily embedded into a set<br />

of field equations since it does not require a preliminary knowledge of the H (or B)<br />

waveform. In ad<strong>di</strong>tion, in order to treat boundlessness in the system of coupled<br />

equations used for solving the magnetic problem, we adopt an iterative scheme based<br />

on a fictitious boundary that encloses all the field sources and the hysteretic material<br />

regions with the aim to define a bounded domain. In this way the unbounded coupled<br />

problem solution is converted into the iterative solution of a sequence of bounded<br />

Dirichlet magnetic hysteresis problems. The boundary con<strong>di</strong>tions on the fictitious<br />

boundary are initially guessed and successively updated accor<strong>di</strong>ng to the solution<br />

obtained in the previous iteration step [3]. The main important advantage of this<br />

approach is its easy implementation starting from FEM codes for bounded domains.<br />

References<br />

[1] H.H. Saliah, D.A. Lowther, and B. Forghani, “A neural network model of magnetic hysteresis for<br />

computational magnetics,” IEEE Trans. on Magnetics, 33, 4146-4148, 1997<br />

[2] F.R. Fulginei and A. Salvini, “Softcomputing for the Identification of the Jiles–Atherton Model<br />

Parameters”, IEEE Trans. On Magnetics, 41, 1100-1108, 2005.<br />

[3] S. Coco and A. Laudani, “Iterative FE Solution of Unbounded Magneto-Thermal Problems”, Proc.<br />

of 10th IGTE Symposium on Numerical Field Calculation in Electrical Engineering, Graz, Austria,<br />

16-18 Sept, 2002.<br />

28


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session FEM-2<br />

Biome<strong>di</strong>cal applications and large scale problems<br />

Chairperson: N. Takahashi, Okayama University<br />

15:50-16:10<br />

S. Coco and A. Laudani<br />

Finite Element model of charge transport across ionic channels<br />

16:10-16:30<br />

S. Tricarico, M. Goffredo, M. Schmid, S. Conforto, F. Bilotti, T. D’Alessio,<br />

and L. Vegni<br />

Transient model of the human upper limb under surface electrical stimulation<br />

16:30-16:50<br />

B. Bisceglia, F. De Terlizzi, A. Scaglione, NF. Tallarino<br />

Alterazione della elettroporazione in ortope<strong>di</strong>a. Simulazione del trattamento<br />

<strong>di</strong> masse tumorali<br />

16:50-17:10<br />

G. Rubinacci, A. Tamburrino, and S. Ventre<br />

Large scale computation for source integral equations<br />

29


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Finite Element model of charge transport across ionic<br />

channels<br />

S. Coco and A. Laudani<br />

(1) University of Catania, DIEES<br />

Catania, Italy – e-mail: alaudani@<strong>di</strong>ees.unict.it, coco@<strong>di</strong>ees.unict.it<br />

The exchange of signals between living cells takes place mainly through the cellular<br />

membrane, which represents a selective permeable barrier between the cell and<br />

extracellular environment. Among interesting substances, ions are of paramount<br />

importance, since activation of several critical signaling pathways and a number of<br />

cellular functions depend on ionic concentrations (especially Ca++ and K+). The flow<br />

of ions across cell membranes takes place through membrane channels, which are<br />

typical hydrophobic regions having a size of the order of few Å, where the membrane<br />

lipid bilayer exhibits ’openings’ [1]. The simulation of the mechanism of ion flow<br />

across ionic channels is a very complicated task, mainly for the lack of accurate<br />

descriptions of channel structure, the <strong>di</strong>fficulty of modeling the behaviour of the<br />

proteic chains constituting the channel walls, the very high number of atoms, the very<br />

short time scale of the involved dynamical phenomena, etc. Several attempts have<br />

been made to build coherent representations of ion flow across ionic channels, in<br />

accordance with experimental measurements. In literature the most investigated<br />

approaches are Molecular Dynamic (MD), Brownian Dynamic (BD), Langevin-<br />

Lorentz-Poisson (LLP) particle model, and Poisson-Nernst-Planck (PNP) [2-4].<br />

In this paper a 3-D Finite Element (FE) model of charge transport across ionic<br />

channel membrane is presented. The use of irregular FE mesh allows us to model the<br />

3-D channel geometry with a lower number of degree of freedom with respect to FD.<br />

The problem is solved by a FE <strong>di</strong>scretization and by an appositely developed iterative<br />

scheme. The model allows us to obtain an accurate description of ion flow across the<br />

cell membrane. The results are globally summarized by the computed I/V<br />

characteristic relationship, in which the ionic current flowing through the channel is<br />

shown as a function of the membrane voltage.<br />

References<br />

[1] B. Hille, Ionic Channels of Excitable Membranes, Sunderland, MA: Sinauer, 1992.<br />

[2] Salvatore Coco, Daniela S. M. Gazzo, Antonino Laudani, Giuseppe Pollicino, “3-D Finite Element<br />

Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels”, IEEE trans.<br />

on Magnetics, 43, 1461-1464, 2007.<br />

[3] M. E. Oliveri, S. Coco, D. S. M. Gazzo, A. Laudani and G. Pollicino, “3-D FE particle based<br />

model of ion transport across ionic channels”, Scientific Computing in Electrical Engineering,<br />

Mathematics in Industry, Springer-Verlag, 9, 2006<br />

[4] S. Aboud, D. Marreiro, M.Saraniti, and R. Eisenberg, “A poisson p3m force field scheme for<br />

particle-based simulations of ionic liquids,” Journal of Computational Electronics, vol. 3, pp. 117–<br />

133, 2004.<br />

30


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Transient Model of the Human Upper Limb Under<br />

Surface Electrical Stimulation<br />

Simone Tricarico, Michela Goffredo, Maurizio Schmid, Silvia Conforto,<br />

Filiberto Bilotti, Tommaso D’Alessio, Lucio Vegni<br />

“Roma Tre” University, Department of Applied Electronics<br />

Rome, Italy – E-mail: stricarico@uniroma3.it<br />

In this contribution, we propose an accurate phantom model of the human upper limb<br />

based on the volume conductor approximation [1,2]. The model implements a<br />

simplified anatomical representation of the arm where the involved tissues are stacked<br />

in a multilayered cylindrical geometry (see Figure 1a). Each tissue has been<br />

characterized by proper electrical and geometrical properties. We applied the model to<br />

successfully derive the electromagnetic field <strong>di</strong>stribution induced inside the arm by<br />

the excitation of an array of electrodes fed by a generic current pattern (Figure 1b).<br />

We used, then, a finite integration based time domain commercial solver [3] to<br />

evaluate the passive electromagnetic response of the structure to the given<br />

stimulation. Following a classical two-step analysis [4], the model may thus<br />

effectively provide a set of reliable electric parameters, such as current density values,<br />

which can be used by active models to pre<strong>di</strong>ct nerve fibers behavior.<br />

b) b)<br />

Figure 1 – a) Cylindrical model of the human upper limb. b) magnitude of current density <strong>di</strong>stribution<br />

exited by an array of electrodes inside the arm at a given time instant.<br />

References<br />

[1] T.A. Kuiken, N.S. Stoykov, M. Popović, M. Lowery and A. Taflove, “Finite element modeling of<br />

electromagnetic signal propagation in a phantom arm,” IEEE Trans. Neural. Syst. Rehabil. Eng., 9,<br />

346–354, 2001<br />

[2] A. Kuhn, T. Keller, M. Lawrence and M. Morari, “A model for transcutaneous current stimulation:<br />

simulations and experiments,” Med. Biol. Eng. Comput., 47, 279–289, 2009<br />

[3] CST Design Stu<strong>di</strong>o TM 2009, www.cst.com<br />

[4] A. Kuhn and T. Keller, “A 3D transient model for transcutaneous functional electrical<br />

stimulation,” Proc. of 10th Annual Conference of the International FES Society, Montreal,<br />

Canada, July 2005<br />

31


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Alterazione della Elettroporazione in Ortope<strong>di</strong>a.<br />

Simulazione del Trattamento <strong>di</strong> Masse Tumorali<br />

B. Bisceglia (1) , F. De Terlizzi (2) , A. Scaglione (1) , NF. Tallarino (1)<br />

(1)<strong>Dipartimento</strong> <strong>di</strong> Ingegneria dell’Informazione e <strong>di</strong> Ingegneria Elettrica, Università<br />

<strong>di</strong> Salerno, Via Ponte Don Melillo, 84084 Fisciano, SA.<br />

bbisceglia@unisa.it, ascaglione@unisa.it, nftallarino@yahoo.it<br />

(2) Scientific Department, IGEA S.p.A.<br />

Via Parmenide 10/A, 41012 Carpi (Mo). f.deterlizzi@igeame<strong>di</strong>cal.com<br />

Vengono presentati alcuni risultati della ricerca (in progress) che vuole portare alla<br />

formulazione <strong>di</strong> un modello matematico per la descrizione della alterazione della<br />

elettroporazione. La simulazione implementata consente <strong>di</strong> acquisire informazioni<br />

sugli effetti della elettroporazione sul tessuto osseo. L’algoritmo fornisce la risposta<br />

del materiale biologico alla sollecitazione elettrica applicata. Da un punto <strong>di</strong> vista<br />

elettrico la valutazione del campo nei tessuti correla gli effetti terapeutici con le<br />

caratteristiche del campo (locale). In campo ortope<strong>di</strong>co è <strong>di</strong>ffuso l’impiego <strong>di</strong> tecniche<br />

che utilizzano la stimolazione elettrica per trattare fratture con campi elettrici e<br />

correnti <strong>di</strong> bassa intensità al fine <strong>di</strong> stimolarne il tasso <strong>di</strong> crescita e <strong>di</strong> riparazione. [1]<br />

L’elettroporazione è descritta come la formazione <strong>di</strong> pori (canali idrofili) all’interno<br />

della membrana cellulare per effetto dell’applicazione <strong>di</strong> impulsi elettrici, <strong>di</strong> opportuna<br />

durata ed intensità; ciò rende la membrana temporaneamente permeabile permettendo<br />

così il trasporto, altrimenti non consentito, <strong>di</strong> opportune molecole attraverso la<br />

membrana stessa. In alcuni casi si preferisce parlare <strong>di</strong> elettropermeabilizzazione. Nel<br />

caso <strong>di</strong> cellule tumorali si può produrre un incremento notevole della efficacia<br />

citotossica <strong>di</strong> alcuni farmaci chemioterapici. [2] In questo lavoro è stata utilizzata la<br />

stimolazione me<strong>di</strong>ante campo elettrico che consiste nell’applicare al target in esame<br />

una configurazione <strong>di</strong> elettro<strong>di</strong> inducendo nei tessuti un campo elettrico nominale E=<br />

1000 V/cm, alla frequenza <strong>di</strong> 5 KHz. I bersagli considerati sono tratti semplificati <strong>di</strong><br />

arto umano con presenza <strong>di</strong> massa tumorale: è stata fatta una modellizzazione<br />

numerica (utilizzando il co<strong>di</strong>ce <strong>di</strong> calcolo COMSOL� che impiega la tecnica agli<br />

elementi finiti) in approssimazione <strong>di</strong> quasi staticità date le <strong>di</strong>mensioni degli oggetti<br />

stu<strong>di</strong>ati rispetto alla lunghezza d’onda del segnale applicato. La modellizzazione degli<br />

oggetti è stata fatta in prima analisi considerando una geometria molto semplificata in<br />

cui i vari tessuti sono stati assunti (da un punto <strong>di</strong> vista <strong>di</strong>elettrico) omogenei, non<br />

<strong>di</strong>spersivi e lineari. La correlazione tra esposizione e processo <strong>di</strong> guarigione è un<br />

obiettivo non imme<strong>di</strong>atamente raggiungibile, i risultati ottenuti, la semplicità del<br />

modello, la conformità <strong>di</strong> tali risultati con dati sperimentali costituiscono al momento<br />

un buon supporto conoscitivo.<br />

References<br />

[1] B. Bisceglia, A. De Vita, and M. Sarti, “Numeric simulation of a therapeutic processing.<br />

Electrostimulation of bone rebuil<strong>di</strong>ng”, COMPEL: The International Journal for Computation and<br />

Mathematics in Electrical and Electronic Engineering, 27(6), 1249-1259,2008.<br />

[2] D. Miklavcic1, M. Snoj, A. Zupanic1, B. Kos, M. Cemazar, M. Kropivnik, M. Bracko, T. Pecnik,<br />

E. Gadzijev, and G. Sersa, “Towards treatment planning and treatment of deep-seated solid tumors<br />

by electrochemotherapy”, BioMe<strong>di</strong>cal Engineering OnLine, 9-10, 2010.<br />

32


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Large scale computation<br />

for source integral equations<br />

G. Rubinacci (1) , A. Tamburrino (2) and S. Ventre (2)<br />

(1) Università <strong>di</strong> Napoli Federico II, <strong>Dipartimento</strong> <strong>di</strong> Ingegneria Elettrica, v.<br />

Clau<strong>di</strong>o 21, Napoli, 80125, Italy, e-mail: rubinacci@unina.it<br />

(2) Università <strong>di</strong> Cassino, DAEIMI, v. G. Di Biasio 43, Cassino, 03043, Italy, email:<br />

tamburrino@unicas.it, ventre@unicas.it.<br />

The electromagnetic modeling of electromagnetic devices is an important<br />

issue in view of their design. This topic is particularly relevant in many<br />

important applications ranging from the design of large electrical turbogenerators<br />

to electrical transformers for specific applications and micro and<br />

nano-devices. As a matter of fact, nowadays, the complexity of three<strong>di</strong>mensional<br />

geometries, the presence of parts in motion, the nonlinear<br />

ferromagnetic material properties, require numerical models that can be ran on<br />

high performances computers such as those available in the frame of parallel<br />

architectures. Another critical field of application is the design of micro and<br />

nano electromagnetic devices like, for instance, arrays of resonant metallic<br />

nanoparticles for sensing applications. The mathematical models describing<br />

the behavior of their interaction is still classic and it is represented by fullwave<br />

Maxwell equations with proper constitutive relationships. However, as<br />

for an array of nanoparticles, the number of scatterers (and hence the elements<br />

of the mesh) easily saturate the limits of a serial computation.<br />

In this context, we will <strong>di</strong>scuss some results [1]-[4] of interest in the field of<br />

large scale computation based on source integral equations. The proposed<br />

numerical formulations use three-<strong>di</strong>mensional models of the electric<br />

(conduction and/or polarization) and magnetic sources in the presence of<br />

conductors and magnetic materials [5] or conductors and <strong>di</strong>electrics [2]. The<br />

fast and efficient resulting numerical codes are based on a recursive SVD<br />

sparsification of the main (fully populated) stiffness matrix combined with<br />

parallelization.<br />

References<br />

[1] R. Albanese et al., “Electromechanical Analysis of End Win<strong>di</strong>ngs in Turbo Generators”,<br />

proc. of the 14th International IGTE Symposium 2010, 19-22 September 2010, Graz<br />

(Austria).<br />

[2] L. Dal Negro, G. Miano, G. Rubinacci, A. Tamburrino, S. Ventre, "A fast computation<br />

method for the analysis of an array of metallic nanoparticles," IEEE Trans. on Magnetics,<br />

vol. 45, no. 3, pp. 1618-1621, March 2009.<br />

[3] G. Rubinacci, S. Ventre, F. Villone, Y. Liu. A fast technique applied to the analysis of<br />

Resistive Wall Modes with 3D conducting structures,. J. Comp. Phys., 228(5), p 1562-<br />

1572, 2009<br />

[4] G. Rubinacci, R. Fresa, S. Ventre, “An eddy current integral formulation on parallel<br />

computer systems”, International Journal for Numerical Methods in Engineering, vol. 62,<br />

n. 9, (2004).<br />

[5] R. Albanese, G. Rubinacci, “Finite element methods for the solution of 3D eddy current<br />

problems”, Advances in Imaging and Electron, vol. 102, (1990).<br />

33


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-3<br />

Microwave metamaterial applications I<br />

Chairperson: L. Vegni, “Roma Tre” University<br />

9:30-10:10<br />

Invited paper – R. Ziolkowski<br />

Multi-functional, planar metamaterial-inspired near-field resonant parasitic<br />

antennas<br />

10:10-10:30<br />

E. Di Gennaro, I. Gallina, A. Andreone, G. Castal<strong>di</strong>, and V. Gal<strong>di</strong><br />

Cut-wire-induced enhanced transmission through sub-wavelength slits<br />

10:30-10:50<br />

D. Ramaccia, F. Bilotti, and A. Toscano<br />

Design formulas of High-Impedance Surfaces with circular patch arrays<br />

34


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Multi-functional, Planar Metamaterial-inspired Nearfield<br />

Resonant Parasitic Antennas<br />

Richard W. Ziolkowski, Peng Jin, and Chia-Ching Lin<br />

University of Arizona, Department of Electrical and Computer Engineering<br />

Tucson, AZ 85721, USA – E-mail: ziolkowski@ece.arizona.edu<br />

A variety of multi-frequency, linear (LP) and circularly (CP) polarized, metamaterialinspired,<br />

near-field resonant parasitic (NFRP) antennas have been developed and<br />

tested successfully [1]-[6]. While they are in general low-profile, electrically small<br />

antennas, the demand for conformal versions has led to the development of planar<br />

versions. Several planar designs, inclu<strong>di</strong>ng not only high efficiency, single and multifrequency,<br />

LP and CP examples, but also higher <strong>di</strong>rectivity electrically small antennas<br />

and their experimental validations will be described.<br />

Figu<br />

re 1 – Planar metamaterial-inspired NFRP GPS L1 and Global Star communication antenna. a) HFSS<br />

model, b) fabricated antenna that was tested by Galtronics, Tempe, AZ.<br />

References<br />

[1] P. Jin and R. W. Ziolkowski, “Metamaterial-inspired, electrically small, Huygens sources,” IEEE<br />

Antennas Wireless Propag. Lett., 9, 501-505, 2010.<br />

[2] C.-C. Lin, R. W. Ziolkowski, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, “An efficient,<br />

low profile, electrically small, VHF 3D magnetic EZ antenna,” Appl. Phys. Lett., 96, 104102,<br />

2010.<br />

[3] P. Jin and R. W. Ziolkowski, “Multiband extensions of the electrically small metamaterialengineered<br />

Z antenna,” IET Microwaves, Antennas & Propagation, 4, 1016–1025, 2010.<br />

[4] R. W. Ziolkowski, P. Jin, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, “Design and<br />

Experimental Verification of Z Antennas at UHF Frequencies,” IEEE Antennas Wireless Propag.<br />

Lett., 8, 1329-1333, 2009.<br />

[5] P. Jin and R. W. Ziolkowski, “Broadband, efficient, electrically small metamaterial-inspired<br />

antennas facilitated by active near-field resonant parasitic elements,” IEEE Trans. Antennas<br />

Propag., 58, 318-327, 2010.<br />

[6] P. Jin and R. W. Ziolkowski, “Low Q, electrically small, efficient near field resonant parasitic<br />

antennas,” IEEE Trans. Antennas Propag., 57, 2548-2563, 2009.<br />

35


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Cut-Wire-Induced Enhanced Transmission through<br />

Sub-Wavelength Slits<br />

Emiliano Di Gennaro (1) , Ilaria Gallina (2) , Antonello Andreone (1) ,<br />

Giuseppe Castal<strong>di</strong> (2) , and Vincenzo Gal<strong>di</strong> (1)<br />

(1) CNR-SPIN and University of Naples “Federico II,” Department of Physics<br />

Naples, Italy – E-mail: emiliano@na.infn.it, andreone@unina.it<br />

(2) University of Sannio, Department of Engineering<br />

Benevento, Italy – E-mail: ilaria.gallina@unisannio.it, castal<strong>di</strong>@unisannio.it,<br />

vgal<strong>di</strong>@unisannio.it<br />

The study of extraor<strong>di</strong>nary transmission phenomena through sub-wavelength<br />

apertures (holes, slits, grooves, etc.) has recently elicited a great attention from both<br />

theoretical and application viewpoints (see, e.g., [1] for a recent review).<br />

It has recently been shown [1] that substantial (nearly 800-fold) transmission<br />

enhancements of transverse-electric (TE) fields through sub-wavelength slits in a thin<br />

metallic screen can be obtained by placing a metallic cut-wire array (with the wires<br />

centered on the slits and parallel to them) on a thin <strong>di</strong>electric substrate at the side of<br />

the screen that is <strong>di</strong>rectly illuminated. Such phenomenon was shown to be attributable<br />

to the excitation of an electric (<strong>di</strong>pole-like) resonance in the cut wires, whose strong<br />

field localization near the input aperture of the slit allows effective coupling of the<br />

illuminating plane-wave with the evanescent spectrum, and thus its “squeezing”<br />

through the slits.<br />

Here, we report on some recent results which extend the above stu<strong>di</strong>es to the case of<br />

paired cut-wire arrays [2], and provide an experimental verification [3] of the<br />

phenomena. Experimental results, on printed-circuit-board prototypes operating at<br />

microwave frequencies, agree fairly well with numerical full-wave simulations [4].<br />

Besides the moderately higher transmission enhancement, by comparison with [1], the<br />

proposed scenario features a richer phenomenology, which involves both electric- and<br />

magnetic-type resonances, typical of cut-wire-pair structures, thereby endowing<br />

further degrees of freedom in the engineering of enhanced transmission (e.g., passband-type<br />

designs).<br />

References<br />

[1] F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through<br />

subwavelength apertures,” Rev. Mod. Phys., 82, 729-787, 2010<br />

[2] Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength<br />

slits in a thin metallic film” Phys. Rev. E, 80, 036606, 2009<br />

[3] I. Gallina, G. Castal<strong>di</strong>, V. Gal<strong>di</strong>, E. Di Gennaro, and A. Andreone, “Paired cut-wire arrays for<br />

enhanced transmission of transverse-electric fields through subwavelength slits in a thin metallic<br />

screen,” IEEE Antennas Wireless Propagat. Lett., 9, 641-644, 2010<br />

[4] E. Di Gennaro, I. Gallina, A. Andreone, G. Castal<strong>di</strong>, and V. Gal<strong>di</strong>, “Experimental evidence of cutwire-induced<br />

enhanced transmission of transverse-electric fields through sub-wavelength slits in a<br />

thin metallic screen,” to be published in Opt. Express, 2010<br />

36


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Design formulas of High-Impedance Surfaces with<br />

circular patch arrays.<br />

D. Ramaccia, F. Bilotti and A. Toscano<br />

(1) University RomaTre, Department of Applied Electronics<br />

Rome, Italy – E-mail: davide.ramaccia@gmail.com<br />

Originally photonic band gap materials were introduced with the goal to control the<br />

optical properties of materials. Frequency Selective Surfaces (FSS) materials offer the<br />

same control for the electromagnetic properties of the materials at microwave<br />

frequencies. These perio<strong>di</strong>c metallic arrays are employed in the design of High<br />

Impedance Surfaces (HIS) [1], [2].<br />

A typical high–impedance surface with square patches, its equivalent circuit<br />

representation and the circular patch pattern are shown in Figure 1a, 1b and 1c,<br />

respectively.<br />

b) c)<br />

Figure 1: HIS a) typical structure with square patches. b) equivalent circuit model. c) circular patch<br />

array.<br />

It is well known that although the array with square and circular patches have the<br />

same perio<strong>di</strong>city D and the same separation d, the <strong>di</strong>fferent geometry of the elements<br />

causes a <strong>di</strong>fferent behavior in frequency. It is taken into account mo<strong>di</strong>fying the<br />

expression the separation gap d between two adjacent patches. The new parameter deq<br />

for circular patches is deq ��D�� d,<br />

where the coefficients � and � have been<br />

determined geometrically.<br />

The resonance frequency of the circuit in Figure 1b corresponds to the frequency<br />

when the structure present a 0 degree phase shift of the reflected wave. From the<br />

resonant circuit theory, it is �0 � 1 LC and consequently the gap d can mo<strong>di</strong>fy the<br />

resonant frequency of the structure. Fixing � 0 , the geometrical parameters of the<br />

structure can be used to define the bandwidth of operation.<br />

References<br />

[1] O. Luukkonen et al., "Simple and Accurate Model of Planar Grids and High–Impedance Surfaces<br />

Comprising Metal Strips or Patches," IEEE Trans. Antennas Propag., 56, 1624–1632, 2008.<br />

[2] D. Sievenpiper et al., "High-Impedance Electromagnetic Surfaces with a Forbidden Frequency<br />

Band," IEEE Transaction Microwave Theory Tech., 47, 1999.<br />

37<br />

a)


Session MTM-4<br />

Non-linear metamaterials<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Chairperson: A. Andreone, University of Naples “Federico II”<br />

11:20-11:40<br />

A. Ciattoni, C. Rizza, and E. Palange<br />

Multistability at arbitrary low optical intensities through epsilon-near-zero<br />

nonlinear metamaterial<br />

11:40-12:00<br />

M. Centini, A. Benedetti, C. Sibilia, M. Bertolotti<br />

Optimized second harmonic generation in gold square rod chains<br />

12:00-12:20<br />

A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou<br />

Tuning concept of PDMS nanocomposite material for optical fiber<br />

enhancement<br />

12:20-12:40<br />

N. Chikhi, E. Di Gennaro, A. Andreone, E. Esposito, I. Gallina, G. Castal<strong>di</strong>,<br />

and V. Gal<strong>di</strong><br />

Tunable metamaterials operating in the terahertz region<br />

38


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Multistability at arbitrary low optical intensities<br />

through epsilon-near-zero nonlinear metamaterial<br />

Alessandro Ciattoni (1) , Carlo Rizza (2) and Elia Palange (2)<br />

(1) Consiglio Nazionale delle Ricerche, CNR-SPIN 67100 L'Aquila, Italy<br />

E-mail: alessandro.ciattoni@aquila.infn.it<br />

(2) Electrical Engineering Department, University of L'Aquila, 67100 Zona Industriale<br />

<strong>di</strong> Pile (L'Aquila), Italy<br />

We show that a nonlinear metal-<strong>di</strong>electric layered slab of subwavelength thickness<br />

and very small average <strong>di</strong>electric permittivity <strong>di</strong>splays optical multistable behavior at<br />

arbitrary low optical intensities. This is due to the fact that, in the presence of the<br />

small linear permittivity, one of the multiple electromagnetic slab states exists no<br />

matter how small is the transmitted optical intensity. We prove that multiple states at<br />

ultra-low optical intensities can be reached only by simultaneously operating on the<br />

incident optical intensity and incidence angle.<br />

b)<br />

a)<br />

Figure 1 – a) Transmissivity at two <strong>di</strong>fferent incidence angles and surface of allowed electromagnetic<br />

states. b) Geometry of the metal-<strong>di</strong>electric layered slab together with overall slab transmissivity and<br />

parameter space region (shaded region) where multistability occurs. Note that multistable states exist<br />

no matter how small is the incident optical intensity.<br />

References<br />

[1] A. Ciattoni, C. Rizza and E. Palange, “Multistability at arbitrary low optical intensities in a metal<strong>di</strong>electric<br />

layered structure”, submitted for publication on Physical Review Letters.<br />

arXiv:1009.4053v1<br />

39


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Optimized second harmonic generation in gold<br />

square rod chains<br />

Marco Centini, Alessio Benedetti, Concita Sibilia, Mario Bertolotti<br />

<strong>Dipartimento</strong> <strong>di</strong> Scienze <strong>di</strong> Base e Applicate per l'Ingegneria- Sez Fisica. Sapienza<br />

Università <strong>di</strong> Roma. Via A. Scarpa 16 00161 Roma – Italy<br />

E-mail: marco.centini@uniroma1.it<br />

Thanks to the development of nanotechnologies and nanoscience, nonlinear properties<br />

of metallic nanostructures have been deeply investigated both theoretically and<br />

experimentally in the last years. SHG enhancement from nanoantennas and nano<strong>di</strong>mers<br />

has been observed both in near and far fields[1,2]. In a recent work we stu<strong>di</strong>ed<br />

SHG in gold nanowires pointing out the possibility to tailor the properties of the<br />

generated signal by proper design of the system [3]. The same method developed in<br />

[3] has been used to investigate SHG by a chain of gold rods. Here we report the<br />

results of our calculations by considering, as an example, a chain made of five gold<br />

rods (figure 1a). We show that strong field localizations are obtained in the region<br />

between the rods resulting from interference of localized surface plasmons when the<br />

fundamental field is tuned on a coupled resonance (figure 1a). This effect provides a<br />

more efficient coupling of the pump energy to plasmon modes and is responsible of<br />

the enhancement of second harmonic generated signal (figure 1b).<br />

40<br />

150<br />

210<br />

120<br />

240<br />

90<br />

270<br />

3e-018<br />

2e-018<br />

1e-018<br />

4e-018<br />

180 0<br />

c) b)<br />

Figure 1: (a) modulus of the magnetic field H normalized with respect to the amplitude of the incident<br />

field. Fundamental field wavelength is 770 nm, rod sections are 120x120 nm2 and gaps between rods<br />

are 15 nm. (b) polar plot of the nonlinear <strong>di</strong>fferential scattering cross section for the generated second<br />

harmonic field. Typical values of the nonlinear scattering cross section by a gold flat surface at the<br />

same wavelength are of the order of 10 -20 cm 2 /W.<br />

References<br />

[1] B. K. Canfield et al., Nano Letters, 7, 5, 1251-1255 (2007)<br />

[2] T. Hanke et al., Phys. Rev. Lett. 103, 257404 (2009).<br />

[3] A. Benedetti et al., JOSA B 27, 3, 408-416 (2010)).<br />

60<br />

300<br />

30<br />

330


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Tuning Concept of PDMS Nanocomposite Material<br />

for Optical Fiber Enhancement<br />

Alessandro Massaro (1) , Fabrizio Spano (1) , Roberto Cingolani (2) , and Athanassia<br />

Athanassiou (1),(3)<br />

(1) Italian Institute of Technology IIT, Center of Biomolecular Nanotechnologies<br />

Arnesano (Le), Italy – E-mail: alessandro.massaro@iit.it<br />

(2) Italian Institute of Technology IIT- Genova- Italy.<br />

(3) National Nanotechnology Laboratory, CNR Institute of Nanoscience Lecce, IT<br />

In this work we propose a new design approach of nanocomposite material design by<br />

means of tuning of concentration of micro-nanoparticles in a polymeric material. The<br />

method is based on the control of the optical enhancement by changing the gold<br />

concentration (in<strong>di</strong>cated by the volume filling factor �). We consider as material the<br />

Poly<strong>di</strong>methylsiloxane (PDMS) polymer film due to its ability to generate gold<br />

nanoparticles starting from gold precursors by chemical reduction [1]-[3]. A key<br />

parameter used for the design is the scattering efficiency. Figure 1 (a) shows the<br />

calculated scattering efficiency for <strong>di</strong>fferent gold concentration ����and Fig. 2<br />

(b)�in<strong>di</strong>cates an application useful for probe detection systems (light enhancement), of<br />

an optical fiber embedded in the PDMS-Au. The peaks of Fig. 1 (a) in<strong>di</strong>cate the<br />

working wavelength of the optical fiber.<br />

1 (a) (b)<br />

Q scatt.<br />

0<br />

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4<br />

�[�m]<br />

�<br />

������<br />

������<br />

������<br />

41<br />

Optical fiber<br />

embedde<strong>di</strong>n<br />

PDMS‐Au<br />

nanocomposite<br />

Figure 1 – a) PDMS-Au scattering efficiency versus the working wavelength for <strong>di</strong>fferent gold<br />

micro/nanoparticles concentration ��in PDMS material. b) Enhanced light of an optical fiber end<br />

embedded in PDMS-Au nanocomposite material.<br />

References<br />

[1] Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Cuen, “In-situ synthesis of poly(<strong>di</strong>methylsiloxane)- gold<br />

nanoparticles composite filmsand its application in microflui<strong>di</strong>c system,” Lab on chip, 8, 352-357,<br />

2008.<br />

[2] C. E. Hoppe, C. Ridriguez-Abreu, M. Lazzari, M. A. Lopez-Quintela, and C. Solans, “One-pot<br />

preparation of gold-elastomer nanocomposites using PDMS- graft – PEO copolymer micelles as<br />

nanoreactors ,” Phys. Stat. Sol. (a), 205, 1455-1459, 2008.<br />

[3] A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. Jhon, and P. M.<br />

Ajayan, “In situ synthesis of metal nanoparticles embedded free stan<strong>di</strong>ng multifunctional PDMS<br />

films,” Macromol. Rapid Commun., 30, 1116-1122, 2009.


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Tunable metamaterials operating<br />

in the terahertz region<br />

Nassim Chikhi (1) , , Emiliano Di Gennaro (1) , Antonello Andreone (1) , Emanuela<br />

Esposito (2) , Ilaria Gallina (3) , Giuseppe Castal<strong>di</strong> (3) , and Vincenzo Gal<strong>di</strong> (3)<br />

(1)<br />

CNR-SPIN and University of Naples “Federico II,” Department of Physics<br />

Naples, Italy – E-mail: chikhi@na.infn.it, emiliano@na.infn.it, andreone@unina.it<br />

(2)<br />

CNR-ICIB “E. Caianiello”,<br />

Pozzuoli (Na), Naples, Italy – E-mail: e.esposito@cib.na.cnr.it<br />

(3)<br />

University of Sannio, Department of Engineering<br />

Benevento, Italy – E-mail: ilaria.gallina@unisannio.it, castal<strong>di</strong>@unisannio.it,<br />

vgal<strong>di</strong>@unisannio.it<br />

During the last two decades, substantial progress has been achieved in the<br />

development of terahertz (THz) science and technology. However, there are several<br />

restrictions which limit the development of fruitful applications within the full THz<br />

frequency region. One of the main constraints is the lack of appropriate responses, at<br />

those frequencies, from many naturally existing materials. This problem can be solved<br />

using artificially structured electromagnetic materials (“metamaterials”), typically<br />

comprised of perio<strong>di</strong>c arrays of sub-wavelength metallic resonating inclusions.<br />

Different strategies have been explored in order to achieve tunability in the resonating<br />

inclusions within various ranges of frequencies, from microwaves to the THz region,<br />

inclu<strong>di</strong>ng the use of <strong>di</strong>fferent kinds of capacitors, microelectromechanical systems<br />

(MEMS) or liquid crystals [1-3]. The geometry that we considered here is based on<br />

the concept of split ring resonator (SRR) [4, 5]. A comprehensive numerical study<br />

based on full-wave simulations (via CST Microwave Stu<strong>di</strong>o ) has been carried out<br />

in order to characterize the device response in the required frequency region. The<br />

proposed tuning mechanism is based on the use of a liquid crystal (LC).<br />

References<br />

[1] S. Gevorgian, and A. Vorobiev, “Tunable metamaterials based on ferroelectric varactors”,<br />

Procee<strong>di</strong>ngs of the 37 th European Microwave Conference, 2007 EuMA, Munich, Germany.<br />

[2] T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS<br />

switches”, IEEE Antennas Wireless Propag. Lett. 6, 401 (2007).<br />

[3] J. A. Bossard, et al., “Tunable frequency selective surfaces and negative-zero-positive index<br />

metamaterials based on liquid crystals”, IEEE Trans. Antennas Propag. 56, 1308 (2008).<br />

[4] H. Chen, et al., ”Experimental demonstration of frequency-agile terahertz metamaterials”, Nature<br />

Phot. 2, 295 (2008).<br />

[5] K. Ay<strong>di</strong>n, and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial<br />

components”, J. Appl. Phys. 101, 024911 (2007).<br />

[6] F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, ”Magnetically tunable left handed<br />

metamaterials by liquid crystal orientation”, Optics Express 17, 4360 (2009).<br />

42


Session FEM-3<br />

Methods and solvers<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Chairperson: F. Bilotti, “Roma Tre” University<br />

14:00-14:20<br />

G. Aiello, S. Alfonzetti, S. A. Rizzo, and N. Salerno<br />

A Comparison between Hybrid Methods: FEM-BEM versus FEM-DBCI<br />

14:20-14:40<br />

G. Borzì<br />

A comparison of <strong>di</strong>rect methods for the solution of finite element systems on<br />

shared memory computers<br />

14:40-15:00<br />

C. Molar<strong>di</strong>, E. Coscelli, F. Poli, A. Cucinotta, S. Selleri<br />

C-language-based 2D-optical mode solver<br />

43


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

A Comparison between Hybrid Methods:<br />

FEM-BEM versus FEM-DBCI<br />

G. Aiello, S. Alfonzetti, S. A. Rizzo, and N. Salerno<br />

Università <strong>di</strong> Catania, <strong>Dipartimento</strong> <strong>di</strong> Ingegneria Elettrica, <strong>Elettronica</strong> e dei Sistemi<br />

(DIEES), Catania, Italy – E-mail: alfo@<strong>di</strong>ees.unict.it<br />

In the literature several methods have been devised to enable the Finite Element<br />

Method (FEM) to solve static and quasi-static electromagnetic field problems in openboundary<br />

domains. Among these there are the hybrid FEM/BEM (Boundary Element<br />

Method) method [1], and the hybrid FEM-DBCI (Dirichlet Boundary Con<strong>di</strong>tion<br />

Iteration) method proposed by the authors [2]. This paper compares these two hybrid<br />

methods by referring to simple electrostatic field problems.<br />

Consider an electrostatic system made of voltaged conductors, <strong>di</strong>electric objects and<br />

charge <strong>di</strong>stributions embedded in air. In the FEM-BEM method a truncation boundary<br />

�F enclosing the system is introduced. On �F an unknown Neumann con<strong>di</strong>tion<br />

�r�v/�n=q is assumed. The FEM-BEM leads to the global system [1]:<br />

� A A F 0 � � v � �b<br />

0 �<br />

� t<br />

� � �<br />

�<br />

� �<br />

�<br />

A F A FF C<br />

� �<br />

v F � �<br />

0<br />

�<br />

(1)<br />

��<br />

0 H � G��<br />

��<br />

q ��<br />

��<br />

0 �<br />

F �<br />

where: v and vF are the vectors of the unknown values of the potential v in the nodes<br />

inside the domain and on �F, respectively, A, AF and AFF are sparse matrices of<br />

coefficients, b0 is the known term vector due to the conductor potentials and sources,<br />

C is a sparse matrix of coefficients, and qF is the vector of the unknown values of q,<br />

evaluated in nodes other than those of v [1].<br />

In the FEM-DBCI method a Dirichlet boundary con<strong>di</strong>tion is assumed on �F. The<br />

global system is [2]:<br />

� A A F � � v � �b0<br />

�<br />

� � � � � � � (2)<br />

��<br />

G'<br />

H'<br />

� �v<br />

F � � 0 �<br />

Comparing the two methods the following considerations can be made. First, by<br />

analyzing the <strong>di</strong>mensions of the various matrices, it can be shown that FEM-DBCI<br />

requires less memory than FEM-BEM. Moreover, the greater complexity of (1) with<br />

respect to (2) makes FEM-BEM more time-consuming than FEM-DBCI.<br />

From the point of view of accuracy, it can be noted that in FEM-DBCI a numerical<br />

derivative of the potential is performed on the integration curve, whereas this is not<br />

necessary in FEM-BEM. FEM-BEM can therefore be expected to give more accurate<br />

results than FEM-DBCI.<br />

These considerations have been verified by means of a set of examples, exhibiting analytical<br />

solutions.<br />

References<br />

[1] S. Alfonzetti, N. Salerno, “A non-standard family of boundary elements for the hybrid FEM-BEM<br />

method,” IEEE Trans. Magn., 45, 1312-1315, 2009.<br />

[2] G. Aiello, S. Alfonzetti, “Charge iteration: a procedure for the finite-element computation of<br />

unbounded electrical fields,” Int. J. Num. Meth. Engng, 37, 4147-4166, 1994.<br />

44


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

A Comparison of Direct Methods for the Solution<br />

of Finite Element Systems on Shared Memory<br />

Computers<br />

Giuseppe Borzì<br />

University of Messina, Department of Civil Engineering<br />

Messina, Italy – E-mail: gborzi@ieee.org<br />

The numerical solution of electromagnetic problems by means of the finite element<br />

method involves the construction of a linear algebraic system and its solution. When<br />

the order of the system is very high, the solution is achieved by means of iterative<br />

solvers such as those of the Lanczos family [1], Multigrid [2] or Algebraic Multigrid<br />

[3]. The convergence characteristics of iterative solvers are not well understood,<br />

except for a few special cases, like Symmetric Positive Definite matrices for Lanczos<br />

based solvers. Moreover, for complex linear systems the convergence theory is even<br />

less understood than for real linear systems. So, for small and me<strong>di</strong>um size linear<br />

systems, <strong>di</strong>rect solvers for sparse matrices can be more suitable. Unlike iterative<br />

solvers, <strong>di</strong>rect ones can be used as ‘black boxes’, that is to say, the user does not need<br />

to give parameters such as the<br />

convergence tolerance, or precon<strong>di</strong>tioning parameters. Most of these parameters are<br />

chosen heuristically, and an unwise choice may lead wrong results or a breakdown of<br />

the iteration. The downside of <strong>di</strong>rect methods is their higher memory and CPU usage<br />

when compared with iterative solvers, but with the commercial availability of multi<br />

core/threaded CPUs with huge memory this is no more a serious drawback. In this<br />

paper, some public available <strong>di</strong>rect solvers for sparse matrices, such as those included<br />

in the suitesparse package [4], superlu and superlu_mt [5-6] and spooles [7] are<br />

compared on some test matrices resulting from the finite element <strong>di</strong>scretization of<br />

electromagnetic problems.<br />

References<br />

[1] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd Ed., The John Hopkins University<br />

Press, Baltimore, USA, 1996<br />

[2] W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia, USA, 1987<br />

[3] K. Stueben, “Algebraic multigrid (AMG): An introduction with applications,” GMD -<br />

Forschungszentrum Informationstechnik GmbH, Tech. Rep. 53, Sankt Augustin, Germany, Mar.<br />

1999<br />

[4] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM Books, Philadelphia, USA, 2006<br />

[5] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J W. H. Liu, “A supernodal approach to<br />

sparse partial pivoting,” SIAM J. Matrix Analysis and Applications, 20, 720-755, 1999<br />

[6] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An Asynchronous Parallel Supernodal Algorithm for<br />

Sparse Gaussian Elimination,” SIAM J. Matrix Analysis and Applications, 20, 915-952, 1999<br />

[7] C. Ashcraft, and R. Grimes, “SPOOLES: An object-oriented sparse matrix library,” Procee<strong>di</strong>ngs of<br />

the Ninth SIAM Conference on Parallel Processing, San Antonio, Texas, USA, March 22-24,<br />

1999.<br />

45


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

C-Language-Based 2D-Optical Mode Solver<br />

C. Molar<strong>di</strong>, E. Coscelli, F. Poli, A. Cucinotta, S. Selleri<br />

Information Engineering Department, University of Parma, I-43124 Parma, Italy<br />

stefano.selleri@unipr.it<br />

Finite Element Method (FEM), based on edge elements, approach to the modal analysis of modern<br />

optical structures leads to a generalized eigenvalue problem, that involves several resolutions of a<br />

linear equations system in order to span a basis of the Krylov subspace, in which we find<br />

eigensolutions. The matrix of this system is large, sparse, symmetric and not positive definite, so we<br />

can <strong>di</strong>scard every iterative method for resolution. The only way to proceed is to perform a sparse<br />

factorization, that carries on the well known numerical problem called fill-in. A good factorization<br />

algorithm that preserves fill-in small is strongly required; despite this, the memory space to store<br />

matrix factors increases largely with the increase of mesh points, so a wise use of memory is the prime<br />

requisite. Fortran coded modal solver currently used in the department, suffers from an oversized use of<br />

memory space, so a new solver has been developed using the C programming language that offers an<br />

easy, powerful and dynamic memory allocation approach, furthermore, modern C compilers can<br />

generate highly optimized code and give programmers the possibility to include Fortran subroutines. In<br />

the new solver, the handling of memory and the framework algorithms are written in C, creating an<br />

efficient interface to Arpack subroutines to calculate the eigensolutions. In order to show the goodness<br />

of the work, for simulation an ytterbium doped large mode area PCF rod-type fiber with double<br />

clad<strong>di</strong>ng has been considered, searching for Fundamental Mode (FM) and Higher Order Mode (HOM)<br />

on various wavelenghts using a mesh with 89135 points. The new C modal solver results are compared<br />

with the old solver solutions. As shown in the table results fit. Then the number of mesh points has<br />

been gradually increased, comparing execution time and memory space needed by both solvers, on a<br />

32-bit Intel Pentium4 2.80 GHz 2 GByte of RAM with a Linux operating system installed. C solver<br />

gains in speed using significantly less memory space as shown in Fig. 1(a) and (b) respectively. This<br />

give the abilities to simulate with a higher number of points, up to 360000 as reported in Fig. 1(c).<br />

Figure 1 – (a) Speed and (b) memory comparisons between C solver and Fortran solver. (c) Memory required by C solver.<br />

References<br />

[1] J. Jin, The Finite Element Method in Electromagnetics, (John Wiley & Sons Inc. 1993).<br />

[2] Z. Bai, J. Demmel, J. Dongarra, A. Rhue, H. van der Vorst, “Templates for the Solution of Algebraic Eigenvalue Problems:<br />

a Practical Guide”, (Draft 1999).<br />

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third<br />

E<strong>di</strong>tion, (Cambridge University Press 2007).<br />

[4] S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli “Complex FEM modal solver of optical waveguides with PML boundary<br />

con<strong>di</strong>tions”, Optical and Quantum Electronics 33: 359, 2001<br />

46


Session FEM-4<br />

Design and applications<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Chairperson: S. Selleri, University of Florence<br />

15:50-16:10<br />

S. Ceccuzzi, S. Meschino, F. Mirizzi, L. Pajewski, C. Ponti, and G. Schettini<br />

A FEM analysis of microwave components for oversized waveguides<br />

16:10-16:30<br />

U. d’Elia, G. Pelosi, S. Selleri, R. Taddei<br />

Finite Element design of CNT-based multilayer absorbers<br />

16:30-16:50<br />

S. Coco, A. Laudani, G. Pulcini, F. Riganti Fulginei, A. Salvini<br />

Optimization of multistage depressed collectors by using FEM and METEO<br />

16:50-17:10<br />

D. Ramaccia, F. Bilotti, and A. Toscano<br />

Parametric bandwidth analysis of an Artificial Magnetic Conductor surface<br />

47


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

A FEM Analysis of<br />

Microwave Components for Oversized Waveguides<br />

Silvio Ceccuzzi (1) , Simone Meschino (2) , F. Mirizzi (1) , L. Pajewski (2) , C. Ponti (2) ,<br />

and G. Schettini (2)<br />

(1) Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, P.O.Box 65, 00044<br />

Frascati (Rome), Italy – E-mail: mirizzi@frascati.enea.it<br />

(2) Roma Tre University, Department of Applied Electronics,<br />

Rome, Italy – E-mail: s.meschino@unroma3.it<br />

The present work has been developed within the frame of the EFDA task “HCD-08-<br />

03-01: LH4IT, EU contribution to the ITER LHCD Development Plan”<br />

The use of rectangular oversized waveguides in the Main Transmission Lines (MTLs)<br />

of the Lower Hybrid Current Drive (LHCD) system of ITER, requires to investigate<br />

the problem of bends [1, 2]. In this context, the principal specifications that<br />

characterize the design of the bends are: a) to minimize the reflection of the<br />

fundamental TE10 mode; b) to maximize the transmission of the fundamental TE10<br />

mode; c) to minimize the coupling between the TE10 mode and other spurious modes<br />

that propagate at 5 GHz.<br />

This paper presents an overview about the bend options, and it compares the<br />

performances of several curved frameworks analyzed by using the Finite Element<br />

Method (FEM) commercial software, HFSS ® .<br />

Simple circular trajectory curves are considered, varying the ben<strong>di</strong>ng ra<strong>di</strong>us. The<br />

design of such curves is quite simple but not much flexible, being the ben<strong>di</strong>ng ra<strong>di</strong>us<br />

the only parameter. More design flexibility can be achieved using a Mitre Bend<br />

structure. It is of great interest to study this type of bends in terms of coupling, to<br />

check the possible advantages.<br />

Finally an innovative mo<strong>di</strong>fied Mitre-Bend-trapezoidal-elements solution is proposed.<br />

In particular, a preliminary performances comparison among those <strong>di</strong>fferent<br />

alternatives is presented.<br />

References<br />

[1] A. A. San Blas, B. Gimeno, V. E. Boria, H. Esteban, S. Cogollos e A. Coves, “A<br />

Rigorous and efficient full-wave analysis of uniform bends in rectangular waveguide<br />

under arbitrary incidence”, IEEE Trans. Microwave Theory Tech., 51, 397-405, 2003.<br />

[2] L. Lewin, D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved<br />

Structures, London, U.K.: Peregrinus, 1977.<br />

[3] S. Ceccuzi, S. Meschino, F. Mirizzi, L. Pajewski, S. Schettini, et al., “Bends in Oversized<br />

Rectangular Waveguide,” Proc. of the 26 th Fusion Technology Symp., P1-045, Porto, Portugal,<br />

Sept. 27- Oct. 1, 2010.<br />

48


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Finite Element Design of<br />

CNT-based Multilayer Absorbers<br />

Ugo d’Elia (1) , Giuseppe Pelosi (2) , Stefano Selleri (2) , Ruggero Taddei (2)<br />

(1) MBDA Italia, via Tiburtina km. 12,400, 00131<br />

Roma, Italy – E-mail: ugo.delia@mbda.it<br />

(2) University of Florence, Electronics and Telecommunications Department<br />

Via C. Lombroso 6/17 – 50134<br />

Florence, Italy E-mail: [giuseppe.pelosi, stefano.selleri, ruggero.taddei]@unifi.it<br />

Absorbing materials are of relevant industrial interest both for radar cloaking and<br />

anechoic chambers. For the former problem, lightweight, compact, durable materials<br />

adequate to be layered on the vehicle hull are at a premium.<br />

In the radar cloaking context frequency selective surfaces (FSS) comprising regular<br />

lattices of lossy elements are an interesting possibility. FSS elements constituted of<br />

conductive rings loaded with lumped resistors are a possibility investigated in<br />

literature [1], yet they are <strong>di</strong>fficult to manufacture; an FSS exploiting ring resonators<br />

with inherent high losses would be more interesting. To this aim, in this contribution,<br />

a very recently developed carbon nanotubes paper-like material is exploited [2]. This<br />

material exhibits relatively high losses and consequently - for the frequencies at which<br />

the rings resonates - a very high absorption.<br />

A design for multi-layer absorbers based on this FSS is here stu<strong>di</strong>ed. The FSS if<br />

analyzed via finite element (FE) analysis over a single perio<strong>di</strong>c cell by exploiting<br />

Floquet theory [3]. Analyses are carried out for <strong>di</strong>fferent polarization and <strong>di</strong>fferent<br />

values of the incident plane wave angle over a single layer FSS. A genetic algorithm<br />

(GA) based optimization is then performed to design multiple layer FSS satisfying<br />

specific set of bandwidths and absorption requirements.<br />

Design is finally validated via full wave FEM simulations.<br />

References<br />

[1] B.A. Munk, P. Munk, J. Pryor, “On designing Jaumann and circuit analog absorbers (CA<br />

absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag., 55, 186–193, 2007.<br />

[2] L. Wang, R. Zhou, H. Xin, “Microwave (8-50GHz Characterization of Multiwalled Carbon<br />

Nanotube Papers Using Rectangular Waveguides,” IEEE Trans. Microwave Theory Tech., 56,<br />

499-506, 2008.<br />

[3] G. Pelosi, R. Coccioli, S. Selleri, Quick Finite Elements for Electromagnetic Waves, 2nd E<strong>di</strong>tion,<br />

Artech House, London (UK), 2009.<br />

49


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Optimization of Multistage Depressed Collectors by<br />

using FEM and METEO<br />

Salvatore Coco (1) , Antonino Laudani (1) , Giuseppe Pulcini (2) , Francesco Riganti<br />

Fulginei (2) , Alessandro Salvini (2)<br />

(1) University of Catania, DIEES Catania, Italy – e-mail: alaudani@<strong>di</strong>ees.unict.it<br />

(2) Roma Tre University, Department of Applied Electronics - Roma, Italy<br />

Specialized 3-D simulators are required by TWT multistage depressed collector<br />

(MDC) designers to help them to analyze and test new and arbitrarily shaped<br />

geometries for high efficiency TWTs. To perform such a task a Finite Element (FE)<br />

approach can be pursued, since it allows a very flexible meshing and gives the<br />

possibility of using irregular meshes to fit properly the MDC’s geometry; in such a<br />

way complex geometries can be accurately simulated [1]. Unfortunately, the use of<br />

optimization techniques in the design process of these devices is rarely used [2],<br />

because of the high number of parameters and the high computational cost of<br />

efficiency evaluation (the fitness function). In this paper the authors present the<br />

application of a novel metaheuristics technique called METEO (Metric-Topologicalevolutionary-Optimization)<br />

[3], to optimize the performance of multistage collectors,<br />

simulated by means of Finite element collector and electron gun simulator<br />

COLLGUN [4]. METEO [3] is a hybrid algorithm composed by three <strong>di</strong>fferent<br />

heuristics: FSO (Flock of Starlings Optimization) [5], PSO (Particle Swarm<br />

Optimization), and BCA (Bacterial Chemotaxis Algorithm); it performs the<br />

optimization using both the topological as the metric rules. In fact the mentioned<br />

heuristics own a <strong>di</strong>fferent performance taken alone, in particular FSO presents a high<br />

degree of exploration, and a good capability to escape from local minima, whilst PSO,<br />

and BCA own a good proprieties of convergence. Besides, they offer a natural parallel<br />

implementation that allows spee<strong>di</strong>ng up the whole process of optimization. This<br />

characteristic can be useful exploited in order to obtain the desired target with an<br />

acceptable computational cost.<br />

References<br />

[1] S. Coco, F. Emma, A. Laudani, S. Pulvirenti, M. Sergi, “COCA: A Novel 3-D FE Simulator for<br />

the Design of TWTs Multistage Collectors”, IEEE trans. on electron devices, 48 , 24-31, 2001.<br />

[2] T. K. Ghosh, R.G. Carter, “Optimization of Multistage Depressed Collectors”, IEEE trans. on<br />

electron devices, 54 , 2031-2039, 2007.<br />

[3] G. Pulcini, F. Riganti Fulginei, A. Salvini, “Metric-Topological-Evolutionary Optimization”,<br />

OIPE2010 Procee<strong>di</strong>ngs, Sofia - Bulgaria, Sept. 14-18 2010, pp. 3-4.<br />

[4] S. Coco, S. Corsaro, A. Laudani, G. Pollicino, R. Dionisio, and R. Martorana, “COLLGUN: A 3D<br />

FE simulator for the design of TWT's electron guns and multistage collectors”, Scientific<br />

Computing in Electrical Engineering, Mathematics in Industry, Springer-Verlag, 9, 175-180, 2006<br />

[5] F. R. Fulginei, A. Salvini, “Model identification by the Flock-of-Starlings Optimization”, Int.<br />

Journal of applied Electromagnetics and Mechanics, vol. 30, n. 3-4, pp. 321-331, 2009.<br />

50


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Parametric bandwidth analysis of an<br />

Artificial Magnetic Conductor surface<br />

D. Ramaccia, F. Bilotti and A.Toscano<br />

University RomaTre, Department of Applied Electronics<br />

Rome, Italy – E-mail: davide.ramaccia@gmail.com<br />

In this contribution we show a possible application of Finite Integral Technique for<br />

the parametric analysis of the bandwidth of an Artificial Magnetic Conductor (AMC)<br />

made by a perio<strong>di</strong>c array of metallic patches on a <strong>di</strong>electric grounded substrate. As is<br />

well know, these structures mimic the perfect magnetic conductor con<strong>di</strong>tion in a small<br />

frequency range [1-3].<br />

A typical AMC surface with square patches, its equivalent circuit representation are<br />

shown in Figure 1a and 1b respectively.<br />

a) b)<br />

Figure 1: HIS a) typical structure with square patches. b) equivalent circuit model.<br />

Consider an incident electromagnetic wave normally. If the surface is made by a<br />

Perfect electric conductor, the wave is reflected back with a 180 degree phase shift, so<br />

it is opposite in phase with respect to the incident one. If the surface is made by an<br />

AMC, the reflected wave is in phase with respect to the incident one. As mentioned<br />

before, this particular behavior is only in a small frequency range that is defined as the<br />

range within the phase shift is inside the interval [-90°;+90°].<br />

The geometric and electrical parameters of the structure allow us to mo<strong>di</strong>fy the values<br />

of the lumped elements and consequently the bandwidth of the structure as show in<br />

Fig. 2.<br />

Figure 2: Increased Bandwidth around 20 GHz for a AMC with perio<strong>di</strong>city D=7mm and substrate<br />

permittivity ε = 3 .<br />

References<br />

[1] O. Luukkonen et al., "Simple and Accurate Model of Planar Grids and High–Impedance Surfaces Comprising<br />

Metal Strips or Patches," IEEE Trans. Antennas Propag., 56, 1624–1632, 2008.<br />

[2] D. Sievenpiper et al., "High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band," IEEE<br />

Transaction Microwave Theory Tech., 47, 1999.<br />

[3] F.Costa et al., “On the Bandwidth of High-Impedance Frequency Selective Surfaces,” IEEE Antennas and<br />

Prop. Lett., 8, 2009.<br />

51


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-5<br />

Microwave metamaterial applications II<br />

Chairperson: R. Ziolkowski, University of Arizona<br />

09:30-10:10<br />

Invited paper – S. Hrabar<br />

Metamaterials based on non-Foster elements<br />

10:10-10:30<br />

L. Di Palma, F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, G. Rossi and G.<br />

Schettini<br />

Experimental investigations on woodpile EBG metamaterials<br />

10:30-10:50<br />

F. Bilotti, L. Di Palma, and L. Vegni<br />

Analytical model of connected bi-omega structures for enhanced microwave<br />

transmission<br />

52


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Metamaterials based on Non-Foster Elements<br />

Silvio Hrabar (1) , Igor Krois (1) , Ivan Bonic (1) , and Aleksandar Kiricenko (1)<br />

(1) University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb,<br />

Croatia– E-mail:Silvio.Hrabar@fer.hr<br />

It is well known that any passive metamaterial must satisfy basic <strong>di</strong>spersion<br />

constraints:<br />

� ����( �)<br />

� ��<br />

� � 0 , � �� � �(<br />

�)<br />

� ��<br />

� �0.<br />

(1)<br />

This fundamental issue is a cause of inherent narrowband behavior of all<br />

metamaterials (SNG, DNG, SNZ, DNZ). In [1], a possibility of going around the<br />

basic <strong>di</strong>spersion constrains by the use of non-Foster active elements such as negative<br />

capacitors and negative inductors, was pre<strong>di</strong>cted theoretically. Very recent<br />

experimental stu<strong>di</strong>es [2,3] showed that is indeed possible to build active (almost)<br />

<strong>di</strong>spersionless ENZ and MNZ metamaterials. Here, the basic physics of non-Foster<br />

metamaterials will be reviewed and several illustrative examples of practical<br />

prototypes developed at University of Zagreb will be presented. These include a 2D<br />

ENZ unit cell for broadband 2D electromagnetic cloak (Fig. 1) and a broadband ENZ<br />

RF transmission line with superluminal phase and group velocities (Fig. 2). Finally,<br />

currently investigated novel concepts of matched ‘EM nihility’ and frequency<br />

independent active transmission lines will be highlighted.<br />

C 2+<br />

C 1-<br />

��� �<br />

NIC circuit located on the<br />

ground plane<br />

microstrip line<br />

via hole to negative C<br />

a substrate<br />

Effective<br />

permittivity<br />

Fig. 1: (After [2]), Upper: 2D active ENZ<br />

unit cell, Lower: Microstrip realization<br />

References<br />

[1] S. Tretyakov, ‘Meta-materials with wideband negative permittivity and permeability’,<br />

Microwave and Optical Technology Lett., Vol. 31, No. 3, pp. 163-165, November 2001<br />

[2] S. Hrabar, I. Koris, A. Kiricenko, ‘Towards Active Dispersionless ENZ Metamaterial for<br />

Cloaking Applications’ , Metamaterials, Vol. 4 No. 2-3, pp. 89-97. August-September 2010<br />

[3] S. Hrabar, I. Krois, I.Bonic, A Kiricenko, ‘Experimental Investigation of Active Broadband ENZ<br />

Transmission line’, Proc. on ‘Metamaterial Congress 2010, p.p 63-65, Karlsruhe, September 2010<br />

53<br />

Z 0<br />

�x=����<br />

CNE<br />

Realistic<br />

Realistic CNE<br />

Realistic CNE<br />

C<br />

�x=����<br />

C<br />

�x=����<br />

2.0<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5 active ENZ off<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

m10<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

m11 active ENZ on<br />

0 5 10 15 20 25 30 35 40 45 50<br />

freq, MHz<br />

Fig. 2: (After [3]) Upper : RF active ENZ<br />

transmission line, Lower: Measurement results<br />

C


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Experimental investigations on<br />

woodpile EBG metamaterials<br />

Luca Di Palma (1) , Fabrizio Frezza (2) , Lara Pajewski (1) , Emanuele Piuzzi (2) ,<br />

Cristina Ponti (1) , Giorgia Rossi (1) , and Giuseppe Schettini (1)<br />

(1) Roma Tre University, Department of Applied Electronics<br />

Rome, Italy – E-mail: g.schettini@uniroma3.it<br />

(2) Sapienza University, Department of Information Engineering,<br />

Electronics, and Telecommunications<br />

Rome, Italy – E-mail: fabrizio.frezza@uniroma1.it<br />

Electromagnetic Band.Gap (EBG) materials are a class of artificial materials made by<br />

a perio<strong>di</strong>c arrangement of <strong>di</strong>electric and/or metallic unit cells, which allow to control<br />

the propagation of electromagnetic waves along certain <strong>di</strong>rections, depen<strong>di</strong>ng on the<br />

perio<strong>di</strong>city [1]. They can be employed to design a novel class of planar antennas, with<br />

properties of enhanced <strong>di</strong>rectivity [2]-[5].<br />

In this work, a three-<strong>di</strong>mensional EBG with woodpile unit cell is presented, that has<br />

been implemented into two alumina prototypes. Experimental measurements have<br />

given a full characterization of the frequency selectivity through the structure,<br />

especially when employed as a cavity resonator, with two identical mirrors separated<br />

by an air-gap. For this particular layout, the effect of the field polarization, and of the<br />

gap length, on the frequency response, has been deeply investigated. The main result<br />

is the existence of transmission peaks when the air-gap is a multiple of the<br />

wavelength, which, as far as symmetric cavities are concerned, may be applied to the<br />

design of resonator antennas. Starting from a microstrip patch, a new compound<br />

ra<strong>di</strong>ator has been built, placing the ground plane of the basic ra<strong>di</strong>ator in the symmetry<br />

plane of the EBG resonator, and removing its lower part. Many antenna layouts can<br />

be implemented, accor<strong>di</strong>ng to the woodpile orientation, and the <strong>di</strong>stance between the<br />

ground plane and the woodpile superstrate. Compared to the basic ra<strong>di</strong>ator, the<br />

woodpile-covered antenna has narrow beam-width, and reduced side-lobe level, and a<br />

gain enhancement up to 10 dB has been measured on several antenna layouts.<br />

References<br />

[1] J. D. Joannopoulos et al., Photonic Crystals: Mol<strong>di</strong>ng the Flow of Light, Princeton University<br />

Press, Princeton NJ 2008.<br />

[2] F. Yang and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering,<br />

Cambridge University Press, New York 2009.<br />

[3] Y. J. Lee, J. Jeo, R. Mittra, and T. S. Bird, “Application of Electromagnetic Bandgap (EBG)<br />

superstrates with controllable defects for a class of patch antennas as spatial angular filters,” IEEE<br />

Trans. Ant. Propag., 53, 224-235, 2005.<br />

[4] A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, “A planar resonator antenna<br />

based on a woodpile EBG material,” IEEE Trans. Ant. Propag. 53, 216-223, 2005.<br />

[5] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, Analysis and experimental<br />

characterization of an alumina woodpile-covered planar antenna,” Proc. 40th European<br />

Microwave Conference 2009, 200-203, Paris, France, Sept. 28-30 2010.<br />

54


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Analytical Model of Connected Bi-Omega<br />

Structures for Enhanced Microwave<br />

Transmission<br />

Filiberto Bilotti, Luca Di Palma, and Lucio Vegni<br />

“Roma Tre” University, Department of Applied Electronics<br />

Rome, Italy – E-mail: bilotti@uniroma3.it<br />

In this contribution, we present a new analytical model of two connected biomega<br />

particles (Figure 1a). Exploiting the analytical models of chiral and<br />

planar omega particles [1-2] and the equivalent circuit of the bi-helix particle<br />

[3], we have developed a new analytical model for the isolated bi-omega<br />

particle (i.e. a single omega particle backed by its reversed replica). Assuming<br />

the particle electrically small, the proposed analytical model is given in terms<br />

of a proper lumped element equivalent circuit. Then, we have extended the<br />

model to the case of two connected bi-omega particles, by considering the<br />

relevant coupling terms. Since this structure is symmetric, it does support two<br />

fundamental modes, characterized by an even and an odd electric field<br />

<strong>di</strong>stribution, respectively. The analytical model, in fact, pre<strong>di</strong>cts two <strong>di</strong>fferent<br />

resonant frequencies related to the two modes of operation. Such a result is<br />

confirmed also by proper full-wave numerical simulations (Figure 1b). The<br />

proposed analytical model has been successfully used to design compact<br />

devices to obtain extraor<strong>di</strong>nary transmission through sub-wavelength apertures<br />

in metallic waveguides. This result opens the door to the design of a new class<br />

of microwave components (filters, impedance matching devices, mode<br />

converters, cavity resonators, miniaturized probes and ra<strong>di</strong>ating systems, etc.),<br />

some of which will be shown at the conference.<br />

55<br />

Magnetic field amplitude [A/m]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

“even” mode<br />

“odd” mode<br />

0<br />

0 1 2 3 4 5<br />

Frequency [GHz]<br />

d) b)<br />

Figure 1 – a) Sketch of two connected bi-omega particles and b) its typical resonant behavior.<br />

References<br />

[1] S.A. Tretyakov, et al. “Analytical Antenna Model for Chiral Scatterers: Comparison with<br />

Numerical and Experimental Data,” IEEE Trans. Antennas Propagat., 44, 1006-1014,<br />

1996.<br />

[2] C.R. Simovski, S.A. Tretyakov, A.A. Sochava, “Antenna Model for Conductive Omega<br />

Particles,” J. Elettromag. Waves Applicat., 11, 1509-1530, 1997.<br />

[3] A.N. Lagarkova, et al. “Resonance Properties of Bi-helix Me<strong>di</strong>a at Microwaves,”<br />

Electromagnetics, 17, 213-237, 1997.


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-6<br />

Optical metamaterial applications<br />

Chairman: F. Frezza, “Sapienza” University<br />

11:20-11:40<br />

A. Massaro, F. Spano, R. Cingolani, and A. Athanassiou<br />

Pillar type PDMS nanocomposite optical antenna for liquid detection<br />

systems<br />

11:40-12:00<br />

R. Marinelli and E. Palange<br />

Optical performances of micron-sized CMOS image sensors using<br />

metallic planar lenses<br />

12:00-12:20<br />

A. Benedetti, M. Centini, C. Sibilia, M. Bertolotti<br />

Second harmonic generation in gold nanoantennas<br />

12:20-12:40<br />

S. Tricarico, F. Bilotti, and L. Vegni<br />

Controlling optical forces on nanoparticles through metamaterials<br />

56


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Pillar Type PDMS Nanocomposite Optical<br />

Antenna for Liquid Detection Systems<br />

Alessandro Massaro (1) , Fabrizio Spano (1) , Roberto Cingolani (2) , and<br />

Athanassia Athanassiou (1),(3)<br />

(1) Italian Institute of Technology IIT, Center of Biomolecular<br />

Nanotechnologies<br />

Arnesano (Le), Italy – E-mail: alessandro.massaro@iit.it<br />

(2) Italian Institute of Technology IIT- Genova, Italy.<br />

(3) National Nanotechnology Laboratory, Institute of Nanoscience of CNR of<br />

Lecce – Italy<br />

In this work we propose a new pillar sensor device suitable for detection of<br />

liquid’s permittivity. Due to the ability to generate gold nanoparticles starting<br />

from gold precursors by chemical reduction [1], poly<strong>di</strong>methylsiloxane<br />

(PDMS) polymer is used. A pillar type layout is chosen in order to collect and<br />

ra<strong>di</strong>ate the signal in an optical fiber probe. The ra<strong>di</strong>ated signal is enhanced by<br />

the light scattering of the gold micro/nano particles and allows to perform an<br />

high detection sensitivity during the deposition of an ethanol droplet on the<br />

sensor: as shown in Fig. 1 (a) a reduction of the transmitted light intensity is<br />

observed when the ethanol is detected. The detection corresponds to a<br />

variation of the <strong>di</strong>electric contrast dn due to the presence of ethanol. In Fig. 1<br />

(b) is reported the experimental setup used for the measurements. The sensor<br />

is also able to measure the evaporation effect of the ethanol droplet.<br />

Optical ra<strong>di</strong>ated intensity [a.u.]<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

Broad<br />

lamp<br />

source<br />

Multimode<br />

optical fiber<br />

400<br />

800 900 1000 1100 1200 1300 1400<br />

�[nm]<br />

OMA<br />

Multimode<br />

(a) optical fiber<br />

(b)<br />

PDMS-Au pillar<br />

PDMS-Au pillar+ ethanol<br />

dn<br />

57<br />

Optical fiber<br />

probe<br />

Optical fiber<br />

source<br />

Pillar type<br />

sensor<br />

Figure 1 – a) PDMS-Au pillar type sensor and detection of ethanol as reduction of the optical<br />

transmitted intensity. Inset below: image of the fabricated PDMS-Au prototype with the<br />

height of a single pillar of 1.5 mm, the <strong>di</strong>ameter of 1 mm and the side of the square layout of<br />

2.5 mm. Inset above: schematic <strong>di</strong>agram of the used experimental setup. b) Experimental<br />

setup.<br />

References<br />

[1] Q. Zhang, J. J. Xu, Y. Liu, and H. Y. Cuen, “In-situ synthesis of poly(<strong>di</strong>methylsiloxane)-<br />

gold nanoparticles composite filmsand its application in microflui<strong>di</strong>c system,” Lab on<br />

chip, 8, 352-357, 2008.


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Optical performances of micron-sized CMOS<br />

image sensors using metallic planar lenses<br />

Rino Marinelli and Elia Palange<br />

Università degli Stu<strong>di</strong> dell’Aquila, <strong>Dipartimento</strong> <strong>di</strong> Ingegneria Elettrica e<br />

dell’Informazione<br />

L’Aquila, Italy – E-mail: rino.marinelli@univaq.it<br />

CMOS image sensors equipped with metallic planar lenses have been<br />

designed and simulated by CST Microwave Stu<strong>di</strong>o. The increase of the spatial<br />

resolution of CMOS image sensors implies the reduction of their pixel<br />

<strong>di</strong>mensions. It has been demonstrated that for pixel size smaller than 1.4 μm,<br />

<strong>di</strong>ffraction effects become so significant to prevent the microlens from acting<br />

as a focusing element [1]. The research of <strong>di</strong>fferent focusing components is, at<br />

present, a challenge for a further size reduction of the image sensor pixel.<br />

Recently, planar lenses based on aperio<strong>di</strong>c nanoslit arrays on metal films<br />

allowed subwavelength focusing [2]. In this communication, we will report on<br />

the design and simulation of micron-sized planar lenses simply formed by<br />

circular holes in a metallic layer. We will show that the proposed <strong>di</strong>ffracting<br />

lenses with a lightpipe integrated in each pixel [3], make them suitable to<br />

replace the conventional microlenses in the CMOS image sensors and are<br />

compatible with their fabrication process.<br />

In Fig. 1 we show the CMOS image sensor model used for the simulations, the<br />

resulting pattern focusing and light confinement at �=633 nm and, finally, the<br />

normalized optical and cross-talk efficiency versus the pixel size.<br />

a) b) c)<br />

Figure 1 – a) The model of a 1.75 µm single pixel: gold layer is holed, 1.1µm in <strong>di</strong>ameter. b)<br />

The z-component of the Poyting vector at λ=633 nm. c) Normalized optical and cross-talk<br />

efficiency calculated for 4 pixel model versus pixel size at 1.75-1.4-1.2-1 µm.<br />

References<br />

[1] Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2μm<br />

pixel CMOS image sensor”, Opt. Express, 18, 5861-5872, 2010.<br />

[2] L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S.<br />

Fan, “Planar lenses based on nanoscale slit arrays in a metal film”, Nanoletters, 9, 235-<br />

238, 2009.<br />

[3] C. C. Fesenmaier, Y. Huo and P. B. Catrysse, “Optical confinement methods for<br />

continued scaling of CMOS image sensor pixels”, Opt. Express, 16, 20457-20470, 2008.<br />

58


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Second Harmonic Generation in Gold<br />

Nanoantennas<br />

Alessio Benedetti, Marco Centini, Concita Sibilia, Mario Bertolotti<br />

<strong>Dipartimento</strong> <strong>di</strong> Scienze <strong>di</strong> Base e Applicate per l'Ingegneria- Sez Fisica.<br />

Sapienza Università <strong>di</strong> Roma. Via A. Scarpa 16 00161 Roma – Italy<br />

E-mail: concita.sibilia@uniroma1.it<br />

The second order nonlinear response from flat metal screens has been widely<br />

investigated, both theoretically and experimentally, from the late 1960s–1980s<br />

[1]. The last few years witnessed renewed interest in the study of nonlinear<br />

second order properties of metal/<strong>di</strong>electric composites thanks to the<br />

development of nanotechnologies and nanoscience. In this work we study the<br />

enhancement of SHG due to the interaction between two 3D metallic wires<br />

with sections of arbitrary shape, focusing on the effect of the surface<br />

morphology and defects. We also analyze the possibility of tailoring the<br />

emission pattern. Numerical calculations have been performed applying a<br />

Green's tensor method [2,3]. The SHG as a function of the wires cross section<br />

size is investigated in both the near and far field regimes. An accurate study of<br />

the effects related to the nonlinear surface contribution for the SHG process,<br />

and of the mo<strong>di</strong>fication of the nonlinear scattering cross section (NLSCS) due<br />

to surface roughness in realistic samples has been performed. Figure 1a shows<br />

the sample description: we note that the shape can be arbitrarily mo<strong>di</strong>fied to<br />

take into account for surface roughness and for <strong>di</strong>screpancies from perfect<br />

rectangular shape. In Figure 1b we plot the NLSCS for a gold nanoantenna<br />

calculated when a pump field consisting of a plane wave at 800 nm, polarized<br />

along the long axis <strong>di</strong>rection of the rods is considered.<br />

e) b)<br />

Figure 1: a)Sample which takes into account the imperfections and roughnesses of the metal<br />

surface. b) 3D Nonlinear SH-Scattering Cross Section for a gold nanoantenna (λ=400nm).<br />

References<br />

[1] J. E. Sipe and G. I. Stegeman, V. M. Agranovich and D. L. Mills, eds. (North-Holland,<br />

1982).<br />

[2] M. Paulus and O. J. F. Martin, J. Opt. Soc. Am. A 18, 854–861 (2001).<br />

[3] A. Benedetti et al., JOSA B 27, 3, 408-416 (2010)).<br />

59


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Controlling Optical Forces on Nanoparticles<br />

through Metamaterials<br />

Simone Tricarico, Filiberto Bilotti and Lucio Vegni<br />

University “Roma Tre”, Department of Applied Electronics<br />

Rome, Italy – E-mail: stricarico@uniroma3.it<br />

In this contribution, we propose a theoretical analysis showing how<br />

metamaterials conformal covers surroun<strong>di</strong>ng a given nanoscatterer may be<br />

effectively used not only to design cloaking devices [1,2], but also to<br />

synthesize shells able to control acting optical forces [3]. Here, we extend the<br />

scattering cancellation approach in order to derive the proper con<strong>di</strong>tions under<br />

which plasmonic me<strong>di</strong>a or metamaterials can be used to manipulate optical<br />

forces exerted by the illuminating ra<strong>di</strong>ation on a Rayleigh particle. In the long<br />

wavelength limit, in fact, such kind of forces are <strong>di</strong>rectly related to the<br />

amplitude of the object electric polarizability. Since scattering cancellation<br />

technique relies in suppressing the scattered field by nullifying the<br />

polarizability of the overall object, we may exploit the inherently <strong>di</strong>spersive<br />

behavior metamaterials to design a suitable cover able to govern optical forces<br />

(see Figure 1).<br />

x<br />

�0<br />

y �0<br />

2<br />

E0<br />

f) b)<br />

Figure 1 – a) Gra<strong>di</strong>ent force field <strong>di</strong>stribution for a bare <strong>di</strong>electric spherical particle placed in<br />

the interference region of two orthogonal stan<strong>di</strong>ng waves with zero phase shift. b) Gra<strong>di</strong>ent<br />

force field <strong>di</strong>stribution in the same configuration for a <strong>di</strong>electric spherical covered by a<br />

metamaterial shell. At the working frequency (zero crossing of the electric polarizability) the<br />

gra<strong>di</strong>ent force is minimized.<br />

References<br />

[1] A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial<br />

coatings,” Phys. Rev. E, 72, 016623, 2005<br />

[2] S. Tricarico, F. Bilotti, and L. Vegni, “Reduction of optical forces exerted on nanoparticles<br />

covered by scattering cancellation based plasmonic cloaks,” Phys. Rev. B, 82,<br />

045109, 2010<br />

[2] S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic Cloaking for Irregular Objects<br />

with Anisotropic Scattering Properties,” Phys. Rev. E, 81, 026602, 2010<br />

60<br />

x<br />

�0<br />

y �0<br />

2<br />

E0


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Session MTM-7<br />

Metamaterials theory and modeling<br />

Chairperson: S. Hrabar, University of Zagreb<br />

14:00-14:20<br />

P. Fernandes, M. Ottonello, and M. Raffetto<br />

Some comments on the solution of the linear algebraic systems defined<br />

by the finite element method when applied to electromagnetic problems<br />

involving bianisotropic me<strong>di</strong>a<br />

14:20-14:40 (withdrawn)<br />

G. Conte, G. Finocchio, A. Faba, A. Prattella, B. Azzerboni, E.<br />

Cardelli<br />

Double negative metamaterials based on ferromagnetic microwire: a<br />

numerical study<br />

14:20-14:40<br />

G. Ruffato and F. Romanato<br />

Near-field numerical analysis of Surface Plasmon Polariton<br />

propagation on metallic gratings<br />

14:40-15:00<br />

A. Massaro, D. Caratelli, A. Yarovoy, R. Cingolani, and A.<br />

Athanassiou<br />

Accurate circuit modeling for plasmon probe design<br />

15:00-15:20<br />

P. Zilio, D. Sammito, and F. Romanato<br />

Role of resonances of <strong>di</strong>gital plasmonic gratings in absorption profile<br />

remodulation<br />

61


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Some comments on the solution of the linear<br />

algebraic systems defined by the finite element<br />

method when applied to electromagnetic<br />

problems involving bianisotropic me<strong>di</strong>a<br />

Paolo Fernandes (1) , Marina Ottonello (2) and Mirco Raffetto (2)<br />

(1) Istituto <strong>di</strong> Matematica <strong>Applicata</strong> e Tecnologie Informatiche del<br />

Consiglio Nazionale Delle Ricerche,<br />

Via De Marini 6, I 16149 Genoa, Italy – E-mail: fernandes@ge.imati.cnr.it<br />

(2) Department of Biophysical and Electronic Engineering,<br />

University of Genoa, Via Opera Pia 11a,<br />

I 16145, Genoa, Italy – E-mail: ottonello@<strong>di</strong>be.unige.it,<br />

raffetto@<strong>di</strong>be.unige.it<br />

It is well known that the finite element (FE) method, when applied to the<br />

solution of time-harmonic electromagnetic boundary value problems involving<br />

linear me<strong>di</strong>a, requires the solution of linear algebraic systems of equations<br />

characterized by very sparse matrices [1]. For this task <strong>di</strong>fferent techniques of<br />

solution can be considered: <strong>di</strong>rect solvers and iterative solvers [1]. Usually<br />

iterative solvers [2] work very well and are used worldwide in FE simulations<br />

of electromagnetic boundary value problems. Many types of iterative solvers<br />

have been developed [2] and, among these, some solvers like the conjugate<br />

gra<strong>di</strong>ent [1], [2], the biconjugate gra<strong>di</strong>ent [1], [2] and the Conjugate<br />

Orthogonal Conjugate Gra<strong>di</strong>ent [3], which have received a particular attention<br />

in the research community working on the FE method, assume some kind of<br />

symmetry of the FE matrices.<br />

When the time-harmonic electromagnetic boundary value problem of interest<br />

involves innovative and linear me<strong>di</strong>a, like the so-called bianisotropic materials<br />

[4], [5], the usual symmetry of the FE matrices can be lost and for the most<br />

widely used algebraic iterative algorithms convergence is not guaranteed<br />

anymore. This is the reason why in [6] the authors considered the me<strong>di</strong>um<br />

analyzed in [5] setting a parameter to zero, so reducing the bianisotropic<br />

me<strong>di</strong>um to a biisotropic one. In this contribution we analyze what can be done<br />

to overcome this <strong>di</strong>fficulty.<br />

References<br />

[1] J. Jin, The finite element method in electromagnetics, John Wiley & Sons, 1993.<br />

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.<br />

Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems:<br />

Buil<strong>di</strong>ng Blocks for Iterative Methods, 2nd E<strong>di</strong>tion, SIAM, 1994.<br />

[3] H. A. van der Vorst and J. B. M. Melissen, “A Petrov-Galerkin type method for solving<br />

Ax=b, where A is symmetric complex,” IEEE Trans. Magnetics, vol. 26, pp. 706-708,<br />

1990.<br />

[4] J. A. Kong, Theory of Electromagnetic Waves, Wiley, 1975.<br />

[5] S. Maruyama and M. Koshiba, “A vector finite element formulation for general<br />

bianisotropic waveguides,” IEEE Transactions on Magnetics, vol. 33, pp. 1528- 1531,<br />

1997.<br />

[6] P. Fernandes and M. Raffetto, “Well posedness and finite element approximability of<br />

time-harmonic electromagnetic boundary value problems involving bianisotropic<br />

materials and metamaterials, Mathematical Models and Methods in Applied Sciences,<br />

vol. 19, pp. 2299-2335, December 2009.<br />

62


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Double negative metamaterials based on<br />

ferromagnetic microwire: a numerical study<br />

G. Conte (1) , G. Finocchio (1) , A. Faba (2)(3) , A. Prattella (1) , B. Azzerboni (1) , E.<br />

Cardelli (2)(3)<br />

(1) University of Messina, Department of Matter Physics and Electronic<br />

Engineering - Messina, Italy<br />

(2) University of Perugia, Polo Scientifico e Didattico <strong>di</strong> Terni,<br />

Terni, Italy<br />

(3) University of Perugia, Department of Industrial Engineering<br />

Perugia, Italy<br />

The double negative (DNG) properties of metamaterials based on array of<br />

ferromagnetic thin wires in the RF spectrum have recently been highlighted<br />

[1,2]. This fact is interesting due the possibility to control the DNG with a<br />

magnetic field applied to the wires (control of the ferromagnetic resonance<br />

frequency).<br />

This work consists of a systematic study of the electric properties of a perio<strong>di</strong>c<br />

array of this kind of me<strong>di</strong>a in order to determine how it is influenced the DNG<br />

effect. The negative electric permittivity can be tuned by acting on the<br />

geometric parameters a and r as suggested by Pendry et al [3].<br />

The FTDT method was employed to analyze 1D and 2D array with size of 3x1<br />

and 3x2 in waveguide environment (8÷12 GHz - WR-90 waveguide). The<br />

wires composed by CoSiB have a ra<strong>di</strong>us of 2 μm. The performance of the<br />

samples are expressed in terms of scattering parameters S11 and S21 and<br />

normal absorbed power (Pabs=1-|S11| 2 -|S21| 2 ) and calculated for three values of<br />

dc magnetic field (parallel to the wires). For both arrays, the performances are<br />

enhanced when the a (<strong>di</strong>stance between the wires) is increased up to a critical<br />

value (about 5 mm). For larger value the scattering phenomenon is not<br />

negligible. Our computations show the DNG effect is visible only when the<br />

ra<strong>di</strong>us of the wire is comparable with the skin length. We also see that the<br />

transmission of the signal in the DNG region roughly decrease in the double<br />

layer case, in the case with a third layer the DNG effects became almost<br />

negligible.<br />

References<br />

[1] J. Carbonell, et al, “Double negative metamaterials based on ferromagnetic microwires,”<br />

Phys. Rev. B 81, 024401, 2010.<br />

[2] H. García-Miquel, J. Carbonell, V. E. Boria and J. Sánchez-Dehesa, “Experimental<br />

evidence of left handed transmission through arrays of ferromagnetic microwires,” Appl-<br />

Phys. Lett. 94, 054103, 2009<br />

[3] J. B. Pendry, J. A. Holden, J. D. Robbins, and J. W. Stewart, “Low frequency plasmons in<br />

thin-wire structures,” J. Phys. Condensed Matter, vol. 10, pp. 4785–4809, 1998<br />

[4] N. Engheta and R. W. Ziolkowski, “Metamaterials. Physics and Engineering<br />

Explorations,” Wiley Inter-Science, IEEE Press, Piscataway, NJ, 2006<br />

63


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Near-field numerical analysis of Surface Plasmon<br />

Polariton propagation on metallic gratings<br />

Gianluca Ruffato (1,2)* and Filippo Romanato (1,2,3)**<br />

(1) University of Padova, Department of Physics ‘G.Galilei’ Via Marzolo 8, 35131 Padova,<br />

Italy<br />

(2) LaNN Laboratory for Nanofabrication of Nanodevices, Corso Stati Uniti 4, 35127 Padova<br />

Italy<br />

(3) CNR-INFM IOM National Laboratory S.S. 14 Km 163.5, 34012 Basovizza Italy<br />

*E-mail:gianluca.ruffato@unipd.it **E-mail: romanato@tasc.infm.it<br />

Sinusoidal 1D metallic gratings are shown to efficiently couple the<br />

propagation of Surface Plasmon Polaritons (SPPs). Numerical simulations<br />

were performed in order to analyze the SPP excitation and propagation on<br />

these metallic gratings in the conical mounting. C-Method 1 was implemented<br />

to design the best grating profile and material choice so to optimize SPP<br />

coupling and optical response for applications in the bio-sensing field 2 . In<br />

recent papers we experimentally demonstrated benefits in sensitivity 3 and<br />

polarization phenomenology 4 that are originated by azimuthal rotation.<br />

Numerical simulations confirm these experimental results and complete the<br />

analysis with a study of SPP near-field on metallic surface: electromagnetic<br />

field intensity and polarization, out-of-scattering plane SPP propagation,<br />

multiple SPP excitation. The code allows describing the full optical behavior<br />

of this plasmonic grating also when coated with <strong>di</strong>electric multi-layer that can<br />

be used as special substrates for sensing purposes.<br />

g) b)<br />

Figure 1 – a) Reflectivity <strong>di</strong>ps for angular scan at azimuth �=40° and illuminating wavelength<br />

�=700nm for <strong>di</strong>fferent incident polarization. Sinusoidal bimetallic Ag(37nm)-Au(7nm) grating<br />

on silicon substrate: period 500nm, amplitude 25nm. b) H-field z-component of excited SPPs<br />

on the grating surface xy and reconstruction of wavevector resonance sum kSPP = k|| - G, where<br />

k|| is the on-plane incident light momentum, G is grating momentum.<br />

References<br />

[1] J.Chandezon, M.T.Dupuis, G.Cornet J. Opt. Soc. Am. 72, 839-846, 1982<br />

[2] J. Homola, Chemical Reviews 108, 462-493, 2008<br />

[3] F. Romanato, K. H. Lee, H. K. Kang, G. Ruffato and C. C. Wong, Optics Express, 17,<br />

12145, 2009<br />

[4] F. Romanato, K. H. Lee, G. Ruffato, and C. C. Wong, Appl. Phys. Lett. 96, 111103, 2010<br />

64


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Accurate Circuit Modeling for Plasmon Probe<br />

Design<br />

Alessandro Massaro (1) , Diego Caratelli (2) , Alexander Yarovoy (2) , Roberto<br />

Cingolani (3) , and Athanassia Athanassiou (1),(4)<br />

(1) Italian Institute of Technology IIT, Center of Biomolecular<br />

Nanotechnologies<br />

Arnesano (Le), Italy – E-mail: alessandro.massaro@iit.it<br />

(2) IRCTR, Delft University of Technology, Mekelveg 4, Delft, The Netherlands<br />

(3) Italian Institute of Technology IIT- Genova- Italy.<br />

(4) National Nanotechnology Laboratory, Institute of Nanoscience of CNR of<br />

Lecce<br />

- Italy<br />

An accurate transmission line model for metallic plasmon probe design is<br />

proposed. The new approach is based on the simultaneous transverse<br />

resonance <strong>di</strong>ffraction (STRD) [1] method which allows to evaluate the near<br />

field generated by a metallic wedge excited by surface plasmon wave. The<br />

generic model considers a metallic wedge in <strong>di</strong>fferent <strong>di</strong>electric materials as<br />

illustrated in Fig. 1 (a). By means of the resonance con<strong>di</strong>tion of the equivalent<br />

transmission line circuit of Fig. 1 (b) [1] we evaluate the singularity v of the<br />

electromagnetic field. This singularity is implemented in a multipole<br />

expansion of the Green’s function by provi<strong>di</strong>ng the near field ra<strong>di</strong>ation pattern<br />

of Fig. 1 (c). The proposed approach is used for the design of metallic probes<br />

detecting variation of permittivity.<br />

(a) (b) (c)<br />

��� ��� i+1<br />

��� ��� i<br />

�� i+1<br />

�� i+1<br />

�� i�� i��<br />

��� ��� 2<br />

�� ��<br />

�� N<br />

�� 2<br />

�� ��<br />

�<br />

��� ��� N-1<br />

�� 2<br />

�� ��<br />

�� N<br />

�� N<br />

�� �� 1<br />

1<br />

��� ��� 1<br />

��� ���<br />

Conductor<br />

��� ��� N<br />

�� ��<br />

��� ���<br />

N<br />

��� N<br />

����<br />

65<br />

�� ��<br />

� ���<br />

2 2<br />

��� 2<br />

�� ��<br />

��� ���� ���� Figure 1 – a) Metallic wedge in <strong>di</strong>electric materials. b) Transmission line circuit for a generic<br />

metallic wedge profile. c) STRD near field ra<strong>di</strong>ation pattern for a gold metallic wedge with<br />

�=�/4 working at �0 =1 �m.<br />

References<br />

[1] A. Massaro, L. Pierantoni, R. Cingolani, and T. Rozzi, “A new analytical model of<br />

<strong>di</strong>ffraction by 3D-<strong>di</strong>electric corners,” IEEE Trans. on Antennas Propagat., 57, 2323-2330,<br />

2009.<br />

��� ���


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Role of Resonances of Digital Plasmonic<br />

Gratings in Absorption Profile Remodulation<br />

Pierfrancesco Zilio (1,2) , Davide Sammito (2,3) and Filippo Romanato (1,2,3)<br />

(1) University of Padova, Department of Physics<br />

Padova, Italy – E-mail: pierfrancesco.zilio@pd.infn.it<br />

(2) LaNN - Laboratory of Nanofabriaction of Nanodevices- viale Stati Uniti 4.<br />

35200 Padova, Italy.<br />

(2) IOM-CNR- S.S. 14 km 163.5- Basovizza Trieste<br />

Padova, Italy – E-mail: filippo.romanato@venetonanotech.it<br />

This work investigates the potentialities of 1D subwavelength <strong>di</strong>gital metallic<br />

gratings to modulate the EM field absorption profile in the silicon substrate<br />

underneath. Two well known optical properties of such structures are<br />

particularly attractive for this purpose: Surface Plasmon Polaritons (SPP) and<br />

the Extraor<strong>di</strong>nary Optical Transmission (EOT) [1].<br />

We focused on the optical response of the system to a normally impinging<br />

1000nm-monochromatic TM-polarized wave, varying systematically both<br />

period (d) and thickness (h) of the grating. The ratio between slit width and<br />

period is kept constant to 0.1. The full EM fields <strong>di</strong>stribution has been<br />

computed using COMSOL Multiphysics software which implements a finite<br />

elements analysis. For each configuration (h,d) we calculated transmittance<br />

and absorptance within <strong>di</strong>fferent depths in silicon. We also computed the<br />

effective absorption profile of light as a function of depth in silicon. The same<br />

results have been computed using also a semi-analytical model based on the<br />

decomposition of the fields in Bloch-Floquet modes in air and silicon and in<br />

waveguide modes within the slits [2].<br />

a) b)<br />

Figure 1 – a) Transmittance map as a function of period and thickness of the grating. Solid<br />

lines represent pre<strong>di</strong>ctions of the analytic model. b) Grating configurations showing<br />

respectively Extraor<strong>di</strong>nary Optical Transmission (left) and Surface Plasmon Polaritons (right).<br />

References<br />

[1] F.J. Garcia-Vidal, L.M. Martin-Moreno, T.W. Ebbesen, L. Kuipers, “Light passing<br />

through subwavelength apertures”, Rev. Mod. Phys. , 82, pp. 729-787 (2010).<br />

[2] P. Zilio, D. Sammito, G. Zacco and F. Romanato, “Absorption profile modulation by<br />

means of 1D <strong>di</strong>gital plasmonic gratings”, Optics Express, 18, pp. 19558-19565 (2010).<br />

66


Author Index<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Abbate, G., MTM-2<br />

Aiello, G., FEM-3<br />

Alfonzetti, S., FEM-3<br />

Alù, A., MTM-2<br />

Andreone, A., MTM-2, MTM-3; MTM-4<br />

Athanassiou, A., MTM-4, MTM-6, MTM-7<br />

Azzerboni, B., MTM-7<br />

Bartolino, R., MTM-1<br />

Benedetti, A., MTM-4, MTM-6<br />

Bertolotti, M., MTM-4, MTM-6<br />

Bilotti, F., FEM-2, MTM-3, FEM-4, MTM-5, MTM-6<br />

Bisceglia, B., FEM-2<br />

Bonis, I., MTM-5<br />

Borzì, G., FEM-3<br />

Campopiano, S., MTM-1<br />

Caratelli, D., MTM-7<br />

Cardelli, E., MTM-7<br />

Castal<strong>di</strong>, G., MTM-1, MTM-2, MTM-3, MTM-4<br />

Ceccuzzi, S., FEM-4<br />

Centini, M., MTM-4, MTM-6<br />

Chiariello, AG., MTM-2<br />

Chikhi, N., MTM-4<br />

Ciattoni, A., MTM-4<br />

Cingolani, R., MTM-4, MTM-6, MTM-7<br />

Coco, S., FEM-1, FEM-2, FEM-4<br />

Conforto, S., FEM-2<br />

Conte, G., MTM-7<br />

Coscelli, E., FEM-3<br />

Cucinotta, A., FEM-3<br />

Cusano, A., MTM-1<br />

D’Alessio, T., FEM-2<br />

d’Elia, U., FEM-4<br />

De Luca, A., MTM-1<br />

De Terlizzi, F., FEM-2<br />

De Zuani, S., MTM-2<br />

Di Gennaro, E., MTM-2, MTM-3, MTM-4<br />

Di Palma, L., MTM-5, MTM-5<br />

Engheta, N., MTM-2<br />

Esposito, E., MTM-4<br />

Faba, A., MTM-7<br />

Fernandes, P., MTM-7<br />

Finocchio, G., MTM-7<br />

Forestiere, C., MTM-2<br />

Frezza, F., MTM-5<br />

Gal<strong>di</strong>, V., MTM-1, MTM-2, MTM-3, MTM-4<br />

Gallina, I., MTM-1, MTM-2, MTM-3, MTM-4<br />

Garoli, D., MTM-2<br />

Giovara, V., FEM-1<br />

67


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Goffredo, M., FEM-2<br />

Hrabar, S., MTM-5<br />

Jin, P., MTM-3<br />

Khan, F., FEM-1<br />

Khan, O., FEM-1<br />

Kiricenko, A., MTM-5<br />

Kronis, I., MTM-5<br />

Laudani, A., FEM-1, FEM-2, FEM-4<br />

Lin, C.C., MTM-3<br />

Maffucci, A., MTM-2<br />

Marinelli, R., MTM-6<br />

Massaro, A., MTM-4, MTM-6, MTM-7<br />

Meschino, S., FEM-4<br />

Miano, G., MTM-2<br />

Mirizzi, F., FEM-4<br />

Molar<strong>di</strong>, C., FEM-3<br />

Montrucchio., B,FEM-1<br />

Natali, M., MTM-2<br />

Ottonello, M., MTM-7<br />

Pajewski, L., FEM-4, MTM-5<br />

Palange, E., MTM-4, MTM-6<br />

Parisi, G., MTM-2<br />

Pelosi, G., FEM-4<br />

Pisco, M., MTM-1<br />

Piuzzi, E., MTM-5<br />

Poli, F., FEM-3<br />

Ponti, C., FEM-4, MTM-5<br />

Prattella., A,MTM-7<br />

Priya Rose., T,MTM-2<br />

Pulcini, G., FEM-4<br />

Raffetto, M., MTM-7<br />

Ragusa, C., FEM-1<br />

Ramaccia, D., MTM-3, FEM-4<br />

Repetto, M., FEM-1<br />

Ricciar<strong>di</strong>, A., MTM-1<br />

Riganti Fulginei, F., FEM-1, FEM-4<br />

Rizza, C., MTM-4<br />

Rizzo, S., FEM-3<br />

Romanato, F., MTM-2, MTM-7, MTM-7<br />

Rossi, G., MTM-5<br />

Rubinacci, G., FEM-2<br />

Ruffato, G., MTM-7<br />

Salerno, N., FEM-3<br />

Salvini, A., FEM-1, FEM-4<br />

Sammito, D., MTM-2, MTM-7<br />

Scaglione, A., FEM-2<br />

Schettini, G., FEM-4, MTM-5<br />

Schmid, M., FEM-2<br />

Selleri, S., FEM-3<br />

Selleri, S., FEM-4<br />

68


Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

Sibilia, C., MTM-4, MTM-6<br />

Spano, F., MTM-4, MTM-6<br />

Strangi, G., MTM-1<br />

Taddei, R., FEM-4<br />

Takahashi, N., FEM-1<br />

Tallarino, NF., FEM-2<br />

Tamburrino, A., FEM-2<br />

Toscano, A., MTM-3, FEM-4<br />

Tricarico, S., FEM-2, MTM-6<br />

Vegni, L., FEM-2, MTM-5, MTM-6<br />

Ventre, S., FEM-2<br />

Xie, B., FEM-1<br />

Yarovoy, A., MTM-7<br />

Zheludev,N., MTM-1<br />

Zilio, P., MTM-7<br />

Ziolkowski, R., MTM-3<br />

Zito, G., MTM-2<br />

69


Notes<br />

Meta 2010 & FEM 2010 – Rome, 13-15 December 2010<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!